all repos — mgba @ 06d407f130ca454bc23668051a7b73a84b9c1dd7

mGBA Game Boy Advance Emulator

src/gb/audio.c (view raw)

   1/* Copyright (c) 2013-2016 Jeffrey Pfau
   2 *
   3 * This Source Code Form is subject to the terms of the Mozilla Public
   4 * License, v. 2.0. If a copy of the MPL was not distributed with this
   5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
   6#include <mgba/internal/gb/audio.h>
   7
   8#include <mgba/core/blip_buf.h>
   9#include <mgba/core/interface.h>
  10#include <mgba/core/sync.h>
  11#include <mgba/internal/gb/gb.h>
  12#include <mgba/internal/gb/serialize.h>
  13#include <mgba/internal/gb/io.h>
  14
  15#ifdef _3DS
  16#define blip_add_delta blip_add_delta_fast
  17#endif
  18
  19#define FRAME_CYCLES (DMG_LR35902_FREQUENCY >> 9)
  20
  21const uint32_t DMG_LR35902_FREQUENCY = 0x400000;
  22static const int CLOCKS_PER_BLIP_FRAME = 0x1000;
  23static const unsigned BLIP_BUFFER_SIZE = 0x4000;
  24const int GB_AUDIO_VOLUME_MAX = 0x100;
  25
  26static bool _writeSweep(struct GBAudioSweep* sweep, uint8_t value);
  27static void _writeDuty(struct GBAudioEnvelope* envelope, uint8_t value);
  28static bool _writeEnvelope(struct GBAudioEnvelope* envelope, uint8_t value, enum GBAudioStyle style);
  29
  30static void _resetSweep(struct GBAudioSweep* sweep);
  31static bool _resetEnvelope(struct GBAudioEnvelope* sweep);
  32
  33static void _updateEnvelope(struct GBAudioEnvelope* envelope);
  34static void _updateEnvelopeDead(struct GBAudioEnvelope* envelope);
  35static bool _updateSweep(struct GBAudioSquareChannel* sweep, bool initial);
  36
  37static void _updateSquareSample(struct GBAudioSquareChannel* ch);
  38static int32_t _updateSquareChannel(struct GBAudioSquareChannel* ch);
  39
  40static int8_t _coalesceNoiseChannel(struct GBAudioNoiseChannel* ch);
  41
  42static void _updateFrame(struct mTiming* timing, void* user, uint32_t cyclesLate);
  43static void _updateChannel1(struct mTiming* timing, void* user, uint32_t cyclesLate);
  44static void _updateChannel2(struct mTiming* timing, void* user, uint32_t cyclesLate);
  45static void _updateChannel3(struct mTiming* timing, void* user, uint32_t cyclesLate);
  46static void _fadeChannel3(struct mTiming* timing, void* user, uint32_t cyclesLate);
  47static void _updateChannel4(struct mTiming* timing, void* user, uint32_t cyclesLate);
  48static void _sample(struct mTiming* timing, void* user, uint32_t cyclesLate);
  49
  50void GBAudioInit(struct GBAudio* audio, size_t samples, uint8_t* nr52, enum GBAudioStyle style) {
  51	audio->samples = samples;
  52	audio->left = blip_new(BLIP_BUFFER_SIZE);
  53	audio->right = blip_new(BLIP_BUFFER_SIZE);
  54	audio->clockRate = DMG_LR35902_FREQUENCY;
  55	// Guess too large; we hang producing extra samples if we guess too low
  56	blip_set_rates(audio->left, DMG_LR35902_FREQUENCY, 96000);
  57	blip_set_rates(audio->right, DMG_LR35902_FREQUENCY, 96000);
  58	audio->forceDisableCh[0] = false;
  59	audio->forceDisableCh[1] = false;
  60	audio->forceDisableCh[2] = false;
  61	audio->forceDisableCh[3] = false;
  62	audio->masterVolume = GB_AUDIO_VOLUME_MAX;
  63	audio->nr52 = nr52;
  64	audio->style = style;
  65	if (style == GB_AUDIO_GBA) {
  66		audio->timingFactor = 4;
  67	} else {
  68		audio->timingFactor = 1;
  69	}
  70
  71	audio->frameEvent.context = audio;
  72	audio->frameEvent.name = "GB Audio Frame Sequencer";
  73	audio->frameEvent.callback = _updateFrame;
  74	audio->frameEvent.priority = 0x10;
  75	audio->ch1Event.context = audio;
  76	audio->ch1Event.name = "GB Audio Channel 1";
  77	audio->ch1Event.callback = _updateChannel1;
  78	audio->ch1Event.priority = 0x11;
  79	audio->ch2Event.context = audio;
  80	audio->ch2Event.name = "GB Audio Channel 2";
  81	audio->ch2Event.callback = _updateChannel2;
  82	audio->ch2Event.priority = 0x12;
  83	audio->ch3Event.context = audio;
  84	audio->ch3Event.name = "GB Audio Channel 3";
  85	audio->ch3Event.callback = _updateChannel3;
  86	audio->ch3Event.priority = 0x13;
  87	audio->ch3Fade.context = audio;
  88	audio->ch3Fade.name = "GB Audio Channel 3 Memory";
  89	audio->ch3Fade.callback = _fadeChannel3;
  90	audio->ch3Fade.priority = 0x14;
  91	audio->ch4Event.context = audio;
  92	audio->ch4Event.name = "GB Audio Channel 4";
  93	audio->ch4Event.callback = _updateChannel4;
  94	audio->ch4Event.priority = 0x15;
  95	audio->sampleEvent.context = audio;
  96	audio->sampleEvent.name = "GB Audio Sample";
  97	audio->sampleEvent.callback = _sample;
  98	audio->sampleEvent.priority = 0x18;
  99}
 100
 101void GBAudioDeinit(struct GBAudio* audio) {
 102	blip_delete(audio->left);
 103	blip_delete(audio->right);
 104}
 105
 106void GBAudioReset(struct GBAudio* audio) {
 107	mTimingDeschedule(audio->timing, &audio->frameEvent);
 108	mTimingDeschedule(audio->timing, &audio->ch1Event);
 109	mTimingDeschedule(audio->timing, &audio->ch2Event);
 110	mTimingDeschedule(audio->timing, &audio->ch3Event);
 111	mTimingDeschedule(audio->timing, &audio->ch3Fade);
 112	mTimingDeschedule(audio->timing, &audio->ch4Event);
 113	mTimingDeschedule(audio->timing, &audio->sampleEvent);
