all repos — mgba @ 11ddcbc31cf65cdc5826dc392498af57e48daa3c

mGBA Game Boy Advance Emulator

src/ds/io.c (view raw)

  1/* Copyright (c) 2013-2016 Jeffrey Pfau
  2 *
  3 * This Source Code Form is subject to the terms of the Mozilla Public
  4 * License, v. 2.0. If a copy of the MPL was not distributed with this
  5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  6#include <mgba/internal/ds/io.h>
  7
  8#include <mgba/core/interface.h>
  9#include <mgba/internal/ds/ds.h>
 10#include <mgba/internal/ds/ipc.h>
 11#include <mgba/internal/ds/spi.h>
 12
 13mLOG_DEFINE_CATEGORY(DS_IO, "DS I/O");
 14
 15static void _DSHaltCNT(struct DSCommon* dscore, uint8_t value) {
 16	switch (value >> 6) {
 17	case 0:
 18	default:
 19		break;
 20	case 1:
 21		mLOG(DS_IO, STUB, "Enter GBA mode not supported");
 22		break;
 23	case 2:
 24		ARMHalt(dscore->cpu);
 25		break;
 26	case 3:
 27		mLOG(DS_IO, STUB, "Enter sleep mode not supported");
 28		break;
 29	}
 30}
 31
 32static uint16_t _scheduleDiv(struct DS* ds, uint16_t control) {
 33	mTimingDeschedule(&ds->ds9.timing, &ds->divEvent);
 34	mTimingSchedule(&ds->ds9.timing, &ds->divEvent, (control & 3) ? 36 : 68);
 35	return control | 0x8000;
 36}
 37
 38static uint16_t _scheduleSqrt(struct DS* ds, uint16_t control) {
 39	mTimingDeschedule(&ds->ds9.timing, &ds->sqrtEvent);
 40	mTimingSchedule(&ds->ds9.timing, &ds->sqrtEvent, 26);
 41	return control | 0x8000;
 42}
 43
 44static uint32_t DSIOWrite(struct DSCommon* dscore, uint32_t address, uint16_t value) {
 45	switch (address) {
 46	// Video
 47	case DS_REG_DISPSTAT:
 48		DSVideoWriteDISPSTAT(dscore, value);
 49		break;
 50
 51	// DMA Fill
 52	case DS_REG_DMA0FILL_LO:
 53	case DS_REG_DMA0FILL_HI:
 54	case DS_REG_DMA1FILL_LO:
 55	case DS_REG_DMA1FILL_HI:
 56	case DS_REG_DMA2FILL_LO:
 57	case DS_REG_DMA2FILL_HI:
 58	case DS_REG_DMA3FILL_LO:
 59	case DS_REG_DMA3FILL_HI:
 60		break;
 61
 62	// Timers
 63	case DS_REG_TM0CNT_LO:
 64		GBATimerWriteTMCNT_LO(&dscore->timers[0], value);
 65		return 0x20000;
 66	case DS_REG_TM1CNT_LO:
 67		GBATimerWriteTMCNT_LO(&dscore->timers[1], value);
 68		return 0x20000;
 69	case DS_REG_TM2CNT_LO:
 70		GBATimerWriteTMCNT_LO(&dscore->timers[2], value);
 71		return 0x20000;
 72	case DS_REG_TM3CNT_LO:
 73		GBATimerWriteTMCNT_LO(&dscore->timers[3], value);
 74		return 0x20000;
 75
 76	case DS_REG_TM0CNT_HI:
 77		value &= 0x00C7;
 78		DSTimerWriteTMCNT_HI(&dscore->timers[0], &dscore->timing, dscore->cpu, &dscore->memory.io[DS_REG_TM0CNT_LO >> 1], value);
 79		break;
 80	case DS_REG_TM1CNT_HI:
 81		value &= 0x00C7;
