all repos — mgba @ 437a634ed5705c669afbb23bb0654dd738d3954b

mGBA Game Boy Advance Emulator

src/gba/audio.c (view raw)

  1/* Copyright (c) 2013-2015 Jeffrey Pfau
  2 *
  3 * This Source Code Form is subject to the terms of the Mozilla Public
  4 * License, v. 2.0. If a copy of the MPL was not distributed with this
  5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  6#include "audio.h"
  7
  8#include "gba/gba.h"
  9#include "gba/io.h"
 10#include "gba/serialize.h"
 11#include "gba/supervisor/thread.h"
 12#include "gba/video.h"
 13
 14const unsigned GBA_AUDIO_SAMPLES = 2048;
 15const unsigned BLIP_BUFFER_SIZE = 0x4000;
 16const unsigned GBA_AUDIO_FIFO_SIZE = 8 * sizeof(int32_t);
 17const int GBA_AUDIO_VOLUME_MAX = 0x100;
 18#define SWEEP_CYCLES (GBA_ARM7TDMI_FREQUENCY / 128)
 19
 20#if RESAMPLE_LIBRARY == RESAMPLE_BLIP_BUF
 21static const int CLOCKS_PER_FRAME = 0x400;
 22#endif
 23
 24static bool _writeEnvelope(struct GBAAudioEnvelope* envelope, uint16_t value);
 25static int32_t _updateSquareChannel(struct GBAAudioSquareControl* envelope, int duty);
 26static void _updateEnvelope(struct GBAAudioEnvelope* envelope);
 27static bool _updateSweep(struct GBAAudioChannel1* ch);
 28static int32_t _updateChannel1(struct GBAAudioChannel1* ch);
 29static int32_t _updateChannel2(struct GBAAudioChannel2* ch);
 30static int32_t _updateChannel3(struct GBAAudioChannel3* ch);
 31static int32_t _updateChannel4(struct GBAAudioChannel4* ch);
 32static int _applyBias(struct GBAAudio* audio, int sample);
 33static void _sample(struct GBAAudio* audio);
 34
 35void GBAAudioInit(struct GBAAudio* audio, size_t samples) {
 36	audio->samples = samples;
 37#if RESAMPLE_LIBRARY != RESAMPLE_BLIP_BUF
 38	CircleBufferInit(&audio->left, samples * sizeof(int16_t));
 39	CircleBufferInit(&audio->right, samples * sizeof(int16_t));
 40#else
 41	audio->left = blip_new(BLIP_BUFFER_SIZE);
 42	audio->right = blip_new(BLIP_BUFFER_SIZE);
 43	// Guess too large; we hang producing extra samples if we guess too low
 44	blip_set_rates(audio->left,  GBA_ARM7TDMI_FREQUENCY, 96000);
 45	blip_set_rates(audio->right, GBA_ARM7TDMI_FREQUENCY, 96000);
 46#endif
 47	CircleBufferInit(&audio->chA.fifo, GBA_AUDIO_FIFO_SIZE);
 48	CircleBufferInit(&audio->chB.fifo, GBA_AUDIO_FIFO_SIZE);
 49
 50	audio->forceDisableCh[0] = false;
 51	audio->forceDisableCh[1] = false;
 52	audio->forceDisableCh[2] = false;
 53	audio->forceDisableCh[3] = false;
 54	audio->forceDisableChA = false;
 55	audio->forceDisableChB = false;
 56	audio->masterVolume = GBA_AUDIO_VOLUME_MAX;
 57}
 58
 59void GBAAudioReset(struct GBAAudio* audio) {
 60	audio->nextEvent = 0;
 61	audio->nextCh1 = 0;
 62	audio->nextCh2 = 0;
 63	audio->nextCh3 = 0;
 64	audio->nextCh4 = 0;
 65	audio->ch1 = (struct GBAAudioChannel1) { .envelope = { .nextStep = INT_MAX }, .nextSweep = INT_MAX };
 66	audio->ch2 = (struct GBAAudioChannel2) { .envelope = { .nextStep = INT_MAX } };
 67	audio->ch3 = (struct GBAAudioChannel3) { .bank = { .bank = 0 } };
 68	audio->ch4 = (struct GBAAudioChannel4) { .envelope = { .nextStep = INT_MAX } };
 69	audio->chA.dmaSource = 1;
 70	audio->chB.dmaSource = 2;
 71	audio->chA.sample = 0;
 72	audio->chB.sample = 0;
 73	audio->eventDiff = 0;
 74	audio->nextSample = 0;
 75	audio->sampleRate = 0x8000;
 76	audio->soundbias = 0x200;
 77	audio->volumeRight = 0;
 78	audio->volumeLeft = 0;
 79	audio->ch1Right = false;
 80	audio->ch2Right = false;
 81	audio->ch3Right = false;
 82	audio->ch4Right = false;
 83	audio->ch1Left = false;
 84	audio->ch2Left = false;
 85	audio->ch3Left = false;
 86	audio->ch4Left = false;
 87	audio->volume = 0;
 88	audio->volumeChA = false;
