all repos — mgba @ 1c93b75b7e22fbe1b00da0214305c1bf2a9d0890

mGBA Game Boy Advance Emulator

src/gb/audio.c (view raw)

  1/* Copyright (c) 2013-2016 Jeffrey Pfau
  2 *
  3 * This Source Code Form is subject to the terms of the Mozilla Public
  4 * License, v. 2.0. If a copy of the MPL was not distributed with this
  5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  6#include "audio.h"
  7
  8#include "core/interface.h"
  9#include "core/sync.h"
 10#include "gb/gb.h"
 11#include "gb/serialize.h"
 12#include "gb/io.h"
 13
 14#ifdef _3DS
 15#define blip_add_delta blip_add_delta_fast
 16#endif
 17
 18#define FRAME_CYCLES (DMG_LR35902_FREQUENCY >> 9)
 19
 20const uint32_t DMG_LR35902_FREQUENCY = 0x400000;
 21static const int CLOCKS_PER_BLIP_FRAME = 0x1000;
 22static const unsigned BLIP_BUFFER_SIZE = 0x4000;
 23const int GB_AUDIO_VOLUME_MAX = 0x100;
 24
 25static bool _writeSweep(struct GBAudioSweep* sweep, uint8_t value);
 26static void _writeDuty(struct GBAudioEnvelope* envelope, uint8_t value);
 27static bool _writeEnvelope(struct GBAudioEnvelope* envelope, uint8_t value);
 28
 29static void _resetSweep(struct GBAudioSweep* sweep);
 30static bool _resetEnvelope(struct GBAudioEnvelope* sweep);
 31
 32static void _updateEnvelope(struct GBAudioEnvelope* envelope);
 33static void _updateEnvelopeDead(struct GBAudioEnvelope* envelope);
 34static bool _updateSweep(struct GBAudioSquareChannel* sweep, bool initial);
 35
 36static void _updateSquareSample(struct GBAudioSquareChannel* ch);
 37static int32_t _updateSquareChannel(struct GBAudioSquareChannel* ch);
 38
 39static void _updateFrame(struct mTiming* timing, void* user, uint32_t cyclesLate);
 40static void _updateChannel1(struct mTiming* timing, void* user, uint32_t cyclesLate);
 41static void _updateChannel2(struct mTiming* timing, void* user, uint32_t cyclesLate);
 42static void _updateChannel3(struct mTiming* timing, void* user, uint32_t cyclesLate);
 43static void _fadeChannel3(struct mTiming* timing, void* user, uint32_t cyclesLate);
 44static void _updateChannel4(struct mTiming* timing, void* user, uint32_t cyclesLate);
 45static void _sample(struct mTiming* timing, void* user, uint32_t cyclesLate);
 46
 47void GBAudioInit(struct GBAudio* audio, size_t samples, uint8_t* nr52, enum GBAudioStyle style) {
 48	audio->samples = samples;
 49	audio->left = blip_new(BLIP_BUFFER_SIZE);
 50	audio->right = blip_new(BLIP_BUFFER_SIZE);
 51	audio->clockRate = DMG_LR35902_FREQUENCY;
 52	// Guess too large; we hang producing extra samples if we guess too low
 53	blip_set_rates(audio->left, DMG_LR35902_FREQUENCY, 96000);
 54	blip_set_rates(audio->right, DMG_LR35902_FREQUENCY, 96000);
 55	audio->forceDisableCh[0] = false;
 56	audio->forceDisableCh[1] = false;
 57	audio->forceDisableCh[2] = false;
 58	audio->forceDisableCh[3] = false;
 59	audio->masterVolume = GB_AUDIO_VOLUME_MAX;
 60	audio->nr52 = nr52;
 61	audio->style = style;
 62	if (style == GB_AUDIO_GBA) {
 63		audio->timingFactor = 4;
 64	} else {
 65		audio->timingFactor = 1;
 66	}
 67
 68	audio->frameEvent.context = audio;
 69	audio->frameEvent.name = "GB Audio Frame Sequencer";
 70	audio->frameEvent.callback = _updateFrame;
 71	audio->frameEvent.priority = 0x10;
 72	audio->ch1Event.context = audio;
 73	audio->ch1Event.name = "GB Audio Channel 1";
 74	audio->ch1Event.callback = _updateChannel1;
 75	audio->ch1Event.priority = 0x11;
 76	audio->ch2Event.context = audio;
 77	audio->ch2Event.name = "GB Audio Channel 2";
 78	audio->ch2Event.callback = _updateChannel2;
 79	audio->ch2Event.priority = 0x12;
 80	audio->ch3Event.context = audio;
 81	audio->ch3Event.name = "GB Audio Channel 3";
 82	audio->ch3Event.callback = _updateChannel3;
 83	audio->ch3Event.priority = 0x13;
 84	audio->ch3Fade.context = audio;
 85	audio->ch3Fade.name = "GB Audio Channel 3 Memory";
 86	audio->ch3Fade.callback = _fadeChannel3;
 87	audio->ch3Fade.priority = 0x14;
 88	audio->ch4Event.context = audio;
 89	audio->ch4Event.name = "GB Audio Channel 4";
 90	audio->ch4Event.callback = _updateChannel4;
 91	audio->ch4Event.priority = 0x15;
 92	audio->sampleEvent.context = audio;
 93	audio->sampleEvent.name = "GB Audio Sample";
 94	audio->sampleEvent.callback = _sample;
 95	audio->ch1Event.priority = 0x18;
 96}
 97
 98void GBAudioDeinit(struct GBAudio* audio) {
 99	blip_delete(audio->left);
100	blip_delete(audio->right);
101}
102
103void GBAudioReset(struct GBAudio* audio) {