 82		DSTimerWriteTMCNT_HI(&dscore->timers[1], &dscore->timing, dscore->cpu, &dscore->memory.io[DS_REG_TM1CNT_LO >> 1], value);
 83		break;
 84	case DS_REG_TM2CNT_HI:
 85		value &= 0x00C7;
 86		DSTimerWriteTMCNT_HI(&dscore->timers[2], &dscore->timing, dscore->cpu, &dscore->memory.io[DS_REG_TM2CNT_LO >> 1], value);
 87		break;
 88	case DS_REG_TM3CNT_HI:
 89		value &= 0x00C7;
 90		DSTimerWriteTMCNT_HI(&dscore->timers[3], &dscore->timing, dscore->cpu, &dscore->memory.io[DS_REG_TM3CNT_LO >> 1], value);
 91		break;
 92
 93	// IPC
 94	case DS_REG_IPCSYNC:
 95		value &= 0x6F00;
 96		value |= dscore->memory.io[address >> 1] & 0x000F;
 97		DSIPCWriteSYNC(dscore->ipc->cpu, dscore->ipc->memory.io, value);
 98		break;
 99	case DS_REG_IPCFIFOCNT:
100		value = DSIPCWriteFIFOCNT(dscore, value);
101		break;
102
103	// Cart bus
104	case DS_REG_SLOT1CNT_LO:
105		mLOG(DS_IO, STUB, "ROM control not implemented");
106		value &= 0x7FFF;
107		break;
108
109	// Interrupts
110	case DS_REG_IME:
111		DSWriteIME(dscore->cpu, dscore->memory.io, value);
112		break;
113	case 0x20A:
114		value = 0;
115		// Some bad interrupt libraries will write to this
116		break;
117	case DS_REG_IF_LO:
118	case DS_REG_IF_HI:
119		value = dscore->memory.io[address >> 1] & ~value;
120		break;
121	default:
122		return 0;
123	}
124	return value | 0x10000;
125}
126
127static uint16_t DSIOReadKeyInput(struct DS* ds) {
128	uint16_t input = 0x3FF;
129	if (ds->keyCallback) {
130		input = ds->keyCallback->readKeys(ds->keyCallback);
131	} else if (ds->keySource) {
132		input = *ds->keySource;
133	}
134	// TODO: Put back
135	/*if (!dscore->p->allowOpposingDirections) {
136		unsigned rl = input & 0x030;
137		unsigned ud = input & 0x0C0;
138		input &= 0x30F;
139		if (rl != 0x030) {
140			input |= rl;
141		}
142		if (ud != 0x0C0) {
143			input |= ud;
144		}
145	}*/
146	return 0x3FF ^ input;
147}
148
149static void DSIOUpdateTimer(struct DSCommon* dscore, uint32_t address) {
150	switch (address) {
151	case DS_REG_TM0CNT_LO:
152		GBATimerUpdateRegisterInternal(&dscore->timers[0], &dscore->timing, dscore->cpu, &dscore->memory.io[address >> 1], 0);
153		break;
154	case DS_REG_TM1CNT_LO:
155		GBATimerUpdateRegisterInternal(&dscore->timers[1], &dscore->timing, dscore->cpu, &dscore->memory.io[address >> 1], 0);
156		break;
157	case DS_REG_TM2CNT_LO:
158		GBATimerUpdateRegisterInternal(&dscore->timers[2], &dscore->timing, dscore->cpu, &dscore->memory.io[address >> 1], 0);
159		break;
160	case DS_REG_TM3CNT_LO:
161		GBATimerUpdateRegisterInternal(&dscore->timers[3], &dscore->timing, dscore->cpu, &dscore->memory.io[address >> 1], 0);
162		break;
163	}
164}
165