 89	audio->volumeChB = false;
 90	audio->chARight = false;
 91	audio->chALeft = false;
 92	audio->chATimer = false;
 93	audio->chBRight = false;
 94	audio->chBLeft = false;
 95	audio->chBTimer = false;
 96	audio->playingCh1 = false;
 97	audio->playingCh2 = false;
 98	audio->playingCh3 = false;
 99	audio->playingCh4 = false;
100	audio->enable = false;
101	audio->sampleInterval = GBA_ARM7TDMI_FREQUENCY / audio->sampleRate;
102
103#if RESAMPLE_LIBRARY != RESAMPLE_BLIP_BUF
104	CircleBufferClear(&audio->left);
105	CircleBufferClear(&audio->right);
106#else
107	blip_clear(audio->left);
108	blip_clear(audio->right);
109	audio->clock = 0;
110#endif
111	CircleBufferClear(&audio->chA.fifo);
112	CircleBufferClear(&audio->chB.fifo);
113}
114
115void GBAAudioDeinit(struct GBAAudio* audio) {
116#if RESAMPLE_LIBRARY != RESAMPLE_BLIP_BUF
117	CircleBufferDeinit(&audio->left);
118	CircleBufferDeinit(&audio->right);
119#else
120	blip_delete(audio->left);
121	blip_delete(audio->right);
122#endif
123	CircleBufferDeinit(&audio->chA.fifo);
124	CircleBufferDeinit(&audio->chB.fifo);
125}
126
127void GBAAudioResizeBuffer(struct GBAAudio* audio, size_t samples) {
128	GBASyncLockAudio(audio->p->sync);
129	audio->samples = samples;
130#if RESAMPLE_LIBRARY != RESAMPLE_BLIP_BUF
131	size_t oldCapacity = audio->left.capacity;
132	int16_t* buffer = malloc(oldCapacity);
133	int16_t dummy;
134	size_t read;
135	size_t i;
136
137	read = CircleBufferDump(&audio->left, buffer, oldCapacity);
138	CircleBufferDeinit(&audio->left);
139	CircleBufferInit(&audio->left, samples * sizeof(int16_t));
140	for (i = 0; i * sizeof(int16_t) < read; ++i) {
141		if (!CircleBufferWrite16(&audio->left, buffer[i])) {
142			CircleBufferRead16(&audio->left, &dummy);
143			CircleBufferWrite16(&audio->left, buffer[i]);
144		}
145	}
146
147	read = CircleBufferDump(&audio->right, buffer, oldCapacity);
148	CircleBufferDeinit(&audio->right);
149	CircleBufferInit(&audio->right, samples * sizeof(int16_t));
150	for (i = 0; i * sizeof(int16_t) < read; ++i) {
151		if (!CircleBufferWrite16(&audio->right, buffer[i])) {
152			CircleBufferRead16(&audio->right, &dummy);
153			CircleBufferWrite16(&audio->right, buffer[i]);
154		}
155	}
156
157	free(buffer);
158#else
159	blip_clear(audio->left);
160	blip_clear(audio->right);
161	audio->clock = 0;
162#endif
163
164	GBASyncConsumeAudio(audio->p->sync);
165}
166
167int32_t GBAAudioProcessEvents(struct GBAAudio* audio, int32_t cycles) {
168	audio->nextEvent -= cycles;
169	audio->eventDiff += cycles;
170	if (audio->nextEvent <= 0) {
171		audio->nextEvent = INT_MAX;
172		if (audio->enable) {
173			if (audio->playingCh1 && !audio->ch1.envelope.dead) {
174				audio->nextCh1 -= audio->eventDiff;
175				if (audio->ch1.envelope.nextStep != INT_MAX) {
176					audio->ch1.envelope.nextStep -= audio->eventDiff;
177					if (audio->ch1.envelope.nextStep <= 0) {
178						int8_t sample = audio->ch1.control.hi * 0x10 - 0x8;
179						_updateEnvelope(&audio->ch1.envelope);
180						if (audio->ch1.envelope.nextStep < audio->nextEvent) {
181							audio->nextEvent = audio->ch1.envelope.nextStep;
182						}
183						audio->ch1.sample = sample * audio->ch1.envelope.currentVolume;
184					}
185				}
186
187				if (audio->ch1.nextSweep != INT_MAX) {
188					audio->ch1.nextSweep -= audio->eventDiff;
189					if (audio->ch1.nextSweep <= 0) {
190						audio->playingCh1 = _updateSweep(&audio->ch1);
191						if (audio->ch1.nextSweep < audio->nextEvent) {
192							audio->nextEvent = audio->ch1.nextSweep;
193						}
194					}
195				}
196
197				if (audio->nextCh1 <= 0) {
198					audio->nextCh1 += _updateChannel1(&audio->ch1);
199					if (audio->nextCh1 < audio->nextEvent) {