104	mTimingDeschedule(audio->timing, &audio->frameEvent);
105	mTimingDeschedule(audio->timing, &audio->ch1Event);
106	mTimingDeschedule(audio->timing, &audio->ch2Event);
107	mTimingDeschedule(audio->timing, &audio->ch3Event);
108	mTimingDeschedule(audio->timing, &audio->ch3Fade);
109	mTimingDeschedule(audio->timing, &audio->ch4Event);
110	mTimingDeschedule(audio->timing, &audio->sampleEvent);
111	mTimingSchedule(audio->timing, &audio->frameEvent, 0);
112	if (audio->style != GB_AUDIO_GBA) {
113		mTimingSchedule(audio->timing, &audio->sampleEvent, 0);
114	}
115	audio->ch1 = (struct GBAudioSquareChannel) { .envelope = { .dead = 2 } };
116	audio->ch2 = (struct GBAudioSquareChannel) { .envelope = { .dead = 2 } };
117	audio->ch3 = (struct GBAudioWaveChannel) { .bank = 0 };
118	// TODO: DMG randomness
119	audio->ch3.wavedata8[0] = 0x00;
120	audio->ch3.wavedata8[1] = 0xFF;
121	audio->ch3.wavedata8[2] = 0x00;
122	audio->ch3.wavedata8[3] = 0xFF;
123	audio->ch3.wavedata8[4] = 0x00;
124	audio->ch3.wavedata8[5] = 0xFF;
125	audio->ch3.wavedata8[6] = 0x00;
126	audio->ch3.wavedata8[7] = 0xFF;
127	audio->ch3.wavedata8[8] = 0x00;
128	audio->ch3.wavedata8[9] = 0xFF;
129	audio->ch3.wavedata8[10] = 0x00;
130	audio->ch3.wavedata8[11] = 0xFF;
131	audio->ch3.wavedata8[12] = 0x00;
132	audio->ch3.wavedata8[13] = 0xFF;
133	audio->ch3.wavedata8[14] = 0x00;
134	audio->ch3.wavedata8[15] = 0xFF;
135	audio->ch4 = (struct GBAudioNoiseChannel) { .envelope = { .dead = 2 } };
136	audio->frame = 0;
137	audio->sampleInterval = 128;
138	audio->lastLeft = 0;
139	audio->lastRight = 0;
140	audio->clock = 0;
141	audio->volumeRight = 0;
142	audio->volumeLeft = 0;
143	audio->ch1Right = false;
144	audio->ch2Right = false;
145	audio->ch3Right = false;
146	audio->ch4Right = false;
147	audio->ch1Left = false;
148	audio->ch2Left = false;
149	audio->ch3Left = false;
150	audio->ch4Left = false;
151	audio->playingCh1 = false;
152	audio->playingCh2 = false;
153	audio->playingCh3 = false;
154	audio->playingCh4 = false;
155}
156
157void GBAudioResizeBuffer(struct GBAudio* audio, size_t samples) {
158	mCoreSyncLockAudio(audio->p->sync);
159	audio->samples = samples;
160	blip_clear(audio->left);
161	blip_clear(audio->right);
162	audio->clock = 0;
163	mCoreSyncConsumeAudio(audio->p->sync);
164}
165
166void GBAudioWriteNR10(struct GBAudio* audio, uint8_t value) {
167	if (!_writeSweep(&audio->ch1.sweep, value)) {
168		mTimingDeschedule(audio->timing, &audio->ch1Event);
169		audio->playingCh1 = false;
170		*audio->nr52 &= ~0x0001;
171	}
172}
173
174void GBAudioWriteNR11(struct GBAudio* audio, uint8_t value) {
175	_writeDuty(&audio->ch1.envelope, value);
176	audio->ch1.control.length = 64 - audio->ch1.envelope.length;
177}
178
179void GBAudioWriteNR12(struct GBAudio* audio, uint8_t value) {
180	if (!_writeEnvelope(&audio->ch1.envelope, value)) {
181		mTimingDeschedule(audio->timing, &audio->ch1Event);
182		audio->playingCh1 = false;
183		*audio->nr52 &= ~0x0001;
184	}
185}
186
187void GBAudioWriteNR13(struct GBAudio* audio, uint8_t value) {
188	audio->ch1.control.frequency &= 0x700;
189	audio->ch1.control.frequency |= GBAudioRegisterControlGetFrequency(value);
190}
191
192void GBAudioWriteNR14(struct GBAudio* audio, uint8_t value) {
193	audio->ch1.control.frequency &= 0xFF;
194	audio->ch1.control.frequency |= GBAudioRegisterControlGetFrequency(value << 8);
195	bool wasStop = audio->ch1.control.stop;
196	audio->ch1.control.stop = GBAudioRegisterControlGetStop(value << 8);
197	if (!wasStop && audio->ch1.control.stop && audio->ch1.control.length && !(audio->frame & 1)) {
198		--audio->ch1.control.length;
199		if (audio->ch1.control.length == 0) {
200			mTimingDeschedule(audio->timing, &audio->ch1Event);
201			audio->playingCh1 = false;
202		}
203	}
204	if (GBAudioRegisterControlIsRestart(value << 8)) {
205		audio->playingCh1 = _resetEnvelope(&audio->ch1.envelope);
206
207		if (audio->playingCh1) {
208			audio->ch1.control.hi = 0;
209			_updateSquareSample(&audio->ch1);
210		}
211
212		audio->ch1.sweep.realFrequency = audio->ch1.control.frequency;
213		_resetSweep(&audio->ch1.sweep);
214		if (audio->playingCh1 && audio->ch1.sweep.shift) {
215			audio->playingCh1 = _updateSweep(&audio->ch1, true);
216		}
217		if (!audio->ch1.control.length) {
218			audio->ch1.control.length = 64;
219			if (audio->ch1.control.stop && !(audio->frame & 1)) {
220				--audio->ch1.control.length;
221			}
222		}