166void DS7IOInit(struct DS* ds) {
167	memset(ds->memory.io7, 0, sizeof(ds->memory.io7));
168}
169
170void DS7IOWrite(struct DS* ds, uint32_t address, uint16_t value) {
171	switch (address) {
172	case DS7_REG_SPICNT:
173		value &= 0xCF83;
174		value = DSSPIWriteControl(ds, value);
175		break;
176	case DS7_REG_SPIDATA:
177		DSSPIWrite(ds, value);
178		return;
179	default:
180		{
181			uint32_t v2 = DSIOWrite(&ds->ds7, address, value);
182			if (v2 & 0x10000) {
183				value = v2;
184				break;
185			} else if (v2 & 0x20000) {
186				return;
187			}
188		}
189		mLOG(DS_IO, STUB, "Stub DS7 I/O register write: %06X:%04X", address, value);
190		if (address >= DS7_REG_MAX) {
191			mLOG(DS_IO, GAME_ERROR, "Write to unused DS7 I/O register: %06X:%04X", address, value);
192			return;
193		}
194		break;
195	}
196	ds->memory.io7[address >> 1] = value;
197}
198
199void DS7IOWrite8(struct DS* ds, uint32_t address, uint8_t value) {
200	if (address == DS7_REG_HALTCNT) {
201		_DSHaltCNT(&ds->ds7, value);
202		return;
203	}
204	if (address < DS7_REG_MAX) {
205		uint16_t value16 = value << (8 * (address & 1));
206		value16 |= (ds->ds7.memory.io[(address & 0xFFF) >> 1]) & ~(0xFF << (8 * (address & 1)));
207		DS7IOWrite(ds, address & 0xFFFFFFFE, value16);
208	} else {
209		mLOG(DS, STUB, "Writing to unknown DS7 register: %08X:%02X", address, value);
210	}
211}
212
213void DS7IOWrite32(struct DS* ds, uint32_t address, uint32_t value) {
214	switch (address) {
215	case DS_REG_DMA0SAD_LO:
216		value = DSDMAWriteSAD(&ds->ds7, 0, value);
217		break;
218	case DS_REG_DMA1SAD_LO:
219		value = DSDMAWriteSAD(&ds->ds7, 1, value);
220		break;
221	case DS_REG_DMA2SAD_LO:
222		value = DSDMAWriteSAD(&ds->ds7, 2, value);
223		break;
224	case DS_REG_DMA3SAD_LO:
225		value = DSDMAWriteSAD(&ds->ds7, 3, value);
226		break;
227
228	case DS_REG_DMA0DAD_LO:
229		value = DSDMAWriteDAD(&ds->ds7, 0, value);
230		break;
231	case DS_REG_DMA1DAD_LO:
232		value = DSDMAWriteDAD(&ds->ds7, 1, value);
233		break;
234	case DS_REG_DMA2DAD_LO:
235		value = DSDMAWriteDAD(&ds->ds7, 2, value);
236		break;
237	case DS_REG_DMA3DAD_LO:
238		value = DSDMAWriteDAD(&ds->ds7, 3, value);
239		break;
240
241	case DS_REG_DMA0CNT_LO:
242		DS7DMAWriteCNT(&ds->ds7, 0, value);
243		break;
244	case DS_REG_DMA1CNT_LO:
245		DS7DMAWriteCNT(&ds->ds7, 1, value);
246		break;
247	case DS_REG_DMA2CNT_LO:
248		DS7DMAWriteCNT(&ds->ds7, 2, value);
249		break;
250	case DS_REG_DMA3CNT_LO:
251		DS7DMAWriteCNT(&ds->ds7, 3, value);
252		break;
253
254	case DS_REG_IPCFIFOSEND_LO:
255		DSIPCWriteFIFO(&ds->ds7, value);
256		break;
257	case DS_REG_IE_LO:
258		DSWriteIE(ds->ds7.cpu, ds->ds7.memory.io, value);
259		break;
260	default:
261		DS7IOWrite(ds, address, value & 0xFFFF);
262		DS7IOWrite(ds, address | 2, value >> 16);
263		return;
264	}
265	ds->ds7.memory.io[address >> 1] = value;
266	ds->ds7.memory.io[(address >> 1) + 1] = value >> 16;
267}
268
269uint16_t DS7IORead(struct DS* ds, uint32_t address) {
270	switch (address) {
271	case DS_REG_TM0CNT_LO:
272	case DS_REG_TM1CNT_LO:
273	case DS_REG_TM2CNT_LO:
274	case DS_REG_TM3CNT_LO:
275		DSIOUpdateTimer(&ds->ds7, address);
276		break;
277	case DS_REG_KEYINPUT:
278		return DSIOReadKeyInput(ds);
279	case DS_REG_DMA0FILL_LO:
280	case DS_REG_DMA0FILL_HI:
281	case DS_REG_DMA1FILL_LO:
282	case DS_REG_DMA1FILL_HI:
283	case DS_REG_DMA2FILL_LO:
284	case DS_REG_DMA2FILL_HI:
285	case DS_REG_DMA3FILL_LO:
286	case DS_REG_DMA3FILL_HI:
287	case DS_REG_TM0CNT_HI:
288	case DS_REG_TM1CNT_HI:
289	case DS_REG_TM2CNT_HI:
290	case DS_REG_TM3CNT_HI:
291	case DS7_REG_SPICNT:
292	case DS7_REG_SPIDATA:
293	case DS_REG_IPCSYNC:
294	case DS_REG_IPCFIFOCNT:
295	case DS_REG_IME:
296	case 0x20A:
297	case DS_REG_IE_LO:
298	case DS_REG_IE_HI:
299	case DS_REG_IF_LO:
300	case DS_REG_IF_HI:
301		// Handled transparently by the registers
302		break;
303	default:
304		mLOG(DS_IO, STUB, "Stub DS7 I/O register read: %06X", address);
305	}
306	if (address < DS7_REG_MAX) {
307		return ds->memory.io7[address >> 1];
308	}
309	return 0;
310}
311
312uint32_t DS7IORead32(struct DS* ds, uint32_t address) {
313	switch (address) {
314	case DS_REG_IPCFIFORECV_LO:
315		return DSIPCReadFIFO(&ds->ds7);
316	default:
317		return DS7IORead(ds, address & 0x00FFFFFC) | (DS7IORead(ds, (address & 0x00FFFFFC) | 2) << 16);
318	}
319}
320
321void DS9IOInit(struct DS* ds) {
322	memset(ds->memory.io9, 0, sizeof(ds->memory.io9));
323}
324
325void DS9IOWrite(struct DS* ds, uint32_t address, uint16_t value) {
326	switch (address) {
327	// VRAM control
328	case DS9_REG_VRAMCNT_A:
329	case DS9_REG_VRAMCNT_C:
330	case DS9_REG_VRAMCNT_E:
331		DSVideoConfigureVRAM(&ds->memory, address - DS9_REG_VRAMCNT_A + 1, value & 0xFF);
332		DSVideoConfigureVRAM(&ds->memory, address - DS9_REG_VRAMCNT_A, value >> 8);
333		break;
334	case DS9_REG_VRAMCNT_G:
335		DSVideoConfigureVRAM(&ds->memory, 6, value >> 8);
336		mLOG(DS_IO, STUB, "Stub DS9 I/O register write: %06X:%04X", address + 1, value);
337		break;
338	case DS9_REG_VRAMCNT_H:
339		DSVideoConfigureVRAM(&ds->memory, 7, value >> 8);
340		DSVideoConfigureVRAM(&ds->memory, 8, value & 0xFF);
341		break;
342
343	// Math
344	case DS9_REG_DIVCNT:
345		value = _scheduleDiv(ds, value);
346		break;