200						audio->nextEvent = audio->nextCh1;
201					}
202				}
203
204				if (audio->ch1.control.stop) {
205					audio->ch1.control.endTime -= audio->eventDiff;
206					if (audio->ch1.control.endTime <= 0) {
207						audio->playingCh1 = 0;
208					}
209				}
210			}
211
212			if (audio->playingCh2 && !audio->ch2.envelope.dead) {
213				audio->nextCh2 -= audio->eventDiff;
214				if (audio->ch2.envelope.nextStep != INT_MAX) {
215					audio->ch2.envelope.nextStep -= audio->eventDiff;
216					if (audio->ch2.envelope.nextStep <= 0) {
217						int8_t sample = audio->ch2.control.hi * 0x10 - 0x8;
218						_updateEnvelope(&audio->ch2.envelope);
219						if (audio->ch2.envelope.nextStep < audio->nextEvent) {
220							audio->nextEvent = audio->ch2.envelope.nextStep;
221						}
222						audio->ch2.sample = sample * audio->ch2.envelope.currentVolume;
223					}
224				}
225
226				if (audio->nextCh2 <= 0) {
227					audio->nextCh2 += _updateChannel2(&audio->ch2);
228					if (audio->nextCh2 < audio->nextEvent) {
229						audio->nextEvent = audio->nextCh2;
230					}
231				}
232
233				if (audio->ch2.control.stop) {
234					audio->ch2.control.endTime -= audio->eventDiff;
235					if (audio->ch2.control.endTime <= 0) {
236						audio->playingCh2 = 0;
237					}
238				}
239			}
240
241			if (audio->playingCh3) {
242				audio->nextCh3 -= audio->eventDiff;
243				if (audio->nextCh3 <= 0) {
244					audio->nextCh3 += _updateChannel3(&audio->ch3);
245					if (audio->nextCh3 < audio->nextEvent) {
246						audio->nextEvent = audio->nextCh3;
247					}
248				}
249
250				if (audio->ch3.control.stop) {
251					audio->ch3.control.endTime -= audio->eventDiff;
252					if (audio->ch3.control.endTime <= 0) {
253						audio->playingCh3 = 0;
254					}
255				}
256			}
257
258			if (audio->playingCh4 && !audio->ch4.envelope.dead) {
259				audio->nextCh4 -= audio->eventDiff;
260				if (audio->ch4.envelope.nextStep != INT_MAX) {
261					audio->ch4.envelope.nextStep -= audio->eventDiff;
262					if (audio->ch4.envelope.nextStep <= 0) {
263						int8_t sample = (audio->ch4.sample >> 31) * 0x8;
264						_updateEnvelope(&audio->ch4.envelope);
265						if (audio->ch4.envelope.nextStep < audio->nextEvent) {
266							audio->nextEvent = audio->ch4.envelope.nextStep;
267						}
268						audio->ch4.sample = sample * audio->ch4.envelope.currentVolume;
269					}
270				}
271
272				if (audio->nextCh4 <= 0) {
273					audio->nextCh4 += _updateChannel4(&audio->ch4);
274					if (audio->nextCh4 < audio->nextEvent) {
275						audio->nextEvent = audio->nextCh4;
276					}
277				}
278
279				if (audio->ch4.control.stop) {
280					audio->ch4.control.endTime -= audio->eventDiff;
281					if (audio->ch4.control.endTime <= 0) {
282						audio->playingCh4 = 0;
283					}
284				}
285			}
286		}
287
288		audio->nextSample -= audio->eventDiff;
289		if (audio->nextSample <= 0) {
290			_sample(audio);
291			audio->nextSample += audio->sampleInterval;
292		}
293
294		if (audio->nextSample < audio->nextEvent) {
295			audio->nextEvent = audio->nextSample;
296		}
297		audio->eventDiff = 0;
298	}
299	return audio->nextEvent;
300}
301
302void GBAAudioScheduleFifoDma(struct GBAAudio* audio, int number, struct GBADMA* info) {
303	switch (info->dest) {
304	case BASE_IO | REG_FIFO_A_LO:
305		audio->chA.dmaSource = number;
306		break;
307	case BASE_IO | REG_FIFO_B_LO:
308		audio->chB.dmaSource = number;
309		break;
310	default:
311		GBALog(audio->p, GBA_LOG_GAME_ERROR, "Invalid FIFO destination: 0x%08X", info->dest);
312		return;
313	}
314	info->reg = GBADMARegisterSetDestControl(info->reg, DMA_FIXED);
315}
316