223		mTimingDeschedule(audio->timing, &audio->ch1Event);
224		if (audio->playingCh1 && audio->ch1.envelope.dead != 2) {
225			mTimingSchedule(audio->timing, &audio->ch1Event, 0);
226		}
227	}
228	*audio->nr52 &= ~0x0001;
229	*audio->nr52 |= audio->playingCh1;
230}
231
232void GBAudioWriteNR21(struct GBAudio* audio, uint8_t value) {
233	_writeDuty(&audio->ch2.envelope, value);
234	audio->ch2.control.length = 64 - audio->ch2.envelope.length;
235}
236
237void GBAudioWriteNR22(struct GBAudio* audio, uint8_t value) {
238	if (!_writeEnvelope(&audio->ch2.envelope, value)) {
239		mTimingDeschedule(audio->timing, &audio->ch2Event);
240		audio->playingCh2 = false;
241		*audio->nr52 &= ~0x0002;
242	}
243}
244
245void GBAudioWriteNR23(struct GBAudio* audio, uint8_t value) {
246	audio->ch2.control.frequency &= 0x700;
247	audio->ch2.control.frequency |= GBAudioRegisterControlGetFrequency(value);
248}
249
250void GBAudioWriteNR24(struct GBAudio* audio, uint8_t value) {
251	audio->ch2.control.frequency &= 0xFF;
252	audio->ch2.control.frequency |= GBAudioRegisterControlGetFrequency(value << 8);
253	bool wasStop = audio->ch2.control.stop;
254	audio->ch2.control.stop = GBAudioRegisterControlGetStop(value << 8);
255	if (!wasStop && audio->ch2.control.stop && audio->ch2.control.length && !(audio->frame & 1)) {
256		--audio->ch2.control.length;
257		if (audio->ch2.control.length == 0) {
258			mTimingDeschedule(audio->timing, &audio->ch2Event);
259			audio->playingCh2 = false;
260		}
261	}
262	if (GBAudioRegisterControlIsRestart(value << 8)) {
263		audio->playingCh2 = _resetEnvelope(&audio->ch2.envelope);
264
265		if (audio->playingCh2) {
266			audio->ch2.control.hi = 0;
267			_updateSquareSample(&audio->ch2);
268		}
269
270		if (!audio->ch2.control.length) {
271			audio->ch2.control.length = 64;
272			if (audio->ch2.control.stop && !(audio->frame & 1)) {
273				--audio->ch2.control.length;
274			}
275		}
276		mTimingDeschedule(audio->timing, &audio->ch2Event);
277		if (audio->playingCh2 && audio->ch2.envelope.dead != 2) {
278			mTimingSchedule(audio->timing, &audio->ch2Event, 0);
279		}
280	}
281	*audio->nr52 &= ~0x0002;
282	*audio->nr52 |= audio->playingCh2 << 1;
283}
284
285void GBAudioWriteNR30(struct GBAudio* audio, uint8_t value) {
286	audio->ch3.enable = GBAudioRegisterBankGetEnable(value);
287	if (!audio->ch3.enable) {
288		audio->playingCh3 = false;
289		*audio->nr52 &= ~0x0004;
290	}
291}
292
293void GBAudioWriteNR31(struct GBAudio* audio, uint8_t value) {
294	audio->ch3.length = 256 - value;
295}
296
297void GBAudioWriteNR32(struct GBAudio* audio, uint8_t value) {
298	audio->ch3.volume = GBAudioRegisterBankVolumeGetVolumeGB(value);
299}
300
301void GBAudioWriteNR33(struct GBAudio* audio, uint8_t value) {
302	audio->ch3.rate &= 0x700;
303	audio->ch3.rate |= GBAudioRegisterControlGetRate(value);
304}
305
306void GBAudioWriteNR34(struct GBAudio* audio, uint8_t value) {
307	audio->ch3.rate &= 0xFF;
308	audio->ch3.rate |= GBAudioRegisterControlGetRate(value << 8);
309	bool wasStop = audio->ch3.stop;
310	audio->ch3.stop = GBAudioRegisterControlGetStop(value << 8);
311	if (!wasStop && audio->ch3.stop && audio->ch3.length && !(audio->frame & 1)) {
312		--audio->ch3.length;
313		if (audio->ch3.length == 0) {
314			audio->playingCh3 = false;
315		}
316	}
317	bool wasEnable = audio->playingCh3;
318	if (GBAudioRegisterControlIsRestart(value << 8)) {
319		audio->playingCh3 = audio->ch3.enable;
320		if (!audio->ch3.length) {
321			audio->ch3.length = 256;
322			if (audio->ch3.stop && !(audio->frame & 1)) {
323				--audio->ch3.length;
324			}
325		}
326
327		if (audio->style == GB_AUDIO_DMG && wasEnable && audio->playingCh3 && audio->ch3.readable) {
328			if (audio->ch3.window < 8) {
329				audio->ch3.wavedata8[0] = audio->ch3.wavedata8[audio->ch3.window >> 1];
330			} else {
331				audio->ch3.wavedata8[0] = audio->ch3.wavedata8[((audio->ch3.window >> 1) & ~3)];
332				audio->ch3.wavedata8[1] = audio->ch3.wavedata8[((audio->ch3.window >> 1) & ~3) + 1];
333				audio->ch3.wavedata8[2] = audio->ch3.wavedata8[((audio->ch3.window >> 1) & ~3) + 2];
334				audio->ch3.wavedata8[3] = audio->ch3.wavedata8[((audio->ch3.window >> 1) & ~3) + 3];
335			}
336		}
337		audio->ch3.window = 0;
338	}
339	mTimingDeschedule(audio->timing, &audio->ch3Event);
340	if (audio->playingCh3) {
341		audio->ch3.readable = audio->style != GB_AUDIO_DMG;
342		// TODO: Where does this cycle delay come from?