347	case DS9_REG_DIV_NUMER_0:
348	case DS9_REG_DIV_NUMER_1:
349	case DS9_REG_DIV_NUMER_2:
350	case DS9_REG_DIV_NUMER_3:
351	case DS9_REG_DIV_DENOM_0:
352	case DS9_REG_DIV_DENOM_1:
353	case DS9_REG_DIV_DENOM_2:
354	case DS9_REG_DIV_DENOM_3:
355		ds->memory.io9[DS9_REG_DIVCNT >> 1] = _scheduleDiv(ds, ds->memory.io9[DS9_REG_DIVCNT >> 1]);
356		break;
357	case DS9_REG_SQRTCNT:
358		value = _scheduleSqrt(ds, value);
359		break;
360	case DS9_REG_SQRT_PARAM_0:
361	case DS9_REG_SQRT_PARAM_1:
362	case DS9_REG_SQRT_PARAM_2:
363	case DS9_REG_SQRT_PARAM_3:
364		ds->memory.io9[DS9_REG_SQRTCNT >> 1] = _scheduleSqrt(ds, ds->memory.io9[DS9_REG_SQRTCNT >> 1]);
365		break;
366
367	default:
368		{
369			uint32_t v2 = DSIOWrite(&ds->ds9, address, value);
370			if (v2 & 0x10000) {
371				value = v2;
372				break;
373			} else if (v2 & 0x20000) {
374				return;
375			}
376		}
377		mLOG(DS_IO, STUB, "Stub DS9 I/O register write: %06X:%04X", address, value);
378		if (address >= DS7_REG_MAX) {
379			mLOG(DS_IO, GAME_ERROR, "Write to unused DS9 I/O register: %06X:%04X", address, value);
380			return;
381		}
382		break;
383	}
384	ds->memory.io9[address >> 1] = value;
385}
386
387void DS9IOWrite8(struct DS* ds, uint32_t address, uint8_t value) {
388	if (address < DS9_REG_MAX) {
389		uint16_t value16 = value << (8 * (address & 1));
390		value16 |= (ds->memory.io9[(address & 0x1FFF) >> 1]) & ~(0xFF << (8 * (address & 1)));
391		DS9IOWrite(ds, address & 0xFFFFFFFE, value16);
392	} else {
393		mLOG(DS, STUB, "Writing to unknown DS9 register: %08X:%02X", address, value);
394	}
395}
396
397void DS9IOWrite32(struct DS* ds, uint32_t address, uint32_t value) {
398	switch (address) {
399	case DS_REG_DMA0SAD_LO:
400		value = DSDMAWriteSAD(&ds->ds9, 0, value);
401		break;
402	case DS_REG_DMA1SAD_LO:
403		value = DSDMAWriteSAD(&ds->ds9, 1, value);
404		break;
405	case DS_REG_DMA2SAD_LO:
406		value = DSDMAWriteSAD(&ds->ds9, 2, value);
407		break;
408	case DS_REG_DMA3SAD_LO:
409		value = DSDMAWriteSAD(&ds->ds9, 3, value);
410		break;
411
412	case DS_REG_DMA0DAD_LO:
413		value = DSDMAWriteDAD(&ds->ds9, 0, value);
414		break;
415	case DS_REG_DMA1DAD_LO:
416		value = DSDMAWriteDAD(&ds->ds9, 1, value);
417		break;
418	case DS_REG_DMA2DAD_LO:
419		value = DSDMAWriteDAD(&ds->ds9, 2, value);
420		break;
421	case DS_REG_DMA3DAD_LO:
422		value = DSDMAWriteDAD(&ds->ds9, 3, value);
423		break;
424
425	case DS_REG_DMA0CNT_LO:
426		DS9DMAWriteCNT(&ds->ds9, 0, value);
427		break;
428	case DS_REG_DMA1CNT_LO:
429		DS9DMAWriteCNT(&ds->ds9, 1, value);
430		break;
431	case DS_REG_DMA2CNT_LO:
432		DS9DMAWriteCNT(&ds->ds9, 2, value);