 114	if (audio->style != GB_AUDIO_GBA) {
 115		mTimingSchedule(audio->timing, &audio->sampleEvent, 0);
 116	}
 117	if (audio->style == GB_AUDIO_GBA) {
 118		mTimingSchedule(audio->timing, &audio->frameEvent, 0);
 119	}
 120	audio->ch1 = (struct GBAudioSquareChannel) { .envelope = { .dead = 2 } };
 121	audio->ch2 = (struct GBAudioSquareChannel) { .envelope = { .dead = 2 } };
 122	audio->ch3 = (struct GBAudioWaveChannel) { .bank = 0 };
 123	audio->ch4 = (struct GBAudioNoiseChannel) { .nSamples = 0 };
 124	// TODO: DMG randomness
 125	audio->ch3.wavedata8[0] = 0x00;
 126	audio->ch3.wavedata8[1] = 0xFF;
 127	audio->ch3.wavedata8[2] = 0x00;
 128	audio->ch3.wavedata8[3] = 0xFF;
 129	audio->ch3.wavedata8[4] = 0x00;
 130	audio->ch3.wavedata8[5] = 0xFF;
 131	audio->ch3.wavedata8[6] = 0x00;
 132	audio->ch3.wavedata8[7] = 0xFF;
 133	audio->ch3.wavedata8[8] = 0x00;
 134	audio->ch3.wavedata8[9] = 0xFF;
 135	audio->ch3.wavedata8[10] = 0x00;
 136	audio->ch3.wavedata8[11] = 0xFF;
 137	audio->ch3.wavedata8[12] = 0x00;
 138	audio->ch3.wavedata8[13] = 0xFF;
 139	audio->ch3.wavedata8[14] = 0x00;
 140	audio->ch3.wavedata8[15] = 0xFF;
 141	audio->ch4 = (struct GBAudioNoiseChannel) { .envelope = { .dead = 2 } };
 142	audio->frame = 0;
 143	audio->sampleInterval = 128;
 144	audio->lastLeft = 0;
 145	audio->lastRight = 0;
 146	audio->capLeft = 0;
 147	audio->capRight = 0;
 148	audio->clock = 0;
 149	audio->playingCh1 = false;
 150	audio->playingCh2 = false;
 151	audio->playingCh3 = false;
 152	audio->playingCh4 = false;
 153	if (audio->p && !(audio->p->model & GB_MODEL_SGB)) {
 154		audio->playingCh1 = true;
 155		audio->enable = true;
 156		*audio->nr52 |= 0x01;
 157	}
 158}
 159
 160void GBAudioResizeBuffer(struct GBAudio* audio, size_t samples) {
 161	mCoreSyncLockAudio(audio->p->sync);
 162	audio->samples = samples;
 163	blip_clear(audio->left);
 164	blip_clear(audio->right);
 165	audio->clock = 0;
 166	mCoreSyncConsumeAudio(audio->p->sync);
 167}
 168
 169void GBAudioWriteNR10(struct GBAudio* audio, uint8_t value) {
 170	if (!_writeSweep(&audio->ch1.sweep, value)) {
 171		mTimingDeschedule(audio->timing, &audio->ch1Event);
 172		audio->playingCh1 = false;
 173		*audio->nr52 &= ~0x0001;
 174	}
 175}
 176
 177void GBAudioWriteNR11(struct GBAudio* audio, uint8_t value) {
 178	_writeDuty(&audio->ch1.envelope, value);
 179	audio->ch1.control.length = 64 - audio->ch1.envelope.length;
 180}
 181
 182void GBAudioWriteNR12(struct GBAudio* audio, uint8_t value) {
 183	if (!_writeEnvelope(&audio->ch1.envelope, value, audio->style)) {
 184		mTimingDeschedule(audio->timing, &audio->ch1Event);
 185		audio->playingCh1 = false;
 186		*audio->nr52 &= ~0x0001;
 187	}
 188}
 189
 190void GBAudioWriteNR13(struct GBAudio* audio, uint8_t value) {
 191	audio->ch1.control.frequency &= 0x700;
 192	audio->ch1.control.frequency |= GBAudioRegisterControlGetFrequency(value);
 193}
 194
 195void GBAudioWriteNR14(struct GBAudio* audio, uint8_t value) {
 196	audio->ch1.control.frequency &= 0xFF;
 197	audio->ch1.control.frequency |= GBAudioRegisterControlGetFrequency(value << 8);
 198	bool wasStop = audio->ch1.control.stop;
 199	audio->ch1.control.stop = GBAudioRegisterControlGetStop(value << 8);
 200	if (!wasStop && audio->ch1.control.stop && audio->ch1.control.length && !(audio->frame & 1)) {
 201		--audio->ch1.control.length;
 202		if (audio->ch1.control.length == 0) {
 203			mTimingDeschedule(audio->timing, &audio->ch1Event);
 204			audio->playingCh1 = false;
 205		}
 206	}
 207	if (GBAudioRegisterControlIsRestart(value << 8)) {
 208		audio->playingCh1 = _resetEnvelope(&audio->ch1.envelope);
 209		audio->ch1.sweep.realFrequency = audio->ch1.control.frequency;
 210		_resetSweep(&audio->ch1.sweep);
 211		if (audio->playingCh1 && audio->ch1.sweep.shift) {
 212			audio->playingCh1 = _updateSweep(&audio->ch1, true);
 213		}
 214		if (!audio->ch1.control.length) {
 215			audio->ch1.control.length = 64;
 216			if (audio->ch1.control.stop && !(audio->frame & 1)) {
 217				--audio->ch1.control.length;
 218			}
 219		}
 220		if (audio->playingCh1 && audio->ch1.envelope.dead != 2) {
 221			_updateSquareChannel(&audio->ch1);
 222			mTimingDeschedule(audio->timing, &audio->ch1Event);
 223			mTimingSchedule(audio->timing, &audio->ch1Event, 0);
 224		}
 225	}
 226	*audio->nr52 &= ~0x0001;
 227	*audio->nr52 |= audio->playingCh1;
 228}
 229
 230void GBAudioWriteNR21(struct GBAudio* audio, uint8_t value) {
 231	_writeDuty(&audio->ch2.envelope, value);
 232	audio->ch2.control.length = 64 - audio->ch2.envelope.length;
 233}
 234
 235void GBAudioWriteNR22(struct GBAudio* audio, uint8_t value) {
 236	if (!_writeEnvelope(&audio->ch2.envelope, value, audio->style)) {
 237		mTimingDeschedule(audio->timing, &audio->ch2Event);
 238		audio->playingCh2 = false;
 239		*audio->nr52 &= ~0x0002;
 240	}
 241}
 242
 243void GBAudioWriteNR23(struct GBAudio* audio, uint8_t value) {
 244	audio->ch2.control.frequency &= 0x700;
 245	audio->ch2.control.frequency |= GBAudioRegisterControlGetFrequency(value);
 246}
 247
 248void GBAudioWriteNR24(struct GBAudio* audio, uint8_t value) {