343		mTimingSchedule(audio->timing, &audio->ch3Event, audio->timingFactor * 4 + 2 * (2048 - audio->ch3.rate));
344	}
345	*audio->nr52 &= ~0x0004;
346	*audio->nr52 |= audio->playingCh3 << 2;
347}
348
349void GBAudioWriteNR41(struct GBAudio* audio, uint8_t value) {
350	_writeDuty(&audio->ch4.envelope, value);
351	audio->ch4.length = 64 - audio->ch4.envelope.length;
352}
353
354void GBAudioWriteNR42(struct GBAudio* audio, uint8_t value) {
355	if (!_writeEnvelope(&audio->ch4.envelope, value)) {
356		mTimingDeschedule(audio->timing, &audio->ch4Event);
357		audio->playingCh4 = false;
358		*audio->nr52 &= ~0x0008;
359	}
360}
361
362void GBAudioWriteNR43(struct GBAudio* audio, uint8_t value) {
363	audio->ch4.ratio = GBAudioRegisterNoiseFeedbackGetRatio(value);
364	audio->ch4.frequency = GBAudioRegisterNoiseFeedbackGetFrequency(value);
365	audio->ch4.power = GBAudioRegisterNoiseFeedbackGetPower(value);
366}
367
368void GBAudioWriteNR44(struct GBAudio* audio, uint8_t value) {
369	bool wasStop = audio->ch4.stop;
370	audio->ch4.stop = GBAudioRegisterNoiseControlGetStop(value);
371	if (!wasStop && audio->ch4.stop && audio->ch4.length && !(audio->frame & 1)) {
372		--audio->ch4.length;
373		if (audio->ch4.length == 0) {
374			mTimingDeschedule(audio->timing, &audio->ch4Event);
375			audio->playingCh4 = false;
376		}
377	}
378	if (GBAudioRegisterNoiseControlIsRestart(value)) {
379		audio->playingCh4 = _resetEnvelope(&audio->ch4.envelope);
380
381		if (audio->ch4.power) {
382			audio->ch4.lfsr = 0x40;
383		} else {
384			audio->ch4.lfsr = 0x4000;
385		}
386		if (!audio->ch4.length) {
387			audio->ch4.length = 64;
388			if (audio->ch4.stop && !(audio->frame & 1)) {
389				--audio->ch4.length;
390			}
391		}
392		mTimingDeschedule(audio->timing, &audio->ch4Event);
393		if (audio->playingCh4 && audio->ch4.envelope.dead != 2) {
394			mTimingSchedule(audio->timing, &audio->ch4Event, 0);
395		}
396	}
397	*audio->nr52 &= ~0x0008;
398	*audio->nr52 |= audio->playingCh4 << 3;
399}
400
401void GBAudioWriteNR50(struct GBAudio* audio, uint8_t value) {
402	audio->volumeRight = GBRegisterNR50GetVolumeRight(value);
403	audio->volumeLeft = GBRegisterNR50GetVolumeLeft(value);
404}
405
406void GBAudioWriteNR51(struct GBAudio* audio, uint8_t value) {
407	audio->ch1Right = GBRegisterNR51GetCh1Right(value);
408	audio->ch2Right = GBRegisterNR51GetCh2Right(value);
409	audio->ch3Right = GBRegisterNR51GetCh3Right(value);
410	audio->ch4Right = GBRegisterNR51GetCh4Right(value);
411	audio->ch1Left = GBRegisterNR51GetCh1Left(value);
412	audio->ch2Left = GBRegisterNR51GetCh2Left(value);
413	audio->ch3Left = GBRegisterNR51GetCh3Left(value);
414	audio->ch4Left = GBRegisterNR51GetCh4Left(value);
415}
416
417void GBAudioWriteNR52(struct GBAudio* audio, uint8_t value) {
418	bool wasEnable = audio->enable;
419	audio->enable = GBAudioEnableGetEnable(value);
420	if (!audio->enable) {
421		audio->playingCh1 = 0;
422		audio->playingCh2 = 0;
423		audio->playingCh3 = 0;
424		audio->playingCh4 = 0;
425		GBAudioWriteNR10(audio, 0);
426		GBAudioWriteNR12(audio, 0);
427		GBAudioWriteNR13(audio, 0);
428		GBAudioWriteNR14(audio, 0);
429		GBAudioWriteNR22(audio, 0);
430		GBAudioWriteNR23(audio, 0);
431		GBAudioWriteNR24(audio, 0);
432		GBAudioWriteNR30(audio, 0);
433		GBAudioWriteNR32(audio, 0);
434		GBAudioWriteNR33(audio, 0);
435		GBAudioWriteNR34(audio, 0);
436		GBAudioWriteNR42(audio, 0);
437		GBAudioWriteNR43(audio, 0);
438		GBAudioWriteNR44(audio, 0);
439		GBAudioWriteNR50(audio, 0);
440		GBAudioWriteNR51(audio, 0);
441		if (audio->style != GB_AUDIO_DMG) {
442			GBAudioWriteNR11(audio, 0);
443			GBAudioWriteNR21(audio, 0);
444			GBAudioWriteNR31(audio, 0);
445			GBAudioWriteNR41(audio, 0);
446		}
447
448		if (audio->p) {
449			audio->p->memory.io[REG_NR10] = 0;
450			audio->p->memory.io[REG_NR11] = 0;
451			audio->p->memory.io[REG_NR12] = 0;
452			audio->p->memory.io[REG_NR13] = 0;
453			audio->p->memory.io[REG_NR14] = 0;
454			audio->p->memory.io[REG_NR21] = 0;
455			audio->p->memory.io[REG_NR22] = 0;
456			audio->p->memory.io[REG_NR23] = 0;
457			audio->p->memory.io[REG_NR24] = 0;
458			audio->p->memory.io[REG_NR30] = 0;
459			audio->p->memory.io[REG_NR31] = 0;
460			audio->p->memory.io[REG_NR32] = 0;
461			audio->p->memory.io[REG_NR33] = 0;
462			audio->p->memory.io[REG_NR34] = 0;
463			audio->p->memory.io[REG_NR42] = 0;
464			audio->p->memory.io[REG_NR43] = 0;
465			audio->p->memory.io[REG_NR44] = 0;
466			audio->p->memory.io[REG_NR50] = 0;