433		break;
434	case DS_REG_DMA3CNT_LO:
435		DS9DMAWriteCNT(&ds->ds9, 3, value);
436		break;
437
438	case DS_REG_IPCFIFOSEND_LO:
439		DSIPCWriteFIFO(&ds->ds9, value);
440		break;
441	case DS_REG_IE_LO:
442		DSWriteIE(ds->ds9.cpu, ds->ds9.memory.io, value);
443		break;
444	default:
445		DS9IOWrite(ds, address, value & 0xFFFF);
446		DS9IOWrite(ds, address | 2, value >> 16);
447		return;
448	}
449	ds->ds9.memory.io[address >> 1] = value;
450	ds->ds9.memory.io[(address >> 1) + 1] = value >> 16;
451}
452
453uint16_t DS9IORead(struct DS* ds, uint32_t address) {
454	switch (address) {
455	case DS_REG_TM0CNT_LO:
456	case DS_REG_TM1CNT_LO:
457	case DS_REG_TM2CNT_LO:
458	case DS_REG_TM3CNT_LO:
459		DSIOUpdateTimer(&ds->ds9, address);
460		break;
461	case DS_REG_KEYINPUT:
462		return DSIOReadKeyInput(ds);
463	case DS_REG_DMA0FILL_LO:
464	case DS_REG_DMA0FILL_HI:
465	case DS_REG_DMA1FILL_LO:
466	case DS_REG_DMA1FILL_HI:
467	case DS_REG_DMA2FILL_LO:
468	case DS_REG_DMA2FILL_HI:
469	case DS_REG_DMA3FILL_LO:
470	case DS_REG_DMA3FILL_HI:
471	case DS_REG_TM0CNT_HI:
472	case DS_REG_TM1CNT_HI:
473	case DS_REG_TM2CNT_HI:
474	case DS_REG_TM3CNT_HI:
475	case DS_REG_IPCSYNC:
476	case DS_REG_IPCFIFOCNT:
477	case DS_REG_IME:
478	case 0x20A:
479	case DS_REG_IE_LO:
480	case DS_REG_IE_HI:
481	case DS_REG_IF_LO:
482	case DS_REG_IF_HI:
483	case DS9_REG_DIVCNT:
484	case DS9_REG_DIV_NUMER_0:
485	case DS9_REG_DIV_NUMER_1:
486	case DS9_REG_DIV_NUMER_2:
487	case DS9_REG_DIV_NUMER_3:
488	case DS9_REG_DIV_DENOM_0:
489	case DS9_REG_DIV_DENOM_1:
490	case DS9_REG_DIV_DENOM_2:
491	case DS9_REG_DIV_DENOM_3:
492	case DS9_REG_DIV_RESULT_0:
493	case DS9_REG_DIV_RESULT_1:
494	case DS9_REG_DIV_RESULT_2:
495	case DS9_REG_DIV_RESULT_3:
496	case DS9_REG_DIVREM_RESULT_0:
497	case DS9_REG_DIVREM_RESULT_1:
498	case DS9_REG_DIVREM_RESULT_2:
499	case DS9_REG_DIVREM_RESULT_3:
500	case DS9_REG_SQRTCNT:
501	case DS9_REG_SQRT_PARAM_0:
502	case DS9_REG_SQRT_PARAM_1:
503	case DS9_REG_SQRT_PARAM_2:
504	case DS9_REG_SQRT_PARAM_3:
505	case DS9_REG_SQRT_RESULT_LO:
506	case DS9_REG_SQRT_RESULT_HI:
507		// Handled transparently by the registers
508		break;
509	default:
510		mLOG(DS_IO, STUB, "Stub DS9 I/O register read: %06X", address);
511	}
512	if (address < DS9_REG_MAX) {
513		return ds->ds9.memory.io[address >> 1];
514	}
515	return 0;
516}
517
518uint32_t DS9IORead32(struct DS* ds, uint32_t address) {
519	switch (address) {
520	case DS_REG_IPCFIFORECV_LO:
521		return DSIPCReadFIFO(&ds->ds9);
522	default:
523		return DS9IORead(ds, address & 0x00FFFFFC) | (DS9IORead(ds, (address & 0x00FFFFFC) | 2) << 16);
524	}
525}