/* Copyright (c) 2013-2020 Jeffrey Pfau * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include #include #include #include #define EREADER_BLOCK_SIZE 40 static void _eReaderReset(struct GBACartridgeHardware* hw); static void _eReaderWriteControl0(struct GBACartridgeHardware* hw, uint8_t value); static void _eReaderWriteControl1(struct GBACartridgeHardware* hw, uint8_t value); static void _eReaderReadData(struct GBACartridgeHardware* hw); static void _eReaderReedSolomon(const uint8_t* input, uint8_t* output); const int EREADER_NYBBLE_5BIT[16][5] = { { 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 1 }, { 0, 0, 0, 1, 0 }, { 1, 0, 0, 1, 0 }, { 0, 0, 1, 0, 0 }, { 0, 0, 1, 0, 1 }, { 0, 0, 1, 1, 0 }, { 1, 0, 1, 1, 0 }, { 0, 1, 0, 0, 0 }, { 0, 1, 0, 0, 1 }, { 0, 1, 0, 1, 0 }, { 1, 0, 1, 0, 0 }, { 0, 1, 1, 0, 0 }, { 0, 1, 1, 0, 1 }, { 1, 0, 0, 0, 1 }, { 1, 0, 0, 0, 0 } }; const uint8_t EREADER_CALIBRATION_TEMPLATE[] = { 0x43, 0x61, 0x72, 0x64, 0x2d, 0x45, 0x20, 0x52, 0x65, 0x61, 0x64, 0x65, 0x72, 0x20, 0x32, 0x30, 0x30, 0x31, 0x00, 0x00, 0xcf, 0x72, 0x2f, 0x37, 0x3a, 0x3a, 0x3a, 0x38, 0x33, 0x30, 0x30, 0x37, 0x3a, 0x39, 0x37, 0x35, 0x33, 0x2f, 0x2f, 0x34, 0x36, 0x36, 0x37, 0x36, 0x34, 0x31, 0x2d, 0x30, 0x32, 0x34, 0x35, 0x35, 0x34, 0x30, 0x2a, 0x2d, 0x2d, 0x2f, 0x31, 0x32, 0x31, 0x2f, 0x29, 0x2a, 0x2c, 0x2b, 0x2c, 0x2e, 0x2e, 0x2d, 0x18, 0x2d, 0x8f, 0x03, 0x00, 0x00, 0xc0, 0xfd, 0x77, 0x00, 0x00, 0x00, 0x01 }; const uint16_t EREADER_ADDRESS_CODES[] = { 1023, 1174, 2628, 3373, 4233, 6112, 6450, 7771, 8826, 9491, 11201, 11432, 12556, 13925, 14519, 16350, 16629, 18332, 18766, 20007, 21379, 21738, 23096, 23889, 24944, 26137, 26827, 28578, 29190, 30063, 31677, 31956, 33410, 34283, 35641, 35920, 37364, 38557, 38991, 40742, 41735, 42094, 43708, 44501, 45169, 46872, 47562, 48803, 49544, 50913, 51251, 53082, 54014, 54679 }; static const uint8_t BLOCK_HEADER[2][0x18] = { { 0x00, 0x02, 0x00, 0x01, 0x40, 0x10, 0x00, 0x1c, 0x10, 0x6f, 0x40, 0xda, 0x39, 0x25, 0x8e, 0xe0, 0x7b, 0xb5, 0x98, 0xb6, 0x5b, 0xcf, 0x7f, 0x72 }, { 0x00, 0x03, 0x00, 0x19, 0x40, 0x10, 0x00, 0x2c, 0x0e, 0x88, 0xed, 0x82, 0x50, 0x67, 0xfb, 0xd1, 0x43, 0xee, 0x03, 0xc6, 0xc6, 0x2b, 0x2c, 0x93 } }; static const uint8_t RS_POW[] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x87, 0x89, 0x95, 0xad, 0xdd, 0x3d, 0x7a, 0xf4, 0x6f, 0xde, 0x3b, 0x76, 0xec, 0x5f, 0xbe, 0xfb, 0x71, 0xe2, 0x43, 0x86, 0x8b, 0x91, 0xa5, 0xcd, 0x1d, 0x3a, 0x74, 0xe8, 0x57, 0xae, 0xdb, 0x31, 0x62, 0xc4, 0x0f, 0x1e, 0x3c, 0x78, 0xf0, 0x67, 0xce, 0x1b, 0x36, 0x6c, 0xd8, 0x37, 0x6e, 0xdc, 0x3f, 0x7e, 0xfc, 0x7f, 0xfe, 0x7b, 0xf6, 0x6b, 0xd6, 0x2b, 0x56, 0xac, 0xdf, 0x39, 0x72, 0xe4, 0x4f, 0x9e, 0xbb, 0xf1, 0x65, 0xca, 0x13, 0x26, 0x4c, 0x98, 0xb7, 0xe9, 0x55, 0xaa, 0xd3, 0x21, 0x42, 0x84, 0x8f, 