467			audio->p->memory.io[REG_NR51] = 0;
468			if (audio->style != GB_AUDIO_DMG) {
469				audio->p->memory.io[REG_NR11] = 0;
470				audio->p->memory.io[REG_NR21] = 0;
471				audio->p->memory.io[REG_NR31] = 0;
472				audio->p->memory.io[REG_NR41] = 0;
473			}
474		}
475		*audio->nr52 &= ~0x000F;
476	} else if (!wasEnable) {
477		audio->frame = 7;
478	}
479}
480
481void _updateFrame(struct mTiming* timing, void* user, uint32_t cyclesLate) {
482	struct GBAudio* audio = user;
483
484	int frame = (audio->frame + 1) & 7;
485	audio->frame = frame;
486
487	switch (frame) {
488	case 2:
489	case 6:
490		if (audio->ch1.sweep.enable) {
491			--audio->ch1.sweep.step;
492			if (audio->ch1.sweep.step == 0) {
493				audio->playingCh1 = _updateSweep(&audio->ch1, false);
494				*audio->nr52 &= ~0x0001;
495				*audio->nr52 |= audio->playingCh1;
496			}
497		}
498		// Fall through
499	case 0:
500	case 4:
501		if (audio->ch1.control.length && audio->ch1.control.stop) {
502			--audio->ch1.control.length;
503			if (audio->ch1.control.length == 0) {
504				mTimingDeschedule(timing, &audio->ch1Event);
505				audio->playingCh1 = 0;
506				*audio->nr52 &= ~0x0001;
507			}
508		}
509
510		if (audio->ch2.control.length && audio->ch2.control.stop) {
511			--audio->ch2.control.length;
512			if (audio->ch2.control.length == 0) {
513				mTimingDeschedule(timing, &audio->ch2Event);
514				audio->playingCh2 = 0;
515				*audio->nr52 &= ~0x0002;
516			}
517		}
518
519		if (audio->ch3.length && audio->ch3.stop) {
520			--audio->ch3.length;
521			if (audio->ch3.length == 0) {
522				mTimingDeschedule(timing, &audio->ch3Event);
523				audio->playingCh3 = 0;
524				*audio->nr52 &= ~0x0004;
525			}
526		}
527
528		if (audio->ch4.length && audio->ch4.stop) {
529			--audio->ch4.length;
530			if (audio->ch4.length == 0) {
531				mTimingDeschedule(timing, &audio->ch4Event);
532				audio->playingCh4 = 0;
533				*audio->nr52 &= ~0x0008;
534			}
535		}
536		break;
537	case 7:
538		if (audio->playingCh1 && !audio->ch1.envelope.dead) {
539			--audio->ch1.envelope.nextStep;
540			if (audio->ch1.envelope.nextStep == 0) {
541				_updateEnvelope(&audio->ch1.envelope);
542				if (audio->ch1.envelope.dead == 2) {
543					mTimingDeschedule(timing, &audio->ch1Event);
544				}
545				_updateSquareSample(&audio->ch1);
546			}
547		}
548
549		if (audio->playingCh2 && !audio->ch2.envelope.dead) {
550			--audio->ch2.envelope.nextStep;
551			if (audio->ch2.envelope.nextStep == 0) {
552				_updateEnvelope(&audio->ch2.envelope);
553				if (audio->ch2.envelope.dead == 2) {
554					mTimingDeschedule(timing, &audio->ch2Event);
555				}
556				_updateSquareSample(&audio->ch1);
557			}
558		}
559
560		if (audio->playingCh4 && !audio->ch4.envelope.dead) {
561			--audio->ch4.envelope.nextStep;
562			if (audio->ch4.envelope.nextStep == 0) {
563				int8_t sample = (audio->ch4.sample >> 7) * 0x8;
564				_updateEnvelope(&audio->ch4.envelope);
565				if (audio->ch4.envelope.dead == 2) {
566					mTimingDeschedule(timing, &audio->ch4Event);
567				}
568				audio->ch4.sample = sample * audio->ch4.envelope.currentVolume;
569			}
570		}
571		break;
572	}
573
574	mTimingSchedule(timing, &audio->frameEvent, audio->timingFactor * FRAME_CYCLES - cyclesLate);
575}
576
577void GBAudioSamplePSG(struct GBAudio* audio, int16_t* left, int16_t* right) {
578	int sampleLeft = 0;
579	int sampleRight = 0;
580
581	if (audio->playingCh1 && !audio->forceDisableCh[0]) {
582		if (audio->ch1Left) {
583			sampleLeft += audio->ch1.sample;
584		}
585
586		if (audio->ch1Right) {
587			sampleRight += audio->ch1.sample;
588		}
589	}
590
591	if (audio->playingCh2 && !audio->forceDisableCh[1]) {
592		if (audio->ch2Left) {
593			sampleLeft += audio->ch2.sample;
594		}
595
596		if (audio->ch2Right) {
597			sampleRight += audio->ch2.sample;
598		}
599	}
600
601	if (audio->playingCh3 && !audio->forceDisableCh[2]) {
602		if (audio->ch3Left) {
603			sampleLeft += audio->ch3.sample;
604		}
605
606		if (audio->ch3Right) {
607			sampleRight += audio->ch3.sample;
608		}
609	}
610
611	if (audio->playingCh4 && !audio->forceDisableCh[3]) {
612		if (audio->ch4Left) {
613			sampleLeft += audio->ch4.sample;
614		}
615
616		if (audio->ch4Right) {
617			sampleRight += audio->ch4.sample;
618		}
619	}
620
621	*left = sampleLeft * (1 + audio->volumeLeft);
622	*right = sampleRight * (1 + audio->volumeRight);
623}
624
625static void _sample(struct mTiming* timing, void* user, uint32_t cyclesLate) {
