all repos — NoPaste @ 3e3c433f026c49e04d0efa0f0f39fc688ed32bb1

Resurrected - The PussTheCat.org fork of NoPaste

scripts/CodeMirror/mode/mathematica/index.html (view raw)

 1<!doctype html>
 2
 3<title>CodeMirror: Mathematica mode</title>
 4<meta charset="utf-8"/>
 5<link rel=stylesheet href="../../doc/docs.css">
 6
 7<link rel=stylesheet href=../../lib/codemirror.css>
 8<script src=../../lib/codemirror.js></script>
 9<script src=../../addon/edit/matchbrackets.js></script>
10<script src=mathematica.js></script>
11<style type=text/css>
12  .CodeMirror {border-top: 1px solid black; border-bottom: 1px solid black;}
13</style>
14<div id=nav>
15  <a href="https://codemirror.net"><h1>CodeMirror</h1><img id=logo src="../../doc/logo.png" alt=""></a>
16
17  <ul>
18    <li><a href="../../index.html">Home</a>
19    <li><a href="../../doc/manual.html">Manual</a>
20    <li><a href="https://github.com/codemirror/codemirror">Code</a>
21  </ul>
22  <ul>
23    <li><a href="../index.html">Language modes</a>
24    <li><a class=active href="#">Mathematica</a>
25  </ul>
26</div>
27
28<article>
29<h2>Mathematica mode</h2>
30
31
32<textarea id="mathematicaCode">
33(* example Mathematica code *)
34(* Dualisiert wird anhand einer Polarität an einer
35   Quadrik $x^t Q x = 0$ mit regulärer Matrix $Q$ (also
36   mit $det(Q) \neq 0$), z.B. die Identitätsmatrix.
37   $p$ ist eine Liste von Polynomen - ein Ideal. *)
38dualize::"singular" = "Q must be regular: found Det[Q]==0.";
39dualize[ Q_, p_ ] := Block[
40    { m, n, xv, lv, uv, vars, polys, dual },
41    If[Det[Q] == 0,
42      Message[dualize::"singular"],
43      m = Length[p];
44      n = Length[Q] - 1;
45      xv = Table[Subscript[x, i], {i, 0, n}];
46      lv = Table[Subscript[l, i], {i, 1, m}];
47      uv = Table[Subscript[u, i], {i, 0, n}];
48      (* Konstruiere Ideal polys. *)
49      If[m == 0,
50        polys = Q.uv,
51        polys = Join[p, Q.uv - Transpose[Outer[D, p, xv]].lv]
52        ];
53      (* Eliminiere die ersten n + 1 + m Variablen xv und lv
54         aus dem Ideal polys. *)
55      vars = Join[xv, lv];
56      dual = GroebnerBasis[polys, uv, vars];
57      (* Ersetze u mit x im Ergebnis. *)
58      ReplaceAll[dual, Rule[u, x]]
59      ]
60    ]
61</textarea>
62
63<script>
64  var mathematicaEditor = CodeMirror.fromTextArea(document.getElementById('mathematicaCode'), {
65    mode: 'text/x-mathematica',
66    lineNumbers: true,
67    matchBrackets: true
68  });
69</script>
70
71<p><strong>MIME types defined:</strong> <code>text/x-mathematica</code> (Mathematica).</p>
72</article>