317void GBAAudioWriteSOUND1CNT_LO(struct GBAAudio* audio, uint16_t value) {
318	audio->ch1.sweep.shift = GBAAudioRegisterSquareSweepGetShift(value);
319	audio->ch1.sweep.direction = GBAAudioRegisterSquareSweepGetDirection(value);
320	audio->ch1.sweep.time = GBAAudioRegisterSquareSweepGetTime(value);
321	if (audio->ch1.sweep.time) {
322		audio->ch1.nextSweep = audio->ch1.sweep.time * SWEEP_CYCLES;
323	} else {
324		audio->ch1.nextSweep = INT_MAX;
325	}
326}
327
328void GBAAudioWriteSOUND1CNT_HI(struct GBAAudio* audio, uint16_t value) {
329	if (!_writeEnvelope(&audio->ch1.envelope, value)) {
330		audio->ch1.sample = 0;
331	}
332}
333
334void GBAAudioWriteSOUND1CNT_X(struct GBAAudio* audio, uint16_t value) {
335	audio->ch1.control.frequency = GBAAudioRegisterControlGetFrequency(value);
336	audio->ch1.control.stop = GBAAudioRegisterControlGetStop(value);
337	audio->ch1.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch1.envelope.length)) >> 8;
338	if (GBAAudioRegisterControlIsRestart(value)) {
339		if (audio->ch1.sweep.time) {
340			audio->ch1.nextSweep = audio->ch1.sweep.time * SWEEP_CYCLES;
341		} else {
342			audio->ch1.nextSweep = INT_MAX;
343		}
344		if (!audio->playingCh1) {
345			audio->nextCh1 = 0;
346		}
347		audio->playingCh1 = 1;
348		if (audio->ch1.envelope.stepTime) {
349			audio->ch1.envelope.nextStep = 0;
350		} else {
351			audio->ch1.envelope.nextStep = INT_MAX;
352		}
353		audio->ch1.envelope.currentVolume = audio->ch1.envelope.initialVolume;
354		if (audio->ch1.envelope.stepTime) {
355			audio->ch1.envelope.nextStep = 0;
356		} else {
357			audio->ch1.envelope.nextStep = INT_MAX;
358		}
359	}
360}
361
362void GBAAudioWriteSOUND2CNT_LO(struct GBAAudio* audio, uint16_t value) {
363	if (!_writeEnvelope(&audio->ch2.envelope, value)) {
364		audio->ch2.sample = 0;
365	}
366}
367
368void GBAAudioWriteSOUND2CNT_HI(struct GBAAudio* audio, uint16_t value) {
369	audio->ch2.control.frequency = GBAAudioRegisterControlGetFrequency(value);
370	audio->ch2.control.stop = GBAAudioRegisterControlGetStop(value);
371	audio->ch2.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch2.envelope.length)) >> 8;
372	if (GBAAudioRegisterControlIsRestart(value)) {
373		audio->playingCh2 = 1;
374		audio->ch2.envelope.currentVolume = audio->ch2.envelope.initialVolume;
375		if (audio->ch2.envelope.stepTime) {
376			audio->ch2.envelope.nextStep = 0;
377		} else {
378			audio->ch2.envelope.nextStep = INT_MAX;
379		}
380		audio->nextCh2 = 0;
381	}
382}
383
384void GBAAudioWriteSOUND3CNT_LO(struct GBAAudio* audio, uint16_t value) {
385	audio->ch3.bank.size = GBAAudioRegisterBankGetSize(value);
386	audio->ch3.bank.bank = GBAAudioRegisterBankGetBank(value);
387	audio->ch3.bank.enable = GBAAudioRegisterBankGetEnable(value);
388	if (audio->ch3.control.endTime >= 0) {
389		audio->playingCh3 = audio->ch3.bank.enable;
390	}
391}
392
393void GBAAudioWriteSOUND3CNT_HI(struct GBAAudio* audio, uint16_t value) {
394	audio->ch3.wave.length = GBAAudioRegisterBankWaveGetLength(value);
395	audio->ch3.wave.volume = GBAAudioRegisterBankWaveGetVolume(value);
396}
397
398void GBAAudioWriteSOUND3CNT_X(struct GBAAudio* audio, uint16_t value) {
399	audio->ch3.control.rate = GBAAudioRegisterControlGetRate(value);
400	audio->ch3.control.stop = GBAAudioRegisterControlGetStop(value);
401	audio->ch3.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (256 - audio->ch3.wave.length)) >> 8;
402	if (GBAAudioRegisterControlIsRestart(value)) {
403		audio->playingCh3 = audio->ch3.bank.enable;
404	}
405}
406
407void GBAAudioWriteSOUND4CNT_LO(struct GBAAudio* audio, uint16_t value) {
408	if (!_writeEnvelope(&audio->ch4.envelope, value)) {
409		audio->ch4.sample = 0;