626	struct GBAudio* audio = user;
627	int16_t sampleLeft = 0;
628	int16_t sampleRight = 0;
629	GBAudioSamplePSG(audio, &sampleLeft, &sampleRight);
630	sampleLeft = (sampleLeft * audio->masterVolume) >> 6;
631	sampleRight = (sampleRight * audio->masterVolume) >> 6;
632
633	mCoreSyncLockAudio(audio->p->sync);
634	unsigned produced;
635	if ((size_t) blip_samples_avail(audio->left) < audio->samples) {
636		blip_add_delta(audio->left, audio->clock, sampleLeft - audio->lastLeft);
637		blip_add_delta(audio->right, audio->clock, sampleRight - audio->lastRight);
638		audio->lastLeft = sampleLeft;
639		audio->lastRight = sampleRight;
640		audio->clock += audio->sampleInterval;
641		if (audio->clock >= CLOCKS_PER_BLIP_FRAME) {
642			blip_end_frame(audio->left, audio->clock);
643			blip_end_frame(audio->right, audio->clock);
644			audio->clock -= CLOCKS_PER_BLIP_FRAME;
645		}
646	}
647	produced = blip_samples_avail(audio->left);
648	if (audio->p->stream && audio->p->stream->postAudioFrame) {
649		audio->p->stream->postAudioFrame(audio->p->stream, sampleLeft, sampleRight);
650	}
651	bool wait = produced >= audio->samples;
652	mCoreSyncProduceAudio(audio->p->sync, wait);
653
654	if (wait && audio->p->stream && audio->p->stream->postAudioBuffer) {
655		audio->p->stream->postAudioBuffer(audio->p->stream, audio->left, audio->right);
656	}
657	mTimingSchedule(timing, &audio->sampleEvent, audio->sampleInterval * audio->timingFactor - cyclesLate);
658}
659
660bool _resetEnvelope(struct GBAudioEnvelope* envelope) {
661	envelope->currentVolume = envelope->initialVolume;
662	_updateEnvelopeDead(envelope);
663	if (!envelope->dead) {
664		envelope->nextStep = envelope->stepTime;
665	}
666	return envelope->initialVolume || envelope->direction;
667}
668
669void _resetSweep(struct GBAudioSweep* sweep) {
670	sweep->step = sweep->time;
671	sweep->enable = (sweep->step != 8) || sweep->shift;
672	sweep->occurred = false;
673}
674
675bool _writeSweep(struct GBAudioSweep* sweep, uint8_t value) {
676	sweep->shift = GBAudioRegisterSquareSweepGetShift(value);
677	bool oldDirection = sweep->direction;
678	sweep->direction = GBAudioRegisterSquareSweepGetDirection(value);
679	bool on = true;
680	if (sweep->occurred && oldDirection && !sweep->direction) {
681		on = false;
682	}
683	sweep->occurred = false;
684	sweep->time = GBAudioRegisterSquareSweepGetTime(value);
685	if (!sweep->time) {
686		sweep->time = 8;
687	}
688	return on;
689}
690
691void _writeDuty(struct GBAudioEnvelope* envelope, uint8_t value) {
692	envelope->length = GBAudioRegisterDutyGetLength(value);
693	envelope->duty = GBAudioRegisterDutyGetDuty(value);
694}
695
696bool _writeEnvelope(struct GBAudioEnvelope* envelope, uint8_t value) {
697	envelope->stepTime = GBAudioRegisterSweepGetStepTime(value);
698	envelope->direction = GBAudioRegisterSweepGetDirection(value);
699	envelope->initialVolume = GBAudioRegisterSweepGetInitialVolume(value);
700	_updateEnvelopeDead(envelope);
701	envelope->nextStep = envelope->stepTime;
702	return (envelope->initialVolume || envelope->direction) && envelope->dead != 2;
703}
704
705static void _updateSquareSample(struct GBAudioSquareChannel* ch) {
706	ch->sample = (ch->control.hi * ch->envelope.currentVolume - 8) * 0x10;
707}
708
709static int32_t _updateSquareChannel(struct GBAudioSquareChannel* ch) {
710	ch->control.hi = !ch->control.hi;
711	_updateSquareSample(ch);
712	int period = 4 * (2048 - ch->control.frequency);
713	switch (ch->envelope.duty) {
714	case 0:
715		return ch->control.hi ? period : period * 7;
716	case 1:
717		return ch->control.hi ? period * 2 : period * 6;
718	case 2:
719		return period * 4;
720	case 3:
721		return ch->control.hi ? period * 6 : period * 2;
722	default:
723		// This should never be hit
724		return period * 4;
725	}
726}
727
728static void _updateEnvelope(struct GBAudioEnvelope* envelope) {
729	if (envelope->direction) {
730		++envelope->currentVolume;
731	} else {
732		--envelope->currentVolume;
733	}
734	if (envelope->currentVolume >= 15) {
735		envelope->currentVolume = 15;
736		envelope->dead = 1;
737	} else if (envelope->currentVolume <= 0) {
738		envelope->currentVolume = 0;
739		envelope->dead = 2;
740	} else {
741		envelope->nextStep = envelope->stepTime;
742	}
743}
744
745static void _updateEnvelopeDead(struct GBAudioEnvelope* envelope) {
746	if (!envelope->stepTime) {
747		envelope->dead = envelope->currentVolume ? 1 : 2;
