src/gb/gb.c (view raw)
1/* Copyright (c) 2013-2016 Jeffrey Pfau
2 *
3 * This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
6#include "gb.h"
7
8#include "gb/io.h"
9#include "gb/mbc.h"
10
11#include "core/core.h"
12#include "core/cheats.h"
13#include "util/crc32.h"
14#include "util/memory.h"
15#include "util/math.h"
16#include "util/patch.h"
17#include "util/vfs.h"
18
19#define CLEANUP_THRESHOLD 15
20
21const uint32_t CGB_LR35902_FREQUENCY = 0x800000;
22const uint32_t SGB_LR35902_FREQUENCY = 0x418B1E;
23
24const uint32_t GB_COMPONENT_MAGIC = 0x400000;
25
26#define DMG_BIOS_CHECKSUM 0xC2F5CC97
27#define DMG_2_BIOS_CHECKSUM 0x59C8598E
28#define CGB_BIOS_CHECKSUM 0x41884E46
29
30mLOG_DEFINE_CATEGORY(GB, "GB");
31
32static void GBInit(void* cpu, struct mCPUComponent* component);
33static void GBInterruptHandlerInit(struct LR35902InterruptHandler* irqh);
34static void GBProcessEvents(struct LR35902Core* cpu);
35static void GBSetInterrupts(struct LR35902Core* cpu, bool enable);
36static void GBIllegal(struct LR35902Core* cpu);
37static void GBStop(struct LR35902Core* cpu);
38
39#ifdef _3DS
40extern uint32_t* romBuffer;
41extern size_t romBufferSize;
42#endif
43
44void GBCreate(struct GB* gb) {
45 gb->d.id = GB_COMPONENT_MAGIC;
46 gb->d.init = GBInit;
47 gb->d.deinit = 0;
48}
49
50static void GBInit(void* cpu, struct mCPUComponent* component) {
51 struct GB* gb = (struct GB*) component;
52 gb->cpu = cpu;
53 gb->sync = NULL;
54
55 GBInterruptHandlerInit(&gb->cpu->irqh);
56 GBMemoryInit(gb);
57
58 gb->video.p = gb;
59 GBVideoInit(&gb->video);
60
61 gb->audio.p = gb;
62 GBAudioInit(&gb->audio, 2048, &gb->memory.io[REG_NR52], GB_AUDIO_DMG); // TODO: Remove magic constant
63
64 gb->sio.p = gb;
65 GBSIOInit(&gb->sio);
66
67 gb->timer.p = gb;
68
69 gb->model = GB_MODEL_AUTODETECT;
70
71 gb->biosVf = 0;
72 gb->romVf = 0;
73 gb->sramVf = 0;
74
75 gb->pristineRom = 0;
76 gb->pristineRomSize = 0;
77 gb->yankedRomSize = 0;
78
79 gb->coreCallbacks = NULL;
80 gb->stream = NULL;
81}
82
83bool GBLoadROM(struct GB* gb, struct VFile* vf) {
84 if (!vf) {
85 return false;
86 }
87 GBUnloadROM(gb);
88 gb->romVf = vf;
89 gb->pristineRomSize = vf->size(vf);
90 vf->seek(vf, 0, SEEK_SET);
91#ifdef _3DS
92 gb->pristineRom = 0;
93 if (gb->pristineRomSize <= romBufferSize) {
94 gb->pristineRom = romBuffer;
95 vf->read(vf, romBuffer, gb->pristineRomSize);
96 }
97#else
98 gb->pristineRom = vf->map(vf, gb->pristineRomSize, MAP_READ);
99#endif
100 if (!gb->pristineRom) {
101 return false;
102 }
103 gb->yankedRomSize = 0;
104 gb->memory.rom = gb->pristineRom;
105 gb->memory.romBase = gb->memory.rom;
106 gb->memory.romSize = gb->pristineRomSize;
107 gb->romCrc32 = doCrc32(gb->memory.rom, gb->memory.romSize);
108
109 if (gb->cpu) {
110 struct LR35902Core* cpu = gb->cpu;
111 cpu->memory.setActiveRegion(cpu, cpu->pc);
112 }
113
114 // TODO: error check
115 return true;
116}
117
118bool GBLoadSave(struct GB* gb, struct VFile* vf) {
119 gb->sramVf = vf;
120 gb->sramRealVf = vf;
121 return vf;
122}
123