410	}
411}
412
413void GBAAudioWriteSOUND4CNT_HI(struct GBAAudio* audio, uint16_t value) {
414	audio->ch4.control.ratio = GBAAudioRegisterCh4ControlGetRatio(value);
415	audio->ch4.control.frequency = GBAAudioRegisterCh4ControlGetFrequency(value);
416	audio->ch4.control.power = GBAAudioRegisterCh4ControlGetPower(value);
417	audio->ch4.control.stop = GBAAudioRegisterCh4ControlGetStop(value);
418	audio->ch4.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch4.envelope.length)) >> 8;
419	if (GBAAudioRegisterCh4ControlIsRestart(value)) {
420		audio->playingCh4 = 1;
421		audio->ch4.envelope.currentVolume = audio->ch4.envelope.initialVolume;
422		if (audio->ch4.envelope.stepTime) {
423			audio->ch4.envelope.nextStep = 0;
424		} else {
425			audio->ch4.envelope.nextStep = INT_MAX;
426		}
427		if (audio->ch4.control.power) {
428			audio->ch4.lfsr = 0x40;
429		} else {
430			audio->ch4.lfsr = 0x4000;
431		}
432		audio->nextCh4 = 0;
433	}
434}
435
436void GBAAudioWriteSOUNDCNT_LO(struct GBAAudio* audio, uint16_t value) {
437	audio->volumeRight = GBARegisterSOUNDCNT_LOGetVolumeRight(value);
438	audio->volumeLeft = GBARegisterSOUNDCNT_LOGetVolumeLeft(value);
439	audio->ch1Right = GBARegisterSOUNDCNT_LOGetCh1Right(value);
440	audio->ch2Right = GBARegisterSOUNDCNT_LOGetCh2Right(value);
441	audio->ch3Right = GBARegisterSOUNDCNT_LOGetCh3Right(value);
442	audio->ch4Right = GBARegisterSOUNDCNT_LOGetCh4Right(value);
443	audio->ch1Left = GBARegisterSOUNDCNT_LOGetCh1Left(value);
444	audio->ch2Left = GBARegisterSOUNDCNT_LOGetCh2Left(value);
445	audio->ch3Left = GBARegisterSOUNDCNT_LOGetCh3Left(value);
446	audio->ch4Left = GBARegisterSOUNDCNT_LOGetCh4Left(value);
447}
448
449void GBAAudioWriteSOUNDCNT_HI(struct GBAAudio* audio, uint16_t value) {
450	audio->volume = GBARegisterSOUNDCNT_HIGetVolume(value);
451	audio->volumeChA = GBARegisterSOUNDCNT_HIGetVolumeChA(value);
452	audio->volumeChB = GBARegisterSOUNDCNT_HIGetVolumeChB(value);
453	audio->chARight = GBARegisterSOUNDCNT_HIGetChARight(value);
454	audio->chALeft = GBARegisterSOUNDCNT_HIGetChALeft(value);
455	audio->chATimer = GBARegisterSOUNDCNT_HIGetChATimer(value);
456	audio->chBRight = GBARegisterSOUNDCNT_HIGetChBRight(value);
457	audio->chBLeft = GBARegisterSOUNDCNT_HIGetChBLeft(value);
458	audio->chBTimer = GBARegisterSOUNDCNT_HIGetChBTimer(value);
459	// TODO: Implement channel reset
460}
461
462void GBAAudioWriteSOUNDCNT_X(struct GBAAudio* audio, uint16_t value) {
463	audio->enable = GBARegisterSOUNDCNT_XGetEnable(value);
464}
465
466void GBAAudioWriteSOUNDBIAS(struct GBAAudio* audio, uint16_t value) {
467	audio->soundbias = value;
468}
469
470void GBAAudioWriteWaveRAM(struct GBAAudio* audio, int address, uint32_t value) {
471	audio->ch3.wavedata[address | (!audio->ch3.bank.bank * 4)] = value;
472}
473
474void GBAAudioWriteFIFO(struct GBAAudio* audio, int address, uint32_t value) {
475	struct CircleBuffer* fifo;
476	switch (address) {
477	case REG_FIFO_A_LO:
478		fifo = &audio->chA.fifo;
479		break;
480	case REG_FIFO_B_LO:
481		fifo = &audio->chB.fifo;
482		break;
483	default:
484		GBALog(audio->p, GBA_LOG_ERROR, "Bad FIFO write to address 0x%03x", address);
485		return;
486	}
487	int i;
488	for (i = 0; i < 4; ++i) {
489		while (!CircleBufferWrite8(fifo, value >> (8 * i))) {
490			int8_t dummy;
491			CircleBufferRead8(fifo, &dummy);
492		}
493	}
494}
495
496void GBAAudioSampleFIFO(struct GBAAudio* audio, int fifoId, int32_t cycles) {
497	struct GBAAudioFIFO* channel;
498	if (fifoId == 0) {
499		channel = &audio->chA;
500	} else if (fifoId == 1) {
501		channel = &audio->chB;
502	} else {
503		GBALog(audio->p, GBA_LOG_ERROR, "Bad FIFO write to address 0x%03x", fifoId);