 249	audio->ch2.control.frequency &= 0xFF;
 250	audio->ch2.control.frequency |= GBAudioRegisterControlGetFrequency(value << 8);
 251	bool wasStop = audio->ch2.control.stop;
 252	audio->ch2.control.stop = GBAudioRegisterControlGetStop(value << 8);
 253	if (!wasStop && audio->ch2.control.stop && audio->ch2.control.length && !(audio->frame & 1)) {
 254		--audio->ch2.control.length;
 255		if (audio->ch2.control.length == 0) {
 256			mTimingDeschedule(audio->timing, &audio->ch2Event);
 257			audio->playingCh2 = false;
 258		}
 259	}
 260	if (GBAudioRegisterControlIsRestart(value << 8)) {
 261		audio->playingCh2 = _resetEnvelope(&audio->ch2.envelope);
 262
 263		if (!audio->ch2.control.length) {
 264			audio->ch2.control.length = 64;
 265			if (audio->ch2.control.stop && !(audio->frame & 1)) {
 266				--audio->ch2.control.length;
 267			}
 268		}
 269		if (audio->playingCh2 && audio->ch2.envelope.dead != 2) {
 270			_updateSquareChannel(&audio->ch2);
 271			mTimingDeschedule(audio->timing, &audio->ch2Event);
 272			mTimingSchedule(audio->timing, &audio->ch2Event, 0);
 273		}
 274	}
 275	*audio->nr52 &= ~0x0002;
 276	*audio->nr52 |= audio->playingCh2 << 1;
 277}
 278
 279void GBAudioWriteNR30(struct GBAudio* audio, uint8_t value) {
 280	audio->ch3.enable = GBAudioRegisterBankGetEnable(value);
 281	if (!audio->ch3.enable) {
 282		audio->playingCh3 = false;
 283		*audio->nr52 &= ~0x0004;
 284	}
 285}
 286
 287void GBAudioWriteNR31(struct GBAudio* audio, uint8_t value) {
 288	audio->ch3.length = 256 - value;
 289}
 290
 291void GBAudioWriteNR32(struct GBAudio* audio, uint8_t value) {
 292	audio->ch3.volume = GBAudioRegisterBankVolumeGetVolumeGB(value);
 293}
 294
 295void GBAudioWriteNR33(struct GBAudio* audio, uint8_t value) {
 296	audio->ch3.rate &= 0x700;
 297	audio->ch3.rate |= GBAudioRegisterControlGetRate(value);
 298}
 299
 300void GBAudioWriteNR34(struct GBAudio* audio, uint8_t value) {
 301	audio->ch3.rate &= 0xFF;
 302	audio->ch3.rate |= GBAudioRegisterControlGetRate(value << 8);
 303	bool wasStop = audio->ch3.stop;
 304	audio->ch3.stop = GBAudioRegisterControlGetStop(value << 8);
 305	if (!wasStop && audio->ch3.stop && audio->ch3.length && !(audio->frame & 1)) {
 306		--audio->ch3.length;
 307		if (audio->ch3.length == 0) {
 308			audio->playingCh3 = false;
 309		}
 310	}
 311	bool wasEnable = audio->playingCh3;
 312	if (GBAudioRegisterControlIsRestart(value << 8)) {
 313		audio->playingCh3 = audio->ch3.enable;
 314		if (!audio->ch3.length) {
 315			audio->ch3.length = 256;
 316			if (audio->ch3.stop && !(audio->frame & 1)) {
 317				--audio->ch3.length;
 318			}
 319		}
 320
 321		if (audio->style == GB_AUDIO_DMG && wasEnable && audio->playingCh3 && audio->ch3.readable) {
 322			if (audio->ch3.window < 8) {
 323				audio->ch3.wavedata8[0] = audio->ch3.wavedata8[audio->ch3.window >> 1];
 324			} else {
 325				audio->ch3.wavedata8[0] = audio->ch3.wavedata8[((audio->ch3.window >> 1) & ~3)];
 326				audio->ch3.wavedata8[1] = audio->ch3.wavedata8[((audio->ch3.window >> 1) & ~3) + 1];
 327				audio->ch3.wavedata8[2] = audio->ch3.wavedata8[((audio->ch3.window >> 1) & ~3) + 2];
 328				audio->ch3.wavedata8[3] = audio->ch3.wavedata8[((audio->ch3.window >> 1) & ~3) + 3];
 329			}
 330		}
 331		audio->ch3.window = 0;
 332		if (audio->style == GB_AUDIO_DMG) {
 333			audio->ch3.sample = 0;
 334		}
 335	}
 336	mTimingDeschedule(audio->timing, &audio->ch3Fade);
 337	mTimingDeschedule(audio->timing, &audio->ch3Event);
 338	if (audio->playingCh3) {
 339		audio->ch3.readable = audio->style != GB_AUDIO_DMG;
 340		// TODO: Where does this cycle delay come from?
 341		mTimingSchedule(audio->timing, &audio->ch3Event, audio->timingFactor * 4 + 2 * (2048 - audio->ch3.rate));
 342	}
 343	*audio->nr52 &= ~0x0004;
 344	*audio->nr52 |= audio->playingCh3 << 2;
 345}
 346
 347void GBAudioWriteNR41(struct GBAudio* audio, uint8_t value) {
 348	_writeDuty(&audio->ch4.envelope, value);
 349	audio->ch4.length = 64 - audio->ch4.envelope.length;
 350}
 351
 352void GBAudioWriteNR42(struct GBAudio* audio, uint8_t value) {
 353	if (!_writeEnvelope(&audio->ch4.envelope, value, audio->style)) {
 354		mTimingDeschedule(audio->timing, &audio->ch4Event);
 355		audio->playingCh4 = false;
 356		*audio->nr52 &= ~0x0008;
 357	}
 358}
 359
 360void GBAudioWriteNR43(struct GBAudio* audio, uint8_t value) {
 361	audio->ch4.ratio = GBAudioRegisterNoiseFeedbackGetRatio(value);
 362	audio->ch4.frequency = GBAudioRegisterNoiseFeedbackGetFrequency(value);
 363	audio->ch4.power = GBAudioRegisterNoiseFeedbackGetPower(value);
 364}
 365
 366void GBAudioWriteNR44(struct GBAudio* audio, uint8_t value) {
 367	bool wasStop = audio->ch4.stop;
 368	audio->ch4.stop = GBAudioRegisterNoiseControlGetStop(value);
 369	if (!wasStop && audio->ch4.stop && audio->ch4.length && !(audio->frame & 1)) {
 370		--audio->ch4.length;
 371		if (audio->ch4.length == 0) {
 372			mTimingDeschedule(audio->timing, &audio->ch4Event);
 373			audio->playingCh4 = false;
 374		}
 375	}
 376	if (GBAudioRegisterNoiseControlIsRestart(value)) {
 377		audio->playingCh4 = _resetEnvelope(&audio->ch4.envelope);