124static void GBSramDeinit(struct GB* gb) {
125 if (gb->sramVf) {
126 gb->sramVf->unmap(gb->sramVf, gb->memory.sram, gb->sramSize);
127 if (gb->memory.mbcType == GB_MBC3_RTC && gb->sramVf == gb->sramRealVf) {
128 GBMBCRTCWrite(gb);
129 }
130 gb->sramVf = NULL;
131 } else if (gb->memory.sram) {
132 mappedMemoryFree(gb->memory.sram, gb->sramSize);
133 }
134 gb->memory.sram = 0;
135}
136
137void GBResizeSram(struct GB* gb, size_t size) {
138 if (gb->memory.sram && size <= gb->sramSize) {
139 return;
140 }
141 mLOG(GB, INFO, "Resizing SRAM to %"PRIz"u bytes", size);
142 struct VFile* vf = gb->sramVf;
143 if (vf) {
144 if (vf == gb->sramRealVf) {
145 ssize_t vfSize = vf->size(vf);
146 if (vfSize >= 0 && (size_t) vfSize < size) {
147 uint8_t extdataBuffer[0x100];
148 if (vfSize & 0xFF) {
149 vf->seek(vf, -(vfSize & 0xFF), SEEK_END);
150 vf->read(vf, extdataBuffer, vfSize & 0xFF);
151 }
152 if (gb->memory.sram) {
153 vf->unmap(vf, gb->memory.sram, gb->sramSize);
154 }
155 vf->truncate(vf, size + (vfSize & 0xFF));
156 if (vfSize & 0xFF) {
157 vf->seek(vf, size, SEEK_SET);
158 vf->write(vf, extdataBuffer, vfSize & 0xFF);
159 }
160 gb->memory.sram = vf->map(vf, size, MAP_WRITE);
161 memset(&gb->memory.sram[gb->sramSize], 0xFF, size - gb->sramSize);
162 } else if (size > gb->sramSize || !gb->memory.sram) {
163 if (gb->memory.sram) {
164 vf->unmap(vf, gb->memory.sram, gb->sramSize);
165 }
166 gb->memory.sram = vf->map(vf, size, MAP_WRITE);
167 }
168 } else {
169 if (gb->memory.sram) {
170 vf->unmap(vf, gb->memory.sram, gb->sramSize);
171 }
172 gb->memory.sram = vf->map(vf, size, MAP_READ);
173 }
174 if (gb->memory.sram == (void*) -1) {
175 gb->memory.sram = NULL;
176 }
177 } else {
178 uint8_t* newSram = anonymousMemoryMap(size);
179 if (gb->memory.sram) {
180 if (size > gb->sramSize) {
181 memcpy(newSram, gb->memory.sram, gb->sramSize);
182 memset(&newSram[gb->sramSize], 0xFF, size - gb->sramSize);
183 } else {
184 memcpy(newSram, gb->memory.sram, size);
185 }
186 mappedMemoryFree(gb->memory.sram, gb->sramSize);
187 } else {
188 memset(newSram, 0xFF, size);
189 }
190 gb->memory.sram = newSram;
191 }
192 if (gb->sramSize < size) {
193 gb->sramSize = size;
194 }
195}
196
197void GBSramClean(struct GB* gb, uint32_t frameCount) {
198 // TODO: Share with GBASavedataClean
199 if (!gb->sramVf || gb->sramVf != gb->sramRealVf) {
200 return;
201 }
202 if (gb->sramDirty & GB_SRAM_DIRT_NEW) {
203 gb->sramDirtAge = frameCount;
204 gb->sramDirty &= ~GB_SRAM_DIRT_NEW;
205 if (!(gb->sramDirty & GB_SRAM_DIRT_SEEN)) {
206 gb->sramDirty |= GB_SRAM_DIRT_SEEN;
207 }
208 } else if ((gb->sramDirty & GB_SRAM_DIRT_SEEN) && frameCount - gb->sramDirtAge > CLEANUP_THRESHOLD) {
209 if (gb->memory.mbcType == GB_MBC3_RTC) {
210 GBMBCRTCWrite(gb);
211 }
212 gb->sramDirty = 0;
213 if (gb->memory.sram && gb->sramVf->sync(gb->sramVf, gb->memory.sram, gb->sramSize)) {
214 mLOG(GB_MEM, INFO, "Savedata synced");
215 } else {
216 mLOG(GB_MEM, INFO, "Savedata failed to sync!");
217 }
218 }
219}
220
221void GBSavedataMask(struct GB* gb, struct VFile* vf, bool writeback) {