504		return;
505	}
506	if (CircleBufferSize(&channel->fifo) <= 4 * sizeof(int32_t) && channel->dmaSource > 0) {
507		struct GBADMA* dma = &audio->p->memory.dma[channel->dmaSource];
508		if (GBADMARegisterGetTiming(dma->reg) == DMA_TIMING_CUSTOM) {
509			dma->nextCount = 4;
510			dma->nextEvent = 0;
511			dma->reg = GBADMARegisterSetWidth(dma->reg, 1);
512			GBAMemoryUpdateDMAs(audio->p, -cycles);
513		} else {
514			channel->dmaSource = 0;
515		}
516	}
517	CircleBufferRead8(&channel->fifo, &channel->sample);
518}
519
520#if RESAMPLE_LIBRARY != RESAMPLE_BLIP_BUF
521unsigned GBAAudioCopy(struct GBAAudio* audio, void* left, void* right, unsigned nSamples) {
522	GBASyncLockAudio(audio->p->sync);
523	unsigned read = 0;
524	if (left) {
525		unsigned readL = CircleBufferRead(&audio->left, left, nSamples * sizeof(int16_t)) >> 1;
526		if (readL < nSamples) {
527			memset((int16_t*) left + readL, 0, nSamples - readL);
528		}
529		read = readL;
530	}
531	if (right) {
532		unsigned readR = CircleBufferRead(&audio->right, right, nSamples * sizeof(int16_t)) >> 1;
533		if (readR < nSamples) {
534			memset((int16_t*) right + readR, 0, nSamples - readR);
535		}
536		read = read >= readR ? read : readR;
537	}
538	GBASyncConsumeAudio(audio->p->sync);
539	return read;
540}
541
542unsigned GBAAudioResampleNN(struct GBAAudio* audio, float ratio, float* drift, struct GBAStereoSample* output, unsigned nSamples) {
543	int16_t left[GBA_AUDIO_SAMPLES];
544	int16_t right[GBA_AUDIO_SAMPLES];
545
546	// toRead is in GBA samples
547	// TODO: Do this with fixed-point math
548	unsigned toRead = ceilf(nSamples / ratio);
549	unsigned totalRead = 0;
550	while (nSamples) {
551		unsigned currentRead = GBA_AUDIO_SAMPLES;
552		if (currentRead > toRead) {
553			currentRead = toRead;
554		}
555		unsigned read = GBAAudioCopy(audio, left, right, currentRead);
556		toRead -= read;
557		unsigned i;
558		for (i = 0; i < read; ++i) {
559			*drift += ratio;
560			while (*drift >= 1.f) {
561				output->left = left[i];
562				output->right = right[i];
563				++output;
564				++totalRead;
565				--nSamples;
566				*drift -= 1.f;
567				if (!nSamples) {
568					return totalRead;
569				}
570			}
571		}
572		if (read < currentRead) {
573			memset(output, 0, nSamples * sizeof(struct GBAStereoSample));
574			break;
575		}
576	}
577	return totalRead;
578}
579#endif
580
581bool _writeEnvelope(struct GBAAudioEnvelope* envelope, uint16_t value) {
582	envelope->length = GBAAudioRegisterEnvelopeGetLength(value);
583	envelope->duty = GBAAudioRegisterEnvelopeGetDuty(value);
584	envelope->stepTime = GBAAudioRegisterEnvelopeGetStepTime(value);
585	envelope->direction = GBAAudioRegisterEnvelopeGetDirection(value);
586	envelope->initialVolume = GBAAudioRegisterEnvelopeGetInitialVolume(value);
587	envelope->dead = 0;
588	if (envelope->stepTime) {
589		envelope->nextStep = 0;
590	} else {
591		envelope->nextStep = INT_MAX;
592		if (envelope->initialVolume == 0) {
593			envelope->dead = 1;
594			return false;
595		}
596	}
597	return true;
598}
599
600static int32_t _updateSquareChannel(struct GBAAudioSquareControl* control, int duty) {
601	control->hi = !control->hi;
602	int period = 16 * (2048 - control->frequency);
603	switch (duty) {
604	case 0:
605		return control->hi ? period : period * 7;
606	case 1:
607		return control->hi ? period * 2 : period * 6;
608	case 2:
609		return period * 4;
610	case 3:
611		return control->hi ? period * 6 : period * 2;
612	default:
613		// This should never be hit
614		return period * 4;
615	}
616}
617
618static void _updateEnvelope(struct GBAAudioEnvelope* envelope) {