 378
 379		if (audio->ch4.power) {
 380			audio->ch4.lfsr = 0x7F;
 381		} else {
 382			audio->ch4.lfsr = 0x7FFF;
 383		}
 384		if (!audio->ch4.length) {
 385			audio->ch4.length = 64;
 386			if (audio->ch4.stop && !(audio->frame & 1)) {
 387				--audio->ch4.length;
 388			}
 389		}
 390		if (audio->playingCh4 && audio->ch4.envelope.dead != 2) {
 391			mTimingDeschedule(audio->timing, &audio->ch4Event);
 392			mTimingSchedule(audio->timing, &audio->ch4Event, 0);
 393		}
 394	}
 395	*audio->nr52 &= ~0x0008;
 396	*audio->nr52 |= audio->playingCh4 << 3;
 397}
 398
 399void GBAudioWriteNR50(struct GBAudio* audio, uint8_t value) {
 400	audio->volumeRight = GBRegisterNR50GetVolumeRight(value);
 401	audio->volumeLeft = GBRegisterNR50GetVolumeLeft(value);
 402}
 403
 404void GBAudioWriteNR51(struct GBAudio* audio, uint8_t value) {
 405	audio->ch1Right = GBRegisterNR51GetCh1Right(value);
 406	audio->ch2Right = GBRegisterNR51GetCh2Right(value);
 407	audio->ch3Right = GBRegisterNR51GetCh3Right(value);
 408	audio->ch4Right = GBRegisterNR51GetCh4Right(value);
 409	audio->ch1Left = GBRegisterNR51GetCh1Left(value);
 410	audio->ch2Left = GBRegisterNR51GetCh2Left(value);
 411	audio->ch3Left = GBRegisterNR51GetCh3Left(value);
 412	audio->ch4Left = GBRegisterNR51GetCh4Left(value);
 413}
 414
 415void GBAudioWriteNR52(struct GBAudio* audio, uint8_t value) {
 416	bool wasEnable = audio->enable;
 417	audio->enable = GBAudioEnableGetEnable(value);
 418	if (!audio->enable) {
 419		audio->playingCh1 = 0;
 420		audio->playingCh2 = 0;
 421		audio->playingCh3 = 0;
 422		audio->playingCh4 = 0;
 423		GBAudioWriteNR10(audio, 0);
 424		GBAudioWriteNR12(audio, 0);
 425		GBAudioWriteNR13(audio, 0);
 426		GBAudioWriteNR14(audio, 0);
 427		GBAudioWriteNR22(audio, 0);
 428		GBAudioWriteNR23(audio, 0);
 429		GBAudioWriteNR24(audio, 0);
 430		GBAudioWriteNR30(audio, 0);
 431		GBAudioWriteNR32(audio, 0);
 432		GBAudioWriteNR33(audio, 0);
 433		GBAudioWriteNR34(audio, 0);
 434		GBAudioWriteNR42(audio, 0);
 435		GBAudioWriteNR43(audio, 0);
 436		GBAudioWriteNR44(audio, 0);
 437		GBAudioWriteNR50(audio, 0);
 438		GBAudioWriteNR51(audio, 0);
 439		if (audio->style != GB_AUDIO_DMG) {
 440			GBAudioWriteNR11(audio, 0);
 441			GBAudioWriteNR21(audio, 0);
 442			GBAudioWriteNR31(audio, 0);
 443			GBAudioWriteNR41(audio, 0);
 444		}
 445
 446		if (audio->p) {
 447			audio->p->memory.io[REG_NR10] = 0;
 448			audio->p->memory.io[REG_NR11] = 0;
 449			audio->p->memory.io[REG_NR12] = 0;
 450			audio->p->memory.io[REG_NR13] = 0;
 451			audio->p->memory.io[REG_NR14] = 0;
 452			audio->p->memory.io[REG_NR21] = 0;
 453			audio->p->memory.io[REG_NR22] = 0;
 454			audio->p->memory.io[REG_NR23] = 0;
 455			audio->p->memory.io[REG_NR24] = 0;
 456			audio->p->memory.io[REG_NR30] = 0;
 457			audio->p->memory.io[REG_NR31] = 0;
 458			audio->p->memory.io[REG_NR32] = 0;
 459			audio->p->memory.io[REG_NR33] = 0;
 460			audio->p->memory.io[REG_NR34] = 0;
 461			audio->p->memory.io[REG_NR42] = 0;
 462			audio->p->memory.io[REG_NR43] = 0;
 463			audio->p->memory.io[REG_NR44] = 0;
 464			audio->p->memory.io[REG_NR50] = 0;
 465			audio->p->memory.io[REG_NR51] = 0;
 466			if (audio->style != GB_AUDIO_DMG) {
 467				audio->p->memory.io[REG_NR11] = 0;
 468				audio->p->memory.io[REG_NR21] = 0;
 469				audio->p->memory.io[REG_NR31] = 0;
 470				audio->p->memory.io[REG_NR41] = 0;
 471			}
 472		}
 473		*audio->nr52 &= ~0x000F;
 474	} else if (!wasEnable) {
 475		audio->skipFrame = false;
 476		audio->frame = 7;
 477
 478		if (audio->p) {
 479			unsigned timingFactor = 0x400 >> !audio->p->doubleSpeed;
 480			if (audio->p->timer.internalDiv & timingFactor) {
 481				audio->skipFrame = true;
 482			}
 483		}
 484	}
 485}
 486
 487void _updateFrame(struct mTiming* timing, void* user, uint32_t cyclesLate) {
 488	struct GBAudio* audio = user;
 489	GBAudioUpdateFrame(audio, timing);
 490	if (audio->style == GB_AUDIO_GBA) {
 491		mTimingSchedule(timing, &audio->frameEvent, audio->timingFactor * FRAME_CYCLES - cyclesLate);
 492	}
 493}
 494
 495void GBAudioUpdateFrame(struct GBAudio* audio, struct mTiming* timing) {
 496	if (!audio->enable) {
 497		return;
 498	}
 499	if (audio->skipFrame) {
 500		audio->skipFrame = false;
 501		return;
 502	}
 503	int frame = (audio->frame + 1) & 7;
 504	audio->frame = frame;
 505
 506	switch (frame) {
 507	case 2:
 508	case 6:
 509		if (audio->ch1.sweep.enable) {
 510			--audio->ch1.sweep.step;
 511			if (audio->ch1.sweep.step == 0) {
 512				audio->playingCh1 = _updateSweep(&audio->ch1, false);
 513				*audio->nr52 &= ~0x0001;
 514				*audio->nr52 |= audio->playingCh1;
 515			}
 516		}
 517		// Fall through
 518	case 0:
 519	case 4:
 520		if (audio->ch1.control.length && audio->ch1.control.stop) {
 521			--audio->ch1.control.length;
 522			if (audio->ch1.control.length == 0) {
 523				mTimingDeschedule(timing, &audio->ch1Event);
 524				audio->playingCh1 = 0;
 525				*audio->nr52 &= ~0x0001;
 526			}
 527		}
 528
 529		if (audio->ch2.control.length && audio->ch2.control.stop) {
 530			--audio->ch2.control.length;
 531			if (audio->ch2.control.length == 0) {