0x99, 0xb5, 0xed, 0x5d, 0xba, 0xf3, 0x61, 0xc2, 0x03, 0x06, 0x0c, 0x18, 0x30, 0x60, 0xc0, 0x07, 0x0e, 0x1c, 0x38, 0x70, 0xe0, 0x47, 0x8e, 0x9b, 0xb1, 0xe5, 0x4d, 0x9a, 0xb3, 0xe1, 0x45, 0x8a, 0x93, 0xa1, 0xc5, 0x0d, 0x1a, 0x34, 0x68, 0xd0, 0x27, 0x4e, 0x9c, 0xbf, 0xf9, 0x75, 0xea, 0x53, 0xa6, 0xcb, 0x11, 0x22, 0x44, 0x88, 0x97, 0xa9, 0xd5, 0x2d, 0x5a, 0xb4, 0xef, 0x59, 0xb2, 0xe3, 0x41, 0x82, 0x83, 0x81, 0x85, 0x8d, 0x9d, 0xbd, 0xfd, 0x7d, 0xfa, 0x73, 0xe6, 0x4b, 0x96, 0xab, 0xd1, 0x25, 0x4a, 0x94, 0xaf, 0xd9, 0x35, 0x6a, 0xd4, 0x2f, 0x5e, 0xbc, 0xff, 0x79, 0xf2, 0x63, 0xc6, 0x0b, 0x16, 0x2c, 0x58, 0xb0, 0xe7, 0x49, 0x92, 0xa3, 0xc1, 0x05, 0x0a, 0x14, 0x28, 0x50, 0xa0, 0xc7, 0x09, 0x12, 0x24, 0x48, 0x90, 0xa7, 0xc9, 0x15, 0x2a, 0x54, 0xa8, 0xd7, 0x29, 0x52, 0xa4, 0xcf, 0x19, 0x32, 0x64, 0xc8, 0x17, 0x2e, 0x5c, 0xb8, 0xf7, 0x69, 0xd2, 0x23, 0x46, 0x8c, 0x9f, 0xb9, 0xf5, 0x6d, 0xda, 0x33, 0x66, 0xcc, 0x1f, 0x3e, 0x7c, 0xf8, 0x77, 0xee, 0x5b, 0xb6, 0xeb, 0x51, 0xa2, 0xc3, 0x00, }; static const uint8_t RS_REV[] = { 0xff, 0x00, 0x01, 0x63, 0x02, 0xc6, 0x64, 0x6a, 0x03, 0xcd, 0xc7, 0xbc, 0x65, 0x7e, 0x6b, 0x2a, 0x04, 0x8d, 0xce, 0x4e, 0xc8, 0xd4, 0xbd, 0xe1, 0x66, 0xdd, 0x7f, 0x31, 0x6c, 0x20, 0x2b, 0xf3, 0x05, 0x57, 0x8e, 0xe8, 0xcf, 0xac, 0x4f, 0x83, 0xc9, 0xd9, 0xd5, 0x41, 0xbe, 0x94, 0xe2, 0xb4, 0x67, 0x27, 0xde, 0xf0, 0x80, 0xb1, 0x32, 0x35, 0x6d, 0x45, 0x21, 0x12, 0x2c, 0x0d, 0xf4, 0x38, 0x06, 0x9b, 0x58, 0x1a, 0x8f, 0x79, 0xe9, 0x70, 0xd0, 0xc2, 0xad, 0xa8, 0x50, 0x75, 0x84, 0x48, 0xca, 0xfc, 0xda, 0x8a, 0xd6, 0x54, 0x42, 0x24, 0xbf, 0x98, 0x95, 0xf9, 0xe3, 0x5e, 0xb5, 0x15, 0x68, 0x61, 0x28, 0xba, 0xdf, 0x4c, 0xf1, 0x2f, 0x81, 0xe6, 0xb2, 0x3f, 0x33, 0xee, 0x36, 0x10, 0x6e, 0x18, 0x46, 0xa6, 0x22, 0x88, 0x13, 0xf7, 0x2d, 0xb8, 0x0e, 0x3d, 0xf5, 0xa4, 0x39, 0x3b, 0x07, 0x9e, 0x9c, 0x9d, 0x59, 0x9f, 0x1b, 0x08, 0x90, 0x09, 0x7a, 0x1c, 0xea, 0xa0, 0x71, 0x5a, 0xd1, 0x1d, 0xc3, 0x7b, 0xae, 0x0a, 0xa9, 0x91, 0x51, 0x5b, 0x76, 0x72, 0x85, 0xa1, 0x49, 0xeb, 0xcb, 0x7c, 0xfd, 0xc4, 0xdb, 0x1e, 0x8b, 0xd2, 0xd7, 0x92, 0x55, 0xaa, 0x43, 0x0b, 0x25, 0xaf, 0xc0, 0x73, 0x99, 0x77, 0x96, 0x5c, 0xfa, 0x52, 0xe4, 0xec, 0x5f, 0x4a, 0xb6, 0xa2, 0x16, 0x86, 0x69, 0xc5, 0x62, 0xfe, 0x29, 0x7d, 0xbb, 0xcc, 0xe0, 0xd3, 0x4d, 0x8c, 0xf2, 0x1f, 0x30, 0xdc, 0x82, 0xab, 0xe7, 0x56, 0xb3, 0x93, 0x40, 0xd8, 0x34, 0xb0, 0xef, 0x26, 0x37, 0x0c, 0x11, 0x44, 0x6f, 0x78, 0x19, 0x9a, 0x47, 0x74, 0xa7, 0xc1, 0x23, 0x53, 0x89, 0xfb, 0x14, 0x5d, 0xf8, 0x97, 0x2e, 0x4b, 0xb9, 0x60, 0x0f, 0xed, 0x3e, 0xe5, 0xf6, 0x87, 0xa5, 0x17, 0x3a, 0xa3, 0x3c, 0xb7, }; static const uint8_t RS_GG[] = { 0x00, 0x4b, 0xeb, 0xd5, 0xef, 0x4c, 0x71, 0x00, 0xf4, 0x00, 0x71, 0x4c, 0xef, 0xd5, 0xeb, 0x4b }; void GBAHardwareInitEReader(struct GBACartridgeHardware* hw) { hw->devices |= HW_EREADER; _eReaderReset(hw); if (hw->p->memory.savedata.data[0xD000] == 0xFF) { memset(&hw->p->memory.savedata.data[0xD000], 0, 0x1000); memcpy(&hw->p->memory.savedata.data[0xD000], EREADER_CALIBRATION_TEMPLATE, sizeof(EREADER_CALIBRATION_TEMPLATE)); } if (hw->p->memory.savedata.data[0xE000] == 0xFF) { memset(&hw->p->memory.savedata.data[0xE000], 0, 0x1000); memcpy(&hw->p->memory.savedata.data[0xE000], EREADER_CALIBRATION_TEMPLATE, sizeof(EREADER_CALIBRATION_TEMPLATE)); } } void GBAHardwareEReaderWrite(struct GBACartridgeHardware* hw, uint32_t address, uint16_t value) { address &= 0x700FF; switch (address >> 17) { case 0: hw->eReaderRegisterUnk = value & 0xF; break; case 1: hw->eReaderRegisterReset = (value & 0x8A) | 4; if (value & 2) { _eReaderReset(hw); } break; case 2: mLOG(GBA_HW, GAME_ERROR, "e-Reader write to read-only registers: %05X:%04X", address, value); break; default: mLOG(GBA_HW, STUB, "Unimplemented e-Reader write: %05X:%04X", address, value); } } void GBAHardwareEReaderWriteFlash(struct GBACartridgeHardware* hw, uint32_t address, uint8_t value) { address &= 0xFFFF; switch (address) { case 0xFFB0: _eReaderWriteControl0(hw, value); break; case 0xFFB1: _eReaderWriteControl1(hw, value); break; case 0xFFB2: hw->eReaderRegisterLed &= 0xFF00; hw->eReaderRegisterLed |= value; break; case 0xFFB3: hw->eReaderRegisterLed &= 0x00FF; hw->eReaderRegisterLed |= value << 8; break; default: mLOG(GBA_HW, STUB, "Unimplemented e-Reader write to flash: %04X:%02X", address, value); } } uint16_t GBAHardwareEReaderRead(struct GBACartridgeHardware* hw, uint32_t address) { address &= 0x700FF; uint16_t value; switch (address >> 17) { case 0: return hw->eReaderRegisterUnk; case 1: return hw->eReaderRegisterReset; case 2: if (address > 0x40088) { return 0; } LOAD_16(value, address & 0xFE, hw->eReaderData); return value; } mLOG(GBA_HW, STUB, "Unimplemented e-Reader read: %05X", address); return 0; } uint8_t GBAHardwareEReaderReadFlash(struct GBACartridgeHardware* hw, uint32_t address) { address &= 0xFFFF; switch (address) { case 0xFFB0: return hw->eReaderRegisterControl0; case 0xFFB1: return hw->eReaderRegisterControl1; default: mLOG(GBA_HW, STUB, "Unimplemented e-Reader read from flash: %04X", address); return 0; } } static void _eReaderAnchor(uint8_t* origin) { origin[EREADER_DOTCODE_STRIDE * 0 + 1] = 1; origin[EREADER_DOTCODE_STRIDE * 0 + 2] = 1; origin[EREADER_DOTCODE_STRIDE * 0 + 3] = 1; origin[EREADER_DOTCODE_STRIDE * 1 + 0] = 1; origin[EREADER_DOTCODE_STRIDE * 1 + 1] = 1; origin[EREADER_DOTCODE_STRIDE * 1 + 2] = 1; origin[EREADER_DOTCODE_STRIDE * 1 + 3] = 1; origin[EREADER_DOTCODE_STRIDE * 1 + 4] = 1; origin[EREADER_DOTCODE_STRIDE * 2 + 0] = 1; origin[EREADER_DOTCODE_STRIDE * 2 + 1] = 1; origin[EREADER_DOTCODE_STRIDE * 2 + 2] = 