748	} else if (!envelope->direction && !envelope->currentVolume) {
749		envelope->dead = 2;
750	} else if (envelope->direction && envelope->currentVolume == 0xF) {
751		envelope->dead = 1;
752	} else {
753		envelope->dead = 0;
754	}
755}
756
757static bool _updateSweep(struct GBAudioSquareChannel* ch, bool initial) {
758	if (initial || ch->sweep.time != 8) {
759		int frequency = ch->sweep.realFrequency;
760		if (ch->sweep.direction) {
761			frequency -= frequency >> ch->sweep.shift;
762			if (!initial && frequency >= 0) {
763				ch->control.frequency = frequency;
764				ch->sweep.realFrequency = frequency;
765			}
766		} else {
767			frequency += frequency >> ch->sweep.shift;
768			if (frequency < 2048) {
769				if (!initial && ch->sweep.shift) {
770					ch->control.frequency = frequency;
771					ch->sweep.realFrequency = frequency;
772					if (!_updateSweep(ch, true)) {
773						return false;
774					}
775				}
776			} else {
777				return false;
778			}
779		}
780		ch->sweep.occurred = true;
781	}
782	ch->sweep.step = ch->sweep.time;
783	return true;
784}
785
786static void _updateChannel1(struct mTiming* timing, void* user, uint32_t cyclesLate) {
787	struct GBAudio* audio = user;
788	struct GBAudioSquareChannel* ch = &audio->ch1;
789	int cycles = _updateSquareChannel(ch);
790	mTimingSchedule(timing, &audio->ch1Event, audio->timingFactor * cycles - cyclesLate);
791}
792
793static void _updateChannel2(struct mTiming* timing, void* user, uint32_t cyclesLate) {
794	struct GBAudio* audio = user;
795	struct GBAudioSquareChannel* ch = &audio->ch2;
796	int cycles = _updateSquareChannel(ch);
797	mTimingSchedule(timing, &audio->ch2Event, audio->timingFactor * cycles - cyclesLate);
798}
799
800static void _updateChannel3(struct mTiming* timing, void* user, uint32_t cyclesLate) {
801	struct GBAudio* audio = user;
802	struct GBAudioWaveChannel* ch = &audio->ch3;
803	int i;
804	int volume;
805	switch (ch->volume) {
806	case 0:
807		volume = 0;
808		break;
809	case 1:
810		volume = 4;
811		break;
812	case 2:
813		volume = 2;
814		break;
815	case 3:
816		volume = 1;
817		break;
818	default:
819		volume = 3;
820		break;
821	}
822	int start;
823	int end;
824	switch (audio->style) {
825	case GB_AUDIO_DMG:
826	default:
827		++ch->window;
828		ch->window &= 0x1F;
829		ch->sample = ch->wavedata8[ch->window >> 1];
830		if (!(ch->window & 1)) {
831			ch->sample >>= 4;
832		}
833		ch->sample &= 0xF;
834		break;
835	case GB_AUDIO_GBA:
836		if (ch->size) {
837			start = 7;
838			end = 0;
839		} else if (ch->bank) {
840			start = 7;
841			end = 4;
842		} else {
843			start = 3;
844			end = 0;
845		}
846		uint32_t bitsCarry = ch->wavedata32[end] & 0x000000F0;
847		uint32_t bits;
848		for (i = start; i >= end; --i) {
849			bits = ch->wavedata32[i] & 0x000000F0;
850			ch->wavedata32[i] = ((ch->wavedata32[i] & 0x0F0F0F0F) << 4) | ((ch->wavedata32[i] & 0xF0F0F000) >> 12);
851			ch->wavedata32[i] |= bitsCarry << 20;
852			bitsCarry = bits;
853		}
854		ch->sample = bitsCarry >> 4;
855		break;
856	}
857	ch->sample -= 8;
858	ch->sample *= volume * 4;
859	audio->ch3.readable = true;
860	if (audio->style == GB_AUDIO_DMG) {
861		mTimingSchedule(timing, &audio->ch3Fade, 2 - cyclesLate);
862	}
863	int cycles = 2 * (2048 - ch->rate);
864	mTimingSchedule(timing, &audio->ch3Event, audio->timingFactor * cycles - cyclesLate);
865}
866static void _fadeChannel3(struct mTiming* timing, void* user, uint32_t cyclesLate) {
867	UNUSED(timing);
868	UNUSED(cyclesLate);
869	struct GBAudio* audio = user;
870	audio->ch3.readable = false;
871}
872
873static void _updateChannel4(struct mTiming* timing, void* user, uint32_t cyclesLate) {
874	struct GBAudio* audio = user;
875	struct GBAudioNoiseChannel* ch = &audio->ch4;
876	int lsb = ch->lfsr & 1;
877	ch->sample = lsb * 0x10 - 0x8;
878	ch->sample *= ch->envelope.currentVolume;
879	ch->lfsr >>= 1;
880	ch->lfsr ^= (lsb * 0x60) << (ch->power ? 0 : 8);
881	int cycles = ch->ratio ? 2 * ch->ratio : 1;
882	cycles <<= ch->frequency;
883	cycles *= 8;
884	mTimingSchedule(timing, &audio->ch4Event, audio->timingFactor * cycles - cyclesLate);
885}
886
887void GBAudioPSGSerialize(const struct GBAudio* audio, struct GBSerializedPSGState* state, uint32_t* flagsOut) {
888	uint32_t flags = 0;
889	uint32_t ch1Flags = 0;
890	uint32_t ch2Flags = 0;
891	uint32_t ch4Flags = 0;
892
893	flags = GBSerializedAudioFlagsSetFrame(flags, audio->frame);
894
895	flags = GBSerializedAudioFlagsSetCh1Volume(flags, audio->ch1.envelope.currentVolume);