 532				mTimingDeschedule(timing, &audio->ch2Event);
 533				audio->playingCh2 = 0;
 534				*audio->nr52 &= ~0x0002;
 535			}
 536		}
 537
 538		if (audio->ch3.length && audio->ch3.stop) {
 539			--audio->ch3.length;
 540			if (audio->ch3.length == 0) {
 541				mTimingDeschedule(timing, &audio->ch3Event);
 542				audio->playingCh3 = 0;
 543				*audio->nr52 &= ~0x0004;
 544			}
 545		}
 546
 547		if (audio->ch4.length && audio->ch4.stop) {
 548			--audio->ch4.length;
 549			if (audio->ch4.length == 0) {
 550				mTimingDeschedule(timing, &audio->ch4Event);
 551				audio->playingCh4 = 0;
 552				*audio->nr52 &= ~0x0008;
 553			}
 554		}
 555		break;
 556	case 7:
 557		if (audio->playingCh1 && !audio->ch1.envelope.dead) {
 558			--audio->ch1.envelope.nextStep;
 559			if (audio->ch1.envelope.nextStep == 0) {
 560				_updateEnvelope(&audio->ch1.envelope);
 561				if (audio->ch1.envelope.dead == 2) {
 562					mTimingDeschedule(timing, &audio->ch1Event);
 563				}
 564				_updateSquareSample(&audio->ch1);
 565			}
 566		}
 567
 568		if (audio->playingCh2 && !audio->ch2.envelope.dead) {
 569			--audio->ch2.envelope.nextStep;
 570			if (audio->ch2.envelope.nextStep == 0) {
 571				_updateEnvelope(&audio->ch2.envelope);
 572				if (audio->ch2.envelope.dead == 2) {
 573					mTimingDeschedule(timing, &audio->ch2Event);
 574				}
 575				_updateSquareSample(&audio->ch2);
 576			}
 577		}
 578
 579		if (audio->playingCh4 && !audio->ch4.envelope.dead) {
 580			--audio->ch4.envelope.nextStep;
 581			if (audio->ch4.envelope.nextStep == 0) {
 582				int8_t sample = audio->ch4.sample > 0;
 583				audio->ch4.samples -= audio->ch4.sample;
 584				_updateEnvelope(&audio->ch4.envelope);
 585				if (audio->ch4.envelope.dead == 2) {
 586					mTimingDeschedule(timing, &audio->ch4Event);
 587				}
 588				audio->ch4.sample = sample * audio->ch4.envelope.currentVolume;
 589				audio->ch4.samples += audio->ch4.sample;
 590			}
 591		}
 592		break;
 593	}
 594}
 595
 596void GBAudioSamplePSG(struct GBAudio* audio, int16_t* left, int16_t* right) {
 597	int dcOffset = audio->style == GB_AUDIO_GBA ? 0 : -0x8;
 598	int sampleLeft = dcOffset;
 599	int sampleRight = dcOffset;
 600
 601	if (!audio->forceDisableCh[0]) {
 602		if (audio->ch1Left) {
 603			sampleLeft += audio->ch1.sample;
 604		}
 605
 606		if (audio->ch1Right) {
 607			sampleRight += audio->ch1.sample;
 608		}
 609	}
 610
 611	if (!audio->forceDisableCh[1]) {
 612		if (audio->ch2Left) {
 613			sampleLeft +=  audio->ch2.sample;
 614		}
 615
 616		if (audio->ch2Right) {
 617			sampleRight += audio->ch2.sample;
 618		}
 619	}
 620
 621	if (!audio->forceDisableCh[2]) {
 622		if (audio->ch3Left) {
 623			sampleLeft += audio->ch3.sample;
 624		}
 625
 626		if (audio->ch3Right) {
 627			sampleRight += audio->ch3.sample;
 628		}
 629	}
 630
 631	if (!audio->forceDisableCh[3]) {
 632		int8_t sample = _coalesceNoiseChannel(&audio->ch4);
 633		if (audio->ch4Left) {
 634			sampleLeft += sample;
 635		}
 636
 637		if (audio->ch4Right) {
 638			sampleRight += sample;
 639		}
 640	}
 641
 642	sampleLeft <<= 3;
 643	sampleRight <<= 3;
 644
 645	*left = sampleLeft * (1 + audio->volumeLeft);
 646	*right = sampleRight * (1 + audio->volumeRight);
 647}
 648
 649static void _sample(struct mTiming* timing, void* user, uint32_t cyclesLate) {
 650	struct GBAudio* audio = user;
 651	int16_t sampleLeft = 0;
 652	int16_t sampleRight = 0;
 653	GBAudioSamplePSG(audio, &sampleLeft, &sampleRight);
 654	sampleLeft = (sampleLeft * audio->masterVolume * 6) >> 7;
 655	sampleRight = (sampleRight * audio->masterVolume * 6) >> 7;
 656
 657	mCoreSyncLockAudio(audio->p->sync);
 658	unsigned produced;
 659
 660	int16_t degradedLeft = sampleLeft - (audio->capLeft >> 16);
 661	int16_t degradedRight = sampleRight - (audio->capRight >> 16);
 662	audio->capLeft = (sampleLeft << 16) - degradedLeft * 65184;
 663	audio->capRight = (sampleRight << 16) - degradedRight * 65184;
 664	sampleLeft = degradedLeft;
 665	sampleRight = degradedRight;
 666
 667	if ((size_t) blip_samples_avail(audio->left) < audio->samples) {
 668		blip_add_delta(audio->left, audio->clock, sampleLeft - audio->lastLeft);
 669		blip_add_delta(audio->right, audio->clock, sampleRight - audio->lastRight);
 670		audio->lastLeft = sampleLeft;
 671		audio->lastRight = sampleRight;
 672		audio->clock += audio->sampleInterval;
 673		if (audio->clock >= CLOCKS_PER_BLIP_FRAME) {
 674			blip_end_frame(audio->left, CLOCKS_PER_BLIP_FRAME);
 675			blip_end_frame(audio->right, CLOCKS_PER_BLIP_FRAME);
 676			audio->clock -= CLOCKS_PER_BLIP_FRAME;
 677		}
 678	}
 679	produced = blip_samples_avail(audio->left);
 680	if (audio->p->stream && audio->p->stream->postAudioFrame) {
 681		audio->p->stream->postAudioFrame(audio->p->stream, sampleLeft, sampleRight);
 682	}
 683	bool wait = produced >= audio->samples;
 684	if (!mCoreSyncProduceAudio(audio->p->sync, audio->left, audio->samples)) {
 685		// Interrupted
 686		audio->p->earlyExit = true;
 687	}
 688
 689	if (wait && audio->p->stream && audio->p->stream->postAudioBuffer) {
 690		audio->p->stream->postAudioBuffer(audio->p->stream, audio->left, audio->right);