222 GBSramDeinit(gb);
223 gb->sramVf = vf;
224 gb->sramMaskWriteback = writeback;
225 gb->memory.sram = vf->map(vf, gb->sramSize, MAP_READ);
226}
227
228void GBSavedataUnmask(struct GB* gb) {
229 if (gb->sramVf == gb->sramRealVf) {
230 return;
231 }
232 struct VFile* vf = gb->sramVf;
233 GBSramDeinit(gb);
234 gb->sramVf = gb->sramRealVf;
235 gb->memory.sram = gb->sramVf->map(gb->sramVf, gb->sramSize, MAP_WRITE);
236 if (gb->sramMaskWriteback) {
237 vf->read(vf, gb->memory.sram, gb->sramSize);
238 }
239 vf->close(vf);
240}
241
242void GBUnloadROM(struct GB* gb) {
243 // TODO: Share with GBAUnloadROM
244 if (gb->memory.rom && gb->pristineRom != gb->memory.rom) {
245 if (gb->yankedRomSize) {
246 gb->yankedRomSize = 0;
247 }
248 mappedMemoryFree(gb->memory.rom, GB_SIZE_CART_MAX);
249 gb->memory.rom = gb->pristineRom;
250 }
251 if (gb->memory.rom && gb->memory.romBase != gb->memory.rom) {
252 free(gb->memory.romBase);
253 }
254 gb->memory.rom = 0;
255
256 if (gb->romVf) {
257#ifndef _3DS
258 gb->romVf->unmap(gb->romVf, gb->pristineRom, gb->pristineRomSize);
259#endif
260 gb->romVf->close(gb->romVf);
261 gb->romVf = 0;
262 }
263 gb->pristineRom = 0;
264
265 GBSavedataUnmask(gb);
266 GBSramDeinit(gb);
267 if (gb->sramRealVf) {
268 gb->sramRealVf->close(gb->sramRealVf);
269 }
270 gb->sramRealVf = NULL;
271 gb->sramVf = NULL;
272}
273
274void GBLoadBIOS(struct GB* gb, struct VFile* vf) {
275 gb->biosVf = vf;
276}
277
278void GBApplyPatch(struct GB* gb, struct Patch* patch) {
279 size_t patchedSize = patch->outputSize(patch, gb->memory.romSize);
280 if (!patchedSize) {
281 return;
282 }
283 if (patchedSize > GB_SIZE_CART_MAX) {
284 patchedSize = GB_SIZE_CART_MAX;
285 }
286 gb->memory.rom = anonymousMemoryMap(GB_SIZE_CART_MAX);
287 if (!patch->applyPatch(patch, gb->pristineRom, gb->pristineRomSize, gb->memory.rom, patchedSize)) {
288 mappedMemoryFree(gb->memory.rom, patchedSize);
289 gb->memory.rom = gb->pristineRom;
290 return;
291 }
292 gb->memory.romSize = patchedSize;
293 gb->romCrc32 = doCrc32(gb->memory.rom, gb->memory.romSize);
294}
295
296void GBDestroy(struct GB* gb) {
297 GBUnloadROM(gb);
298
299 if (gb->biosVf) {
300 gb->biosVf->close(gb->biosVf);
301 gb->biosVf = 0;
302 }
303
304 GBMemoryDeinit(gb);
305 GBVideoDeinit(&gb->video);
306 GBSIODeinit(&gb->sio);
307}
308
309void GBInterruptHandlerInit(struct LR35902InterruptHandler* irqh) {
310 irqh->reset = GBReset;
311 irqh->processEvents = GBProcessEvents;
312 irqh->setInterrupts = GBSetInterrupts;
313 irqh->hitIllegal = GBIllegal;
314 irqh->stop = GBStop;
315 irqh->halt = GBHalt;
316}
317
318static uint32_t _GBBiosCRC32(struct VFile* vf) {
319 ssize_t size = vf->size(vf);
320 if (size <= 0 || size > GB_SIZE_CART_BANK0) {
321 return 0;
322 }
323 void* bios = vf->map(vf, size, MAP_READ);
324 uint32_t biosCrc = doCrc32(bios, size);
325 vf->unmap(vf, bios, size);
326 return biosCrc;
327}
328
329bool GBIsBIOS(struct VFile* vf) {
330 switch (_GBBiosCRC32(vf)) {
331 case DMG_BIOS_CHECKSUM:
332 case DMG_2_BIOS_CHECKSUM:
333 case CGB_BIOS_CHECKSUM:
334 return true;
335 default:
336 return false;
337 }
338}
339
340void GBReset(struct LR35902Core* cpu) {
341 struct GB* gb = (struct GB*) cpu->master;
342 GBDetectModel(gb);
343 if (gb->biosVf) {
344 if (!GBIsBIOS(gb->biosVf)) {
345 gb->biosVf->close(gb->biosVf);
346 gb->biosVf = NULL;
347 } else {
348 gb->biosVf->seek(gb->biosVf, 0, SEEK_SET);
349 gb->memory.romBase = malloc(GB_SIZE_CART_BANK0);
350 ssize_t size = gb->biosVf->read(gb->biosVf, gb->memory.romBase, GB_SIZE_CART_BANK0);
351 memcpy(&gb->memory.romBase[size], &gb->memory.rom[size], GB_SIZE_CART_BANK0 - size);
352 if (size > 0x100) {
353 memcpy(&gb->memory.romBase[0x100], &gb->memory.rom[0x100], sizeof(struct GBCartridge));
354 }
355
356 cpu->a = 0;
357 cpu->f.packed = 0;
358 cpu->c = 0;
359 cpu->e = 0;
360 cpu->h = 0;
361 cpu->l = 0;
362 cpu->sp = 0;
363 cpu->pc = 0;
364 }
365 }
366
367 cpu->b = 0;
368 cpu->d = 0;
369
370 if (!gb->biosVf) {
371 switch (gb->model) {
372 case GB_MODEL_DMG:
373 // TODO: SGB
374 case GB_MODEL_SGB:
375 case GB_MODEL_AUTODETECT: // Silence warnings
376 gb->model = GB_MODEL_DMG;
377 cpu->a = 1;
378 cpu->f.packed = 0xB0;
379 cpu->c = 0x13;
380 cpu->e = 0xD8;
381 cpu->h = 1;
382 cpu->l = 0x4D;
383 break;
384 case GB_MODEL_AGB:
385 cpu->b = 1;
386 // Fall through
387 case GB_MODEL_CGB:
388 cpu->a = 0x11;
389 cpu->f.packed = 0x80;
390 cpu->c = 0;
391 cpu->e = 0x08;
392 cpu->h = 0;
393 cpu->l = 0x7C;
394 break;
395 }
396
397 cpu->sp = 0xFFFE;
398 cpu->pc = 0x100;
399 }
400
401 gb->eiPending = INT_MAX;
402 gb->doubleSpeed = 0;
403
404 cpu->memory.setActiveRegion(cpu, cpu->pc);
405
406 if (gb->yankedRomSize) {
407 gb->memory.romSize = gb->yankedRomSize;
408 gb->yankedRomSize = 0;
409 }
410 GBMemoryReset(gb);
411 GBVideoReset(&gb->video);
412 GBTimerReset(&gb->timer);
413 GBAudioReset(&gb->audio);
414 GBIOReset(gb);
415 GBSIOReset(&gb->sio);
416
417 GBSavedataUnmask(gb);
418}
419
420void GBDetectModel(struct GB* gb) {
421 if (gb->model != GB_MODEL_AUTODETECT) {
422 return;
423 }
424 if (gb->biosVf) {
425 switch (_GBBiosCRC32(gb->biosVf)) {
426 case DMG_BIOS_CHECKSUM:
427 case DMG_2_BIOS_CHECKSUM:
428 gb->model = GB_MODEL_DMG;
429 break;
430 case CGB_BIOS_CHECKSUM:
431 gb->model = GB_MODEL_CGB;
432 break;
433 default:
434 gb->biosVf->close(gb->biosVf);
435 gb->biosVf = NULL;
436 }
437 }
438 if (gb->model == GB_MODEL_AUTODETECT && gb->memory.rom) {
439 const struct GBCartridge* cart = (const struct GBCartridge*) &gb->memory.rom[0x100];
440 if (cart->cgb & 0x80) {
441 gb->model = GB_MODEL_CGB;
442 } else {
443 gb->model = GB_MODEL_DMG;
444 }
445 }
446
447 switch (gb->model) {
448 case GB_MODEL_DMG:
449 case GB_MODEL_SGB:
450 case GB_MODEL_AUTODETECT: //Silence warnings
451 gb->audio.style = GB_AUDIO_DMG;
452 break;
453 case GB_MODEL_AGB:
454 case GB_MODEL_CGB:
455 gb->audio.style = GB_AUDIO_CGB;
456 break;
457 }
458}
459
460void GBUpdateIRQs(struct GB* gb) {
461 int irqs = gb->memory.ie & gb->memory.io[REG_IF];
462 if (!irqs) {
463 return;
464 }