896	flags = GBSerializedAudioFlagsSetCh1Dead(flags, audio->ch1.envelope.dead);
897	flags = GBSerializedAudioFlagsSetCh1Hi(flags, audio->ch1.control.hi);
898	flags = GBSerializedAudioFlagsSetCh1SweepEnabled(flags, audio->ch1.sweep.enable);
899	flags = GBSerializedAudioFlagsSetCh1SweepOccurred(flags, audio->ch1.sweep.occurred);
900	ch1Flags = GBSerializedAudioEnvelopeSetLength(ch1Flags, audio->ch1.control.length);
901	ch1Flags = GBSerializedAudioEnvelopeSetNextStep(ch1Flags, audio->ch1.envelope.nextStep);
902	ch1Flags = GBSerializedAudioEnvelopeSetFrequency(ch1Flags, audio->ch1.sweep.realFrequency);
903	STORE_32LE(ch1Flags, 0, &state->ch1.envelope);
904
905	flags = GBSerializedAudioFlagsSetCh2Volume(flags, audio->ch2.envelope.currentVolume);
906	flags = GBSerializedAudioFlagsSetCh2Dead(flags, audio->ch2.envelope.dead);
907	flags = GBSerializedAudioFlagsSetCh2Hi(flags, audio->ch2.control.hi);
908	ch2Flags = GBSerializedAudioEnvelopeSetLength(ch2Flags, audio->ch2.control.length);
909	ch2Flags = GBSerializedAudioEnvelopeSetNextStep(ch2Flags, audio->ch2.envelope.nextStep);
910	STORE_32LE(ch2Flags, 0, &state->ch2.envelope);
911
912	memcpy(state->ch3.wavebanks, audio->ch3.wavedata32, sizeof(state->ch3.wavebanks));
913	STORE_16LE(audio->ch3.length, 0, &state->ch3.length);
914
915	flags = GBSerializedAudioFlagsSetCh4Volume(flags, audio->ch4.envelope.currentVolume);
916	flags = GBSerializedAudioFlagsSetCh4Dead(flags, audio->ch4.envelope.dead);
917	STORE_32LE(audio->ch4.lfsr, 0, &state->ch4.lfsr);
918	ch4Flags = GBSerializedAudioEnvelopeSetLength(ch4Flags, audio->ch4.length);
919	ch4Flags = GBSerializedAudioEnvelopeSetNextStep(ch4Flags, audio->ch4.envelope.nextStep);
920	STORE_32LE(ch4Flags, 0, &state->ch4.envelope);
921
922	STORE_32LE(flags, 0, flagsOut);
923}
924
925void GBAudioPSGDeserialize(struct GBAudio* audio, const struct GBSerializedPSGState* state, const uint32_t* flagsIn) {
926	uint32_t flags;
927	uint32_t ch1Flags = 0;
928	uint32_t ch2Flags = 0;
929	uint32_t ch4Flags = 0;
930
931	audio->playingCh1 = !!(*audio->nr52 & 0x0001);
932	audio->playingCh2 = !!(*audio->nr52 & 0x0002);
933	audio->playingCh3 = !!(*audio->nr52 & 0x0004);
934	audio->playingCh4 = !!(*audio->nr52 & 0x0008);
935	audio->enable = GBAudioEnableGetEnable(*audio->nr52);
936
937	LOAD_32LE(flags, 0, flagsIn);
938	LOAD_32LE(ch1Flags, 0, &state->ch1.envelope);
939	audio->ch1.envelope.currentVolume = GBSerializedAudioFlagsGetCh1Volume(flags);
940	audio->ch1.envelope.dead = GBSerializedAudioFlagsGetCh1Dead(flags);
941	audio->ch1.control.hi = GBSerializedAudioFlagsGetCh1Hi(flags);
942	audio->ch1.sweep.enable = GBSerializedAudioFlagsGetCh1SweepEnabled(flags);
943	audio->ch1.sweep.occurred = GBSerializedAudioFlagsGetCh1SweepOccurred(flags);
944	audio->ch1.control.length = GBSerializedAudioEnvelopeGetLength(ch1Flags);
945	audio->ch1.envelope.nextStep = GBSerializedAudioEnvelopeGetNextStep(ch1Flags);
946	audio->ch1.sweep.realFrequency = GBSerializedAudioEnvelopeGetFrequency(ch1Flags);
947
948	LOAD_32LE(ch2Flags, 0, &state->ch2.envelope);
949	audio->ch2.envelope.currentVolume = GBSerializedAudioFlagsGetCh2Volume(flags);
950	audio->ch2.envelope.dead = GBSerializedAudioFlagsGetCh2Dead(flags);
951	audio->ch2.control.hi = GBSerializedAudioFlagsGetCh2Hi(flags);
952	audio->ch2.control.length = GBSerializedAudioEnvelopeGetLength(ch2Flags);
953	audio->ch2.envelope.nextStep = GBSerializedAudioEnvelopeGetNextStep(ch2Flags);
954
955	audio->ch3.readable = GBSerializedAudioFlagsGetCh3Readable(flags);
956	// TODO: Big endian?
957	memcpy(audio->ch3.wavedata32, state->ch3.wavebanks, sizeof(audio->ch3.wavedata32));
958	LOAD_16LE(audio->ch3.length, 0, &state->ch3.length);
959
960	LOAD_32LE(ch4Flags, 0, &state->ch4.envelope);
961	audio->ch4.envelope.currentVolume = GBSerializedAudioFlagsGetCh4Volume(flags);
962	audio->ch4.envelope.dead = GBSerializedAudioFlagsGetCh4Dead(flags);
963	audio->ch4.length = GBSerializedAudioEnvelopeGetLength(ch4Flags);
964	audio->ch4.envelope.nextStep = GBSerializedAudioEnvelopeGetNextStep(ch4Flags);
965	LOAD_32LE(audio->ch4.lfsr, 0, &state->ch4.lfsr);
966}
967
968void GBAudioSerialize(const struct GBAudio* audio, struct GBSerializedState* state) {
969	GBAudioPSGSerialize(audio, &state->audio.psg, &state->audio.flags);
970}
971
972void GBAudioDeserialize(struct GBAudio* audio, const struct GBSerializedState* state) {
973	GBAudioPSGDeserialize(audio, &state->audio.psg, &state->audio.flags);
974}