 691	}
 692	mTimingSchedule(timing, &audio->sampleEvent, audio->sampleInterval * audio->timingFactor - cyclesLate);
 693}
 694
 695bool _resetEnvelope(struct GBAudioEnvelope* envelope) {
 696	envelope->currentVolume = envelope->initialVolume;
 697	_updateEnvelopeDead(envelope);
 698	if (!envelope->dead) {
 699		envelope->nextStep = envelope->stepTime;
 700	}
 701	return envelope->initialVolume || envelope->direction;
 702}
 703
 704void _resetSweep(struct GBAudioSweep* sweep) {
 705	sweep->step = sweep->time;
 706	sweep->enable = (sweep->step != 8) || sweep->shift;
 707	sweep->occurred = false;
 708}
 709
 710bool _writeSweep(struct GBAudioSweep* sweep, uint8_t value) {
 711	sweep->shift = GBAudioRegisterSquareSweepGetShift(value);
 712	bool oldDirection = sweep->direction;
 713	sweep->direction = GBAudioRegisterSquareSweepGetDirection(value);
 714	bool on = true;
 715	if (sweep->occurred && oldDirection && !sweep->direction) {
 716		on = false;
 717	}
 718	sweep->occurred = false;
 719	sweep->time = GBAudioRegisterSquareSweepGetTime(value);
 720	if (!sweep->time) {
 721		sweep->time = 8;
 722	}
 723	return on;
 724}
 725
 726void _writeDuty(struct GBAudioEnvelope* envelope, uint8_t value) {
 727	envelope->length = GBAudioRegisterDutyGetLength(value);
 728	envelope->duty = GBAudioRegisterDutyGetDuty(value);
 729}
 730
 731bool _writeEnvelope(struct GBAudioEnvelope* envelope, uint8_t value, enum GBAudioStyle style) {
 732	envelope->stepTime = GBAudioRegisterSweepGetStepTime(value);
 733	envelope->direction = GBAudioRegisterSweepGetDirection(value);
 734	envelope->initialVolume = GBAudioRegisterSweepGetInitialVolume(value);
 735	if (style == GB_AUDIO_DMG && !envelope->stepTime) {
 736		// TODO: Improve "zombie" mode
 737		++envelope->currentVolume;
 738		envelope->currentVolume &= 0xF;
 739	}
 740	_updateEnvelopeDead(envelope);
 741	return (envelope->initialVolume || envelope->direction) && envelope->dead != 2;
 742}
 743
 744static void _updateSquareSample(struct GBAudioSquareChannel* ch) {
 745	ch->sample = ch->control.hi * ch->envelope.currentVolume;
 746}
 747
 748static int32_t _updateSquareChannel(struct GBAudioSquareChannel* ch) {
 749	ch->control.hi = !ch->control.hi;
 750	_updateSquareSample(ch);
 751	int period = 4 * (2048 - ch->control.frequency);
 752	switch (ch->envelope.duty) {
 753	case 0:
 754		return ch->control.hi ? period : period * 7;
 755	case 1:
 756		return ch->control.hi ? period * 2 : period * 6;
 757	case 2:
 758		return period * 4;
 759	case 3:
 760		return ch->control.hi ? period * 6 : period * 2;
 761	default:
 762		// This should never be hit
 763		return period * 4;
 764	}
 765}
 766
 767static int8_t _coalesceNoiseChannel(struct GBAudioNoiseChannel* ch) {
 768	if (!ch->nSamples) {
 769		return ch->sample;
 770	}
 771	// TODO keep track of timing
 772	int8_t sample = ch->samples / ch->nSamples;
 773	ch->nSamples = 0;
 774	ch->samples = 0;
 775	return sample;
 776}
 777
 778static void _updateEnvelope(struct GBAudioEnvelope* envelope) {
 779	if (envelope->direction) {
 780		++envelope->currentVolume;
 781	} else {
 782		--envelope->currentVolume;
 783	}
 784	if (envelope->currentVolume >= 15) {
 785		envelope->currentVolume = 15;
 786		envelope->dead = 1;
 787	} else if (envelope->currentVolume <= 0) {
 788		envelope->currentVolume = 0;
 789		envelope->dead = 2;
 790	} else {
 791		envelope->nextStep = envelope->stepTime;
 792	}
 793}
 794
 795static void _updateEnvelopeDead(struct GBAudioEnvelope* envelope) {
 796	if (!envelope->stepTime) {
 797		envelope->dead = envelope->currentVolume ? 1 : 2;
 798	} else if (!envelope->direction && !envelope->currentVolume) {
 799		envelope->dead = 2;
 800	} else if (envelope->direction && envelope->currentVolume == 0xF) {
 801		envelope->dead = 1;
 802	} else {
 803		envelope->dead = 0;
 804	}
 805}
 806
 807static bool _updateSweep(struct GBAudioSquareChannel* ch, bool initial) {
 808	if (initial || ch->sweep.time != 8) {
 809		int frequency = ch->sweep.realFrequency;
 810		if (ch->sweep.direction) {
 811			frequency -= frequency >> ch->sweep.shift;
 812			if (!initial && frequency >= 0) {
 813				ch->control.frequency = frequency;
 814				ch->sweep.realFrequency = frequency;
 815			}
 816		} else {
 817			frequency += frequency >> ch->sweep.shift;
 818			if (frequency < 2048) {
 819				if (!initial && ch->sweep.shift) {
 820					ch->control.frequency = frequency;
 821					ch->sweep.realFrequency = frequency;
 822					if (!_updateSweep(ch, true)) {
 823						return false;
 824					}
 825				}
 826			} else {
 827				return false;
 828			}
 829		}
 830		ch->sweep.occurred = true;
 831	}
 832	ch->sweep.step = ch->sweep.time;
 833	return true;
 834}
 835
 836static void _updateChannel1(struct mTiming* timing, void* user, uint32_t cyclesLate) {
 837	struct GBAudio* audio = user;
 838	struct GBAudioSquareChannel* ch = &audio->ch1;
 839	int cycles = _updateSquareChannel(ch);
 840	mTimingSchedule(timing, &audio->ch1Event, audio->timingFactor * cycles - cyclesLate);
 841}
 842