465 gb->cpu->halted = false;
466
467 if (!gb->memory.ime || gb->cpu->irqPending) {
468 return;
469 }
470
471 if (irqs & (1 << GB_IRQ_VBLANK)) {
472 LR35902RaiseIRQ(gb->cpu, GB_VECTOR_VBLANK);
473 gb->memory.io[REG_IF] &= ~(1 << GB_IRQ_VBLANK);
474 return;
475 }
476 if (irqs & (1 << GB_IRQ_LCDSTAT)) {
477 LR35902RaiseIRQ(gb->cpu, GB_VECTOR_LCDSTAT);
478 gb->memory.io[REG_IF] &= ~(1 << GB_IRQ_LCDSTAT);
479 return;
480 }
481 if (irqs & (1 << GB_IRQ_TIMER)) {
482 LR35902RaiseIRQ(gb->cpu, GB_VECTOR_TIMER);
483 gb->memory.io[REG_IF] &= ~(1 << GB_IRQ_TIMER);
484 return;
485 }
486 if (irqs & (1 << GB_IRQ_SIO)) {
487 LR35902RaiseIRQ(gb->cpu, GB_VECTOR_SIO);
488 gb->memory.io[REG_IF] &= ~(1 << GB_IRQ_SIO);
489 return;
490 }
491 if (irqs & (1 << GB_IRQ_KEYPAD)) {
492 LR35902RaiseIRQ(gb->cpu, GB_VECTOR_KEYPAD);
493 gb->memory.io[REG_IF] &= ~(1 << GB_IRQ_KEYPAD);
494 }
495}
496
497void GBProcessEvents(struct LR35902Core* cpu) {
498 struct GB* gb = (struct GB*) cpu->master;
499 do {
500 int32_t cycles = cpu->nextEvent;
501 int32_t nextEvent = INT_MAX;
502 int32_t testEvent;
503
504 if (gb->eiPending != INT_MAX) {
505 gb->eiPending -= cycles;
506 if (gb->eiPending <= 0) {
507 gb->memory.ime = true;
508 GBUpdateIRQs(gb);
509 gb->eiPending = INT_MAX;
510 } else {
511 nextEvent = gb->eiPending;
512 }
513 }
514
515 testEvent = GBVideoProcessEvents(&gb->video, cycles >> gb->doubleSpeed);
516 if (testEvent != INT_MAX) {
517 testEvent <<= gb->doubleSpeed;
518 if (testEvent < nextEvent) {
519 nextEvent = testEvent;
520 }
521 }
522
523 testEvent = GBAudioProcessEvents(&gb->audio, cycles >> gb->doubleSpeed);
524 if (testEvent != INT_MAX) {
525 testEvent <<= gb->doubleSpeed;
526 if (testEvent < nextEvent) {
527 nextEvent = testEvent;
528 }
529 }
530
531 testEvent = GBTimerProcessEvents(&gb->timer, cycles);
532 if (testEvent < nextEvent) {
533 nextEvent = testEvent;
534 }
535
536 testEvent = GBSIOProcessEvents(&gb->sio, cycles);
537 if (testEvent < nextEvent) {
538 nextEvent = testEvent;
539 }
540
541 testEvent = GBMemoryProcessEvents(gb, cycles);
542 if (testEvent < nextEvent) {
543 nextEvent = testEvent;
544 }
545
546 cpu->cycles -= cycles;
547 cpu->nextEvent = nextEvent;
548
549 if (cpu->halted) {
550 cpu->cycles = cpu->nextEvent;
551 if (!gb->memory.ie || !gb->memory.ime) {
552 break;
553 }
554 }
555 } while (cpu->cycles >= cpu->nextEvent);
556}
557
558void GBSetInterrupts(struct LR35902Core* cpu, bool enable) {
559 struct GB* gb = (struct GB*) cpu->master;
560 if (!enable) {
561 gb->memory.ime = enable;
562 gb->eiPending = INT_MAX;
563 GBUpdateIRQs(gb);
564 } else {
565 if (cpu->nextEvent > cpu->cycles + 4) {
566 cpu->nextEvent = cpu->cycles + 4;
567 }
568 gb->eiPending = cpu->cycles + 4;
569 }
570}
571
572void GBHalt(struct LR35902Core* cpu) {
573 if (!cpu->irqPending) {
574 cpu->cycles = cpu->nextEvent;
575 cpu->halted = true;
576 }
577}
578
579void GBStop(struct LR35902Core* cpu) {
580 struct GB* gb = (struct GB*) cpu->master;
581 if (cpu->bus) {
582 mLOG(GB, GAME_ERROR, "Hit illegal stop at address %04X:%02X\n", cpu->pc, cpu->bus);