619	if (envelope->direction) {
620		++envelope->currentVolume;
621	} else {
622		--envelope->currentVolume;
623	}
624	if (envelope->currentVolume >= 15) {
625		envelope->currentVolume = 15;
626		envelope->nextStep = INT_MAX;
627	} else if (envelope->currentVolume <= 0) {
628		envelope->currentVolume = 0;
629		envelope->dead = 1;
630		envelope->nextStep = INT_MAX;
631	} else {
632		envelope->nextStep += envelope->stepTime * (GBA_ARM7TDMI_FREQUENCY >> 6);
633	}
634}
635
636static bool _updateSweep(struct GBAAudioChannel1* ch) {
637	if (ch->sweep.direction) {
638		int frequency = ch->control.frequency;
639		frequency -= frequency >> ch->sweep.shift;
640		if (frequency >= 0) {
641			ch->control.frequency = frequency;
642		}
643	} else {
644		int frequency = ch->control.frequency;
645		frequency += frequency >> ch->sweep.shift;
646		if (frequency < 2048) {
647			ch->control.frequency = frequency;
648		} else {
649			return false;
650		}
651	}
652	ch->nextSweep += ch->sweep.time * SWEEP_CYCLES;
653	return true;
654}
655
656static int32_t _updateChannel1(struct GBAAudioChannel1* ch) {
657	int timing = _updateSquareChannel(&ch->control, ch->envelope.duty);
658	ch->sample = ch->control.hi * 0x10 - 0x8;
659	ch->sample *= ch->envelope.currentVolume;
660	return timing;
661}
662
663static int32_t _updateChannel2(struct GBAAudioChannel2* ch) {
664	int timing = _updateSquareChannel(&ch->control, ch->envelope.duty);
665	ch->sample = ch->control.hi * 0x10 - 0x8;
666	ch->sample *= ch->envelope.currentVolume;
667	return timing;
668}
669
670static int32_t _updateChannel3(struct GBAAudioChannel3* ch) {
671	int i;
672	int start;
673	int end;
674	int volume;
675	switch (ch->wave.volume) {
676	case 0:
677		volume = 0;
678		break;
679	case 1:
680		volume = 4;
681		break;
682	case 2:
683		volume = 2;
684		break;
685	case 3:
686		volume = 1;
687		break;
688	default:
689		volume = 3;
690		break;
691	}
692	if (ch->bank.size) {
693		start = 7;
694		end = 0;
695	} else if (ch->bank.bank) {
696		start = 7;
697		end = 4;
698	} else {
699		start = 3;
700		end = 0;
701	}
702	uint32_t bitsCarry = ch->wavedata[end] & 0x0F000000;
703	uint32_t bits;
704	for (i = start; i >= end; --i) {
705		bits = ch->wavedata[i] & 0x0F000000;
706		ch->wavedata[i] = ((ch->wavedata[i] & 0xF0F0F0F0) >> 4) | ((ch->wavedata[i] & 0x000F0F0F) << 12);
707		ch->wavedata[i] |= bitsCarry >> 20;
708		bitsCarry = bits;
709	}
710	ch->sample = bitsCarry >> 24;
711	ch->sample -= 8;
712	ch->sample *= volume * 4;
713	return 8 * (2048 - ch->control.rate);
714}
715
716static int32_t _updateChannel4(struct GBAAudioChannel4* ch) {
717	int lsb = ch->lfsr & 1;
718	ch->sample = lsb * 0x10 - 0x8;
719	ch->sample *= ch->envelope.currentVolume;
720	ch->lfsr >>= 1;
721	ch->lfsr ^= (lsb * 0x60) << (ch->control.power ? 0 : 8);
722	int timing = ch->control.ratio ? 2 * ch->control.ratio : 1;
723	timing <<= ch->control.frequency;
724	timing *= 32;
725	return timing;
726}
727
728static int _applyBias(struct GBAAudio* audio, int sample) {
729	sample += GBARegisterSOUNDBIASGetBias(audio->soundbias);
730	if (sample >= 0x400) {
731		sample = 0x3FF;
732	} else if (sample < 0) {
733		sample = 0;
734	}
735	return ((sample - GBARegisterSOUNDBIASGetBias(audio->soundbias)) * audio->masterVolume) >> 3;
736}
737
738static void _sample(struct GBAAudio* audio) {
739	int16_t sampleLeft = 0;
740	int16_t sampleRight = 0;
741	int psgShift = 5 - audio->volume;
742
743	if (audio->playingCh1 && !audio->forceDisableCh[0]) {
744		if (audio->ch1Left) {
745			sampleLeft += audio->ch1.sample;
746		}
747
748		if (audio->ch1Right) {
749			sampleRight += audio->ch1.sample;
750		}
751	}
752