 843static void _updateChannel2(struct mTiming* timing, void* user, uint32_t cyclesLate) {
 844	struct GBAudio* audio = user;
 845	struct GBAudioSquareChannel* ch = &audio->ch2;
 846	int cycles = _updateSquareChannel(ch);
 847	mTimingSchedule(timing, &audio->ch2Event, audio->timingFactor * cycles - cyclesLate);
 848}
 849
 850static void _updateChannel3(struct mTiming* timing, void* user, uint32_t cyclesLate) {
 851	struct GBAudio* audio = user;
 852	struct GBAudioWaveChannel* ch = &audio->ch3;
 853	int i;
 854	int volume;
 855	switch (ch->volume) {
 856	case 0:
 857		volume = 4;
 858		break;
 859	case 1:
 860		volume = 0;
 861		break;
 862	case 2:
 863		volume = 1;
 864		break;
 865	default:
 866	case 3:
 867		volume = 2;
 868		break;
 869	}
 870	int start;
 871	int end;
 872	switch (audio->style) {
 873	case GB_AUDIO_DMG:
 874	default:
 875		++ch->window;
 876		ch->window &= 0x1F;
 877		ch->sample = ch->wavedata8[ch->window >> 1];
 878		if (!(ch->window & 1)) {
 879			ch->sample >>= 4;
 880		}
 881		ch->sample &= 0xF;
 882		break;
 883	case GB_AUDIO_GBA:
 884		if (ch->size) {
 885			start = 7;
 886			end = 0;
 887		} else if (ch->bank) {
 888			start = 7;
 889			end = 4;
 890		} else {
 891			start = 3;
 892			end = 0;
 893		}
 894		uint32_t bitsCarry = ch->wavedata32[end] & 0x000000F0;
 895		uint32_t bits;
 896		for (i = start; i >= end; --i) {
 897			bits = ch->wavedata32[i] & 0x000000F0;
 898			ch->wavedata32[i] = ((ch->wavedata32[i] & 0x0F0F0F0F) << 4) | ((ch->wavedata32[i] & 0xF0F0F000) >> 12);
 899			ch->wavedata32[i] |= bitsCarry << 20;
 900			bitsCarry = bits;
 901		}
 902		ch->sample = bitsCarry >> 4;
 903		break;
 904	}
 905	if (ch->volume > 3) {
 906		ch->sample += ch->sample << 1;
 907	}
 908	ch->sample >>= volume;
 909	audio->ch3.readable = true;
 910	if (audio->style == GB_AUDIO_DMG) {
 911		mTimingDeschedule(audio->timing, &audio->ch3Fade);
 912		mTimingSchedule(timing, &audio->ch3Fade, 2 - cyclesLate);
 913	}
 914	int cycles = 2 * (2048 - ch->rate);
 915	mTimingSchedule(timing, &audio->ch3Event, audio->timingFactor * cycles - cyclesLate);
 916}
 917static void _fadeChannel3(struct mTiming* timing, void* user, uint32_t cyclesLate) {
 918	UNUSED(timing);
 919	UNUSED(cyclesLate);
 920	struct GBAudio* audio = user;
 921	audio->ch3.readable = false;
 922}
 923
 924static void _updateChannel4(struct mTiming* timing, void* user, uint32_t cyclesLate) {
 925	struct GBAudio* audio = user;
 926	struct GBAudioNoiseChannel* ch = &audio->ch4;
 927
 928	int32_t cycles = ch->ratio ? 2 * ch->ratio : 1;
 929	cycles <<= ch->frequency;
 930	cycles *= 8 * audio->timingFactor;
 931
 932	int lsb = ch->lfsr & 1;
 933	ch->sample = lsb * ch->envelope.currentVolume;
 934	++ch->nSamples;
 935	ch->samples += ch->sample;
 936	ch->lfsr >>= 1;
 937	ch->lfsr ^= (lsb * 0x60) << (ch->power ? 0 : 8);
 938
 939	mTimingSchedule(timing, &audio->ch4Event, cycles - cyclesLate);
 940}
 941
 942void GBAudioPSGSerialize(const struct GBAudio* audio, struct GBSerializedPSGState* state, uint32_t* flagsOut) {
 943	uint32_t flags = 0;
 944	uint32_t ch1Flags = 0;
 945	uint32_t ch2Flags = 0;
 946	uint32_t ch4Flags = 0;
 947
 948	flags = GBSerializedAudioFlagsSetFrame(flags, audio->frame);
 949	flags = GBSerializedAudioFlagsSetSkipFrame(flags, audio->skipFrame);
 950	STORE_32LE(audio->frameEvent.when - mTimingCurrentTime(audio->timing), 0, &state->ch1.nextFrame);
 951
 952	flags = GBSerializedAudioFlagsSetCh1Volume(flags, audio->ch1.envelope.currentVolume);
 953	flags = GBSerializedAudioFlagsSetCh1Dead(flags, audio->ch1.envelope.dead);
 954	flags = GBSerializedAudioFlagsSetCh1Hi(flags, audio->ch1.control.hi);
 955	flags = GBSerializedAudioFlagsSetCh1SweepEnabled(flags, audio->ch1.sweep.enable);
 956	flags = GBSerializedAudioFlagsSetCh1SweepOccurred(flags, audio->ch1.sweep.occurred);
 957	ch1Flags = GBSerializedAudioEnvelopeSetLength(ch1Flags, audio->ch1.control.length);
 958	ch1Flags = GBSerializedAudioEnvelopeSetNextStep(ch1Flags, audio->ch1.envelope.nextStep);
 959	ch1Flags = GBSerializedAudioEnvelopeSetFrequency(ch1Flags, audio->ch1.sweep.realFrequency);
 960	STORE_32LE(ch1Flags, 0, &state->ch1.envelope);
 961	STORE_32LE(audio->ch1Event.when - mTimingCurrentTime(audio->timing), 0, &state->ch1.nextEvent);
 962
 963	flags = GBSerializedAudioFlagsSetCh2Volume(flags, audio->ch2.envelope.currentVolume);
 964	flags = GBSerializedAudioFlagsSetCh2Dead(flags, audio->ch2.envelope.dead);
 965	flags = GBSerializedAudioFlagsSetCh2Hi(flags, audio->ch2.control.hi);
 966	ch2Flags = GBSerializedAudioEnvelopeSetLength(ch2Flags, audio->ch2.control.length);
 967	ch2Flags = GBSerializedAudioEnvelopeSetNextStep(ch2Flags, audio->ch2.envelope.nextStep);
 968	STORE_32LE(ch2Flags, 0, &state->ch2.envelope);
 969	STORE_32LE(audio->ch2Event.when - mTimingCurrentTime(audio->timing), 0, &state->ch2.nextEvent);
 970
 971	flags = GBSerializedAudioFlagsSetCh3Readable(flags, audio->ch3.readable);
 972	memcpy(state->ch3.wavebanks, audio->ch3.wavedata32, sizeof(state->ch3.wavebanks));
 973	STORE_16LE(audio->ch3.length, 0, &state->ch3.length);
 974	STORE_32LE(audio->ch3Event.when - mTimingCurrentTime(audio->timing), 0, &state->ch3.nextEvent);