583 }
584 if (gb->memory.io[REG_KEY1] & 1) {
585 gb->doubleSpeed ^= 1;
586 gb->memory.io[REG_KEY1] = 0;
587 gb->memory.io[REG_KEY1] |= gb->doubleSpeed << 7;
588 } else if (cpu->bus) {
589 if (cpu->components && cpu->components[CPU_COMPONENT_DEBUGGER]) {
590 struct mDebuggerEntryInfo info = {
591 .address = cpu->pc - 1,
592 .opcode = 0x1000 | cpu->bus
593 };
594 mDebuggerEnter((struct mDebugger*) cpu->components[CPU_COMPONENT_DEBUGGER], DEBUGGER_ENTER_ILLEGAL_OP, &info);
595 }
596 // Hang forever
597 gb->memory.ime = 0;
598 cpu->pc -= 2;
599 }
600 // TODO: Actually stop
601}
602
603void GBIllegal(struct LR35902Core* cpu) {
604 struct GB* gb = (struct GB*) cpu->master;
605 mLOG(GB, GAME_ERROR, "Hit illegal opcode at address %04X:%02X\n", cpu->pc, cpu->bus);
606 if (cpu->components && cpu->components[CPU_COMPONENT_DEBUGGER]) {
607 struct mDebuggerEntryInfo info = {
608 .address = cpu->pc,
609 .opcode = cpu->bus
610 };
611 mDebuggerEnter((struct mDebugger*) cpu->components[CPU_COMPONENT_DEBUGGER], DEBUGGER_ENTER_ILLEGAL_OP, &info);
612 }
613 // Hang forever
614 gb->memory.ime = 0;
615 --cpu->pc;
616}
617
618bool GBIsROM(struct VFile* vf) {
619 vf->seek(vf, 0x104, SEEK_SET);
620 uint8_t header[4];
621 static const uint8_t knownHeader[4] = { 0xCE, 0xED, 0x66, 0x66};
622
623 if (vf->read(vf, &header, sizeof(header)) < (ssize_t) sizeof(header)) {
624 return false;
625 }
626 if (memcmp(header, knownHeader, sizeof(header))) {
627 return false;
628 }
629 return true;
630}
631
632void GBGetGameTitle(const struct GB* gb, char* out) {
633 const struct GBCartridge* cart = NULL;
634 if (gb->memory.rom) {
635 cart = (const struct GBCartridge*) &gb->memory.rom[0x100];
636 }
637 if (gb->pristineRom) {
638 cart = (const struct GBCartridge*) &((uint8_t*) gb->pristineRom)[0x100];
639 }
640 if (!cart) {
641 return;
642 }
643 if (cart->oldLicensee != 0x33) {
644 memcpy(out, cart->titleLong, 16);
645 } else {
646 memcpy(out, cart->titleShort, 11);
647 }
648}
649
650void GBGetGameCode(const struct GB* gb, char* out) {
651 memset(out, 0, 8);
652 const struct GBCartridge* cart = NULL;
653 if (gb->memory.rom) {
654 cart = (const struct GBCartridge*) &gb->memory.rom[0x100];
655 }
656 if (gb->pristineRom) {
657 cart = (const struct GBCartridge*) &((uint8_t*) gb->pristineRom)[0x100];
658 }
659 if (!cart) {
660 return;
661 }
662 if (cart->cgb == 0xC0) {
663 memcpy(out, "CGB-????", 8);
664 } else {
665 memcpy(out, "DMG-????", 8);
666 }
667 if (cart->oldLicensee == 0x33) {
668 memcpy(&out[4], cart->maker, 4);
669 }
670}
671
672void GBFrameEnded(struct GB* gb) {
673 GBSramClean(gb, gb->video.frameCounter);
674
675 if (gb->cpu->components && gb->cpu->components[CPU_COMPONENT_CHEAT_DEVICE]) {
676 struct mCheatDevice* device = (struct mCheatDevice*) gb->cpu->components[CPU_COMPONENT_CHEAT_DEVICE];
677 size_t i;
678 for (i = 0; i < mCheatSetsSize(&device->cheats); ++i) {
679 struct mCheatSet* cheats = *mCheatSetsGetPointer(&device->cheats, i);
680 mCheatRefresh(device, cheats);
681 }
682 }
683}