1; origin[EREADER_DOTCODE_STRIDE * 2 + 3] = 1; origin[EREADER_DOTCODE_STRIDE * 2 + 4] = 1; origin[EREADER_DOTCODE_STRIDE * 3 + 0] = 1; origin[EREADER_DOTCODE_STRIDE * 3 + 1] = 1; origin[EREADER_DOTCODE_STRIDE * 3 + 2] = 1; origin[EREADER_DOTCODE_STRIDE * 3 + 3] = 1; origin[EREADER_DOTCODE_STRIDE * 3 + 4] = 1; origin[EREADER_DOTCODE_STRIDE * 4 + 1] = 1; origin[EREADER_DOTCODE_STRIDE * 4 + 2] = 1; origin[EREADER_DOTCODE_STRIDE * 4 + 3] = 1; } static void _eReaderAlignment(uint8_t* origin) { origin[8] = 1; origin[10] = 1; origin[12] = 1; origin[14] = 1; origin[16] = 1; origin[18] = 1; origin[21] = 1; origin[23] = 1; origin[25] = 1; origin[27] = 1; origin[29] = 1; origin[31] = 1; } static void _eReaderAddress(uint8_t* origin, int a) { origin[EREADER_DOTCODE_STRIDE * 7 + 2] = 1; uint16_t addr = EREADER_ADDRESS_CODES[a]; int i; for (i = 0; i < 16; ++i) { origin[EREADER_DOTCODE_STRIDE * (16 + i) + 2] = (addr >> (15 - i)) & 1; } } static void _eReaderReedSolomon(const uint8_t* input, uint8_t* output) { uint8_t rsBuffer[64] = {}; int i; for (i = 0; i < 48; ++i) { rsBuffer[63 - i] = input[i]; } for (i = 0; i < 48; ++i) { unsigned z = RS_REV[rsBuffer[63 - i] ^ rsBuffer[15]]; int j; for (j = 15; j >= 0; --j) { unsigned x = 0; if (j != 0) { x = rsBuffer[j - 1]; } if (z != 0xFF) { unsigned y = RS_GG[j]; if (y != 0xFF) { y += z; if (y >= 0xFF) { y -= 0xFF; } x ^= RS_POW[y]; } } rsBuffer[j] = x; } } for (i = 0; i < 16; ++i) { output[15 - i] = ~rsBuffer[i]; } } void GBAHardwareEReaderScan(struct GBACartridgeHardware* hw, const void* data, size_t size) { if (!hw->eReaderDots) { hw->eReaderDots = anonymousMemoryMap(EREADER_DOTCODE_SIZE); } hw->eReaderX = -24; memset(hw->eReaderDots, 0, EREADER_DOTCODE_SIZE); uint8_t blockRS[44][0x10]; bool parsed = false; bool bitmap = false; size_t blocks; int base; switch (size) { // Raw sizes case 2112: parsed = true; // Fallthrough case 2912: base = 25; blocks = 28; break; case 1344: parsed = true; // Fallthrough case 1872: base = 1; blocks = 18; break; // Bitmap sizes case 5456: bitmap = true; break; default: return; } size_t i; if (bitmap) { size_t x; for (i = 0; i < 40; ++i) { const uint8_t* line = &((const uint8_t*) data)[(i + 2) * 124]; uint8_t* origin = &hw->eReaderDots[EREADER_DOTCODE_STRIDE * i + 200]; for (x = 0; x < 124; ++x) { uint8_t byte = line[x]; if (x == 123) { byte &= 0xE0; } origin[x * 8 + 0] = (byte >> 7) & 1; origin[x * 8 + 1] = (byte >> 6) & 1; origin[x * 8 + 2] = (byte >> 5) & 1; origin[x * 8 + 3] = (byte >> 4) & 1; origin[x * 8 + 4] = (byte >> 3) & 1; origin[x * 8 + 5] = (byte >> 2) & 1; origin[x * 8 + 6] = (byte >> 1) & 1; origin[x * 8 + 7] = byte & 1; } } return; } for (i = 0; i < blocks + 1; ++i) { uint8_t* origin = &hw->eReaderDots[35 * i + 200]; _eReaderAnchor(&origin[EREADER_DOTCODE_STRIDE * 0]); _eReaderAnchor(&origin[EREADER_DOTCODE_STRIDE * 35]); _eReaderAddress(origin, base + i); } if (parsed) { for (i = 0; i < size / 48; ++i) { _eReaderReedSolomon(&((const uint8_t*) data)[i * 48], blockRS[i]); } } size_t blockId = 0; size_t byteOffset = 0; for (i = 0; i < blocks; ++i) { uint8_t block[1040]; uint8_t* origin = &hw->eReaderDots[35 * i + 200]; _eReaderAlignment(&origin[EREADER_DOTCODE_STRIDE * 2]); _eReaderAlignment(&origin[EREADER_DOTCODE_STRIDE * 37]); const uint8_t* blockData; uint8_t parsedBlockData[104]; if (parsed) { memset(parsedBlockData, 0, sizeof(*parsedBlockData)); const uint8_t* header = BLOCK_HEADER[size == 1344 ? 0 : 1]; parsedBlockData[0] = header[(2 * i) % 0x18]; parsedBlockData[1] = header[(2 * i) % 0x18 + 1]; int j; for (j = 2; j < 104; ++j) { if (byteOffset >= 0x40) { break; } if (byteOffset >= 0x30) { parsedBlockData[j] = blockRS[blockId][byteOffset - 0x30]; } else { parsedBlockData[j] = ((const uint8_t*) data)[blockId * 0x30 + byteOffset]; } ++blockId; if (blockId * 0x30 >= size) { blockId = 0; ++byteOffset; } } blockData = parsedBlockData; } else { blockData = &((const uint8_t*) data)[i * 104]; } int b; for (b = 0; b < 104; ++b) { const int* nybble5; nybble5 = EREADER_NYBBLE_5BIT[blockData[b] >> 4]; block[b * 10 + 0] = nybble5[0]; block[b * 10 + 1] = nybble5[1]; block[b * 10 + 2] = nybble5[2]; block[b * 10 + 3] = nybble5[3]; block[b * 10 + 4] = nybble5[4]; nybble5 = EREADER_NYBBLE_5BIT[blockData[b] & 0xF]; block[b * 10 + 5] = nybble5[0]; block[b * 10 + 6] = nybble5[1]; block[b * 10 + 7] = nybble5[2]; block[b * 10 + 8] = nybble5[3]; block[b * 10 + 9] = nybble5[4]; } b = 0; int y; for (y = 0; y < 3; ++y) { memcpy(&origin[EREADER_DOTCODE_STRIDE * (4 + y) + 7], &block[b], 26); b += 26; } for (y = 0; y < 26; ++y) { memcpy(&origin[EREADER_DOTCODE_STRIDE * (7 + y) + 3], &block[b], 34); b += 34; } for (y = 0; y < 3; ++y) { memcpy(&origin[EREADER_DOTCODE_STRIDE * (33 + y) + 7], &block[b], 26); b += 26; } } } void _eReaderReset(struct GBACartridgeHardware* hw) { memset(hw->eReaderData, 0, sizeof(hw->eReaderData)); hw->eReaderRegisterUnk = 0; hw->eReaderRegisterReset = 4; hw->eReaderRegisterControl0 = 0; hw->eReaderRegisterControl1 = 0x80; hw->eReaderRegisterLed = 0; hw->eReaderState = 0; hw->eReaderActiveRegister = 0; } void _eReaderWriteControl0(struct GBACartridgeHardware* hw, uint8_t value) { EReaderControl0 control = value & 0x7F; EReaderControl0 oldControl = hw->eReaderRegisterControl0; if (hw->eReaderState == EREADER_SERIAL_INACTIVE) { if (EReaderControl0IsClock(oldControl) && EReaderControl0IsData(oldControl) && !EReaderControl0IsData(control)) { hw->eReaderState = EREADER_SERIAL_STARTING; } } else if (EReaderControl0IsClock(oldControl) && !EReaderControl0IsData(oldControl) && EReaderControl0IsData(control)) { hw->eReaderState = EREADER_SERIAL_INACTIVE; } else if (hw->eReaderState == EREADER_SERIAL_STARTING) { if (EReaderControl0IsClock(oldControl) && !EReaderControl0IsData(oldControl) && !EReaderControl0IsClock(control)) { hw->eReaderState = EREADER_SERIAL_BIT_0; hw->eReaderCommand = EREADER_COMMAND_IDLE; } } else if (EReaderControl0IsClock(oldControl) && !EReaderControl0IsClock(control)) { mLOG(GBA_HW, DEBUG, "[e-Reader] Serial falling edge: %c %i", EReaderControl0IsDirection(control) ? '>' : '<', EReaderControl0GetData(control)); // TODO: Improve direction control if (EReaderControl0IsDirection(control)) { hw->eReaderByte |= EReaderControl0GetData(control) << (7 - (hw->eReaderState - EREADER_SERIAL_BIT_0)); ++hw->eReaderState; if (hw->eReaderState == EREADER_SERIAL_END_BIT) { mLOG(GBA_HW, DEBUG, "[e-Reader] Wrote serial byte: %02x", hw->eReaderByte); switch (hw->eReaderCommand) { case EREADER_COMMAND_IDLE: hw->eReaderCommand = hw->eReaderByte; break; case EREADER_COMMAND_SET_INDEX: hw->eReaderActiveRegister = hw->eReaderByte; hw->eReaderCommand = EREADER_COMMAND_WRITE_DATA; break; case EREADER_COMMAND_WRITE_DATA: switch (hw->eReaderActiveRegister & 0x7F) { case 0: case 0x57: case 0x58: case 0x59: case 0x5A: // Read-only mLOG(GBA_HW, GAME_ERROR, "Writing to read-only e-Reader serial register: %02X", hw->eReaderActiveRegister); break; default: if ((hw->eReaderActiveRegister & 0x7F) > 0x5A) { mLOG(GBA_HW, GAME_ERROR, "Writing to non-existent e-Reader serial register: %02X", hw->eReaderActiveRegister); break; } hw->eReaderSerial[hw->eReaderActiveRegister & 0x7F] = hw->eReaderByte; break; } ++hw->eReaderActiveRegister; break; default: mLOG(GBA_HW, ERROR, "Hit undefined state %02X in e-Reader state machine", hw->eReaderCommand); break; } hw->eReaderState = EREADER_SERIAL_BIT_0; hw->eReaderByte = 0; } } else if (hw->eReaderCommand == EREADER_COMMAND_READ_DATA) { int bit = hw->eReaderSerial[hw->eReaderActiveRegister & 0x7F] >> (7 - (hw->eReaderState - EREADER_SERIAL_BIT_0)); control = EReaderControl0SetData(control, bit); ++hw->eReaderState; if (hw->eReaderState == EREADER_SERIAL_END_BIT) { ++hw->eReaderActiveRegister; mLOG(GBA_HW, DEBUG, "[e-Reader] Read serial byte: %02x", hw->eReaderSerial[hw->eReaderActiveRegister & 0x7F]); } } } else if (!EReaderControl0IsDirection(control)) { // Clear the error bit control = EReaderControl0ClearData(control); } hw->eReaderRegisterControl0 = control; if (!EReaderControl0IsScan(oldControl) && EReaderControl0IsScan(control)) { if (hw->eReaderX > 1000) { int i; for (i = 0; i < EREADER_CARDS_MAX; ++i) { if (!hw->eReaderCards[i].data) { continue; } GBAHardwareEReaderScan(hw, hw->eReaderCards[i].data, hw->eReaderCards[i].size); free(hw->eReaderCards[i].data); hw->eReaderCards[i].data = NULL; hw->eReaderCards[i].size = 0; break; } } hw->eReaderX = 0; hw->eReaderY = 0; } else if (EReaderControl0IsLedEnable(control) && EReaderControl0IsScan(control) && !EReaderControl1IsScanline(hw->eReaderRegisterControl1)) { _eReaderReadData(hw); } mLOG(GBA_HW, STUB, "Unimplemented e-Reader Control0 write: %02X", value); } void _eReaderWriteControl1(struct GBACartridgeHardware* hw, uint8_t value) { EReaderControl1 control = (value & 0x32) | 0x80; hw->eReaderRegisterControl1 = control; if (EReaderControl0IsScan(hw->eReaderRegisterControl0) && !EReaderControl1IsScanline(control)) { ++hw->eReaderY; if (hw->eReaderY == (hw->eReaderSerial[0x15] | (hw->eReaderSerial[0x14] << 8))) { hw->eReaderY = 0; if (hw->eReaderX < 3400) { hw->eReaderX += 210; } } _eReaderReadData(hw); } mLOG(GBA_HW, STUB, "Unimplemented e-Reader Control1 write: %02X", value); } void _eReaderReadData(struct GBACartridgeHardware* hw) { memset(hw->eReaderData, 0, EREADER_BLOCK_SIZE); if (!hw->eReaderDots) { int i; for (i = 0; i < EREADER_CARDS_MAX; ++i) { if (!hw->eReaderCards[i].data) { continue; } GBAHardwareEReaderScan(hw, hw->eReaderCards[i].data, hw->eReaderCards[i].size); free(hw->eReaderCards[i].data); hw->eReaderCards[i].data = NULL; hw->eReaderCards[i].size = 0; break; } } if (hw->eReaderDots) { int y = hw->eReaderY - 10; if (y < 0 || y >= 120) { memset(hw->eReaderData, 0, EREADER_BLOCK_SIZE); } else { int i; uint8_t* origin = &hw->eReaderDots[EREADER_DOTCODE_STRIDE * (y / 3) + 16]; for (i = 0; i < 20; ++i) { uint16_t word = 0; int x = hw->eReaderX + i * 16; word |= origin[(x + 0) / 3] << 8; word |= origin[(x + 1) / 3] << 9; word |= origin[(x + 2) / 3] << 10; word |= origin[(x + 3) / 3] << 11; word |= origin[(x + 4) / 3] << 12; word |= origin[(x + 5) / 3] << 13; word |= origin[(x + 6) / 3] << 14; word |= origin[(x + 7) / 3] << 15; word |= origin[(x + 8) / 3]; word |= origin[(x + 9) / 3] << 1; word |= origin[(x + 10) / 3] << 2; word |= origin[(x + 11) / 3] << 3; word |= origin[(x + 12) / 3] << 4; word |= origin[(x + 13) / 3] << 5; word |= origin[(x + 14) / 3] << 6; word |= origin[(x + 15) / 3] << 7; STORE_16(word, (19 - i) << 1, hw->eReaderData); } } } hw->eReaderRegisterControl1 = EReaderControl1FillScanline(hw->eReaderRegisterControl1); if (EReaderControl0IsLedEnable(hw->eReaderRegisterControl0)) { uint16_t led = hw->eReaderRegisterLed * 2; if (led > 0x4000) { led = 0x4000; } GBARaiseIRQ(hw->p, IRQ_GAMEPAK, -led); } } void GBAEReaderQueueCard(struct GBA* gba, const void* data, size_t size) { int i; for (i = 0; i < EREADER_CARDS_MAX; ++i) { if (gba->memory.hw.eReaderCards[i].data) { continue; } gba->memory.hw.eReaderCards[i].data = malloc(size); memcpy(gba->memory.hw.eReaderCards[i].data, data, size); gba->memory.hw.eReaderCards[i].size = size; return; } }