 975	STORE_32LE(audio->ch3Fade.when - mTimingCurrentTime(audio->timing), 0, &state->ch1.nextCh3Fade);
 976
 977	flags = GBSerializedAudioFlagsSetCh4Volume(flags, audio->ch4.envelope.currentVolume);
 978	flags = GBSerializedAudioFlagsSetCh4Dead(flags, audio->ch4.envelope.dead);
 979	STORE_32LE(audio->ch4.lfsr, 0, &state->ch4.lfsr);
 980	ch4Flags = GBSerializedAudioEnvelopeSetLength(ch4Flags, audio->ch4.length);
 981	ch4Flags = GBSerializedAudioEnvelopeSetNextStep(ch4Flags, audio->ch4.envelope.nextStep);
 982	STORE_32LE(ch4Flags, 0, &state->ch4.envelope);
 983	STORE_32LE(audio->ch4Event.when - mTimingCurrentTime(audio->timing), 0, &state->ch4.nextEvent);
 984
 985	STORE_32LE(flags, 0, flagsOut);
 986}
 987
 988void GBAudioPSGDeserialize(struct GBAudio* audio, const struct GBSerializedPSGState* state, const uint32_t* flagsIn) {
 989	uint32_t flags;
 990	uint32_t ch1Flags = 0;
 991	uint32_t ch2Flags = 0;
 992	uint32_t ch4Flags = 0;
 993	uint32_t when;
 994
 995	audio->playingCh1 = !!(*audio->nr52 & 0x0001);
 996	audio->playingCh2 = !!(*audio->nr52 & 0x0002);
 997	audio->playingCh3 = !!(*audio->nr52 & 0x0004);
 998	audio->playingCh4 = !!(*audio->nr52 & 0x0008);
 999	audio->enable = GBAudioEnableGetEnable(*audio->nr52);
1000
1001	if (audio->style == GB_AUDIO_GBA) {
1002		LOAD_32LE(when, 0, &state->ch1.nextFrame);
1003		mTimingSchedule(audio->timing, &audio->frameEvent, when);
1004	}
1005
1006	LOAD_32LE(flags, 0, flagsIn);
1007	audio->frame = GBSerializedAudioFlagsGetFrame(flags);
1008	audio->skipFrame = GBSerializedAudioFlagsGetSkipFrame(flags);
1009
1010	LOAD_32LE(ch1Flags, 0, &state->ch1.envelope);
1011	audio->ch1.envelope.currentVolume = GBSerializedAudioFlagsGetCh1Volume(flags);
1012	audio->ch1.envelope.dead = GBSerializedAudioFlagsGetCh1Dead(flags);
1013	audio->ch1.control.hi = GBSerializedAudioFlagsGetCh1Hi(flags);
1014	audio->ch1.sweep.enable = GBSerializedAudioFlagsGetCh1SweepEnabled(flags);
1015	audio->ch1.sweep.occurred = GBSerializedAudioFlagsGetCh1SweepOccurred(flags);
1016	audio->ch1.control.length = GBSerializedAudioEnvelopeGetLength(ch1Flags);
1017	audio->ch1.envelope.nextStep = GBSerializedAudioEnvelopeGetNextStep(ch1Flags);
1018	audio->ch1.sweep.realFrequency = GBSerializedAudioEnvelopeGetFrequency(ch1Flags);
1019	LOAD_32LE(when, 0, &state->ch1.nextEvent);
1020	if (audio->ch1.envelope.dead < 2 && audio->playingCh1) {
1021		mTimingSchedule(audio->timing, &audio->ch1Event, when);
1022	}
1023
1024	LOAD_32LE(ch2Flags, 0, &state->ch2.envelope);
1025	audio->ch2.envelope.currentVolume = GBSerializedAudioFlagsGetCh2Volume(flags);
1026	audio->ch2.envelope.dead = GBSerializedAudioFlagsGetCh2Dead(flags);
1027	audio->ch2.control.hi = GBSerializedAudioFlagsGetCh2Hi(flags);
1028	audio->ch2.control.length = GBSerializedAudioEnvelopeGetLength(ch2Flags);
1029	audio->ch2.envelope.nextStep = GBSerializedAudioEnvelopeGetNextStep(ch2Flags);
1030	LOAD_32LE(when, 0, &state->ch2.nextEvent);
1031	if (audio->ch2.envelope.dead < 2 && audio->playingCh2) {
1032		mTimingSchedule(audio->timing, &audio->ch2Event, when);
1033	}
1034
1035	audio->ch3.readable = GBSerializedAudioFlagsGetCh3Readable(flags);
1036	// TODO: Big endian?
1037	memcpy(audio->ch3.wavedata32, state->ch3.wavebanks, sizeof(audio->ch3.wavedata32));
1038	LOAD_16LE(audio->ch3.length, 0, &state->ch3.length);
1039	LOAD_32LE(when, 0, &state->ch3.nextEvent);
1040	if (audio->playingCh3) {
1041		mTimingSchedule(audio->timing, &audio->ch3Event, when);
1042	}
1043	LOAD_32LE(when, 0, &state->ch1.nextCh3Fade);
1044	if (audio->ch3.readable && audio->style == GB_AUDIO_DMG) {
1045		mTimingSchedule(audio->timing, &audio->ch3Fade, when);
1046	}
1047
1048	LOAD_32LE(ch4Flags, 0, &state->ch4.envelope);
1049	audio->ch4.envelope.currentVolume = GBSerializedAudioFlagsGetCh4Volume(flags);
1050	audio->ch4.envelope.dead = GBSerializedAudioFlagsGetCh4Dead(flags);
1051	audio->ch4.length = GBSerializedAudioEnvelopeGetLength(ch4Flags);
1052	audio->ch4.envelope.nextStep = GBSerializedAudioEnvelopeGetNextStep(ch4Flags);
1053	LOAD_32LE(audio->ch4.lfsr, 0, &state->ch4.lfsr);
1054	LOAD_32LE(when, 0, &state->ch4.nextEvent);
1055	if (audio->ch4.envelope.dead < 2 && audio->playingCh4) {
1056		mTimingSchedule(audio->timing, &audio->ch4Event, when);
1057	}
1058}
1059
1060void GBAudioSerialize(const struct GBAudio* audio, struct GBSerializedState* state) {
1061	GBAudioPSGSerialize(audio, &state->audio.psg, &state->audio.flags);
1062	STORE_32LE(audio->capLeft, 0, &state->audio.capLeft);
1063	STORE_32LE(audio->capRight, 0, &state->audio.capRight);
1064	STORE_32LE(audio->sampleEvent.when - mTimingCurrentTime(audio->timing), 0, &state->audio.nextSample);
1065}
1066
1067void GBAudioDeserialize(struct GBAudio* audio, const struct GBSerializedState* state) {
1068	GBAudioPSGDeserialize(audio, &state->audio.psg, &state->audio.flags);
1069	LOAD_32LE(audio->capLeft, 0, &state->audio.capLeft);
1070	LOAD_32LE(audio->capRight, 0, &state->audio.capRight);
1071	uint32_t when;
1072	LOAD_32LE(when, 0, &state->audio.nextSample);
1073	mTimingSchedule(audio->timing, &audio->sampleEvent, when);
1074}