753	if (audio->playingCh2 && !audio->forceDisableCh[1]) {
754		if (audio->ch2Left) {
755			sampleLeft += audio->ch2.sample;
756		}
757
758		if (audio->ch2Right) {
759			sampleRight += audio->ch2.sample;
760		}
761	}
762
763	if (audio->playingCh3 && !audio->forceDisableCh[2]) {
764		if (audio->ch3Left) {
765			sampleLeft += audio->ch3.sample;
766		}
767
768		if (audio->ch3Right) {
769			sampleRight += audio->ch3.sample;
770		}
771	}
772
773	if (audio->playingCh4 && !audio->forceDisableCh[3]) {
774		if (audio->ch4Left) {
775			sampleLeft += audio->ch4.sample;
776		}
777
778		if (audio->ch4Right) {
779			sampleRight += audio->ch4.sample;
780		}
781	}
782
783	sampleLeft = (sampleLeft * (1 + audio->volumeLeft)) >> psgShift;
784	sampleRight = (sampleRight * (1 + audio->volumeRight)) >> psgShift;
785
786	if (!audio->forceDisableChA) {
787		if (audio->chALeft) {
788			sampleLeft += (audio->chA.sample << 2) >> !audio->volumeChA;
789		}
790
791		if (audio->chARight) {
792			sampleRight += (audio->chA.sample << 2) >> !audio->volumeChA;
793		}
794	}
795
796	if (!audio->forceDisableChB) {
797		if (audio->chBLeft) {
798			sampleLeft += (audio->chB.sample << 2) >> !audio->volumeChB;
799		}
800
801		if (audio->chBRight) {
802			sampleRight += (audio->chB.sample << 2) >> !audio->volumeChB;
803		}
804	}
805
806	sampleLeft = _applyBias(audio, sampleLeft);
807	sampleRight = _applyBias(audio, sampleRight);
808
809	GBASyncLockAudio(audio->p->sync);
810	unsigned produced;
811#if RESAMPLE_LIBRARY != RESAMPLE_BLIP_BUF
812	CircleBufferWrite16(&audio->left, sampleLeft);
813	CircleBufferWrite16(&audio->right, sampleRight);
814	produced = CircleBufferSize(&audio->left) / 2;
815#else
816	if ((size_t) blip_samples_avail(audio->left) < audio->samples) {
817		blip_add_delta(audio->left, audio->clock, sampleLeft - audio->lastLeft);
818		blip_add_delta(audio->right, audio->clock, sampleRight - audio->lastRight);
819		audio->lastLeft = sampleLeft;
820		audio->lastRight = sampleRight;
821		audio->clock += audio->sampleInterval;
822		if (audio->clock >= CLOCKS_PER_FRAME) {
823			blip_end_frame(audio->left, audio->clock);
824			blip_end_frame(audio->right, audio->clock);
825			audio->clock -= CLOCKS_PER_FRAME;
826		}
827	}
828	produced = blip_samples_avail(audio->left);
829#endif
830	if (audio->p->stream && audio->p->stream->postAudioFrame) {
831		audio->p->stream->postAudioFrame(audio->p->stream, sampleLeft, sampleRight);
832	}
833	bool wait = produced >= audio->samples;
834	GBASyncProduceAudio(audio->p->sync, wait);
835
836	if (wait && audio->p->stream && audio->p->stream->postAudioBuffer) {
837		audio->p->stream->postAudioBuffer(audio->p->stream, audio);
838	}
839}
840
841void GBAAudioSerialize(const struct GBAAudio* audio, struct GBASerializedState* state) {
842	state->audio.ch1Volume = audio->ch1.envelope.currentVolume;
843	state->audio.ch1Dead = audio->ch1.envelope.dead;
844	state->audio.ch1Hi = audio->ch1.control.hi;
845	state->audio.ch1.envelopeNextStep = audio->ch1.envelope.nextStep;
846	state->audio.ch1.waveNextStep = audio->ch1.control.nextStep;
847	state->audio.ch1.sweepNextStep = audio->ch1.nextSweep;
848	state->audio.ch1.endTime = audio->ch1.control.endTime;
849	state->audio.ch1.nextEvent = audio->nextCh1;
850
851	state->audio.ch2Volume = audio->ch2.envelope.currentVolume;
852	state->audio.ch2Dead = audio->ch2.envelope.dead;
853	state->audio.ch2Hi = audio->ch2.control.hi;
854	state->audio.ch2.envelopeNextStep = audio->ch2.envelope.nextStep;
855	state->audio.ch2.waveNextStep = audio->ch2.control.nextStep;
856	state->audio.ch2.endTime = audio->ch2.control.endTime;
857	state->audio.ch2.nextEvent = audio->nextCh2;
858
859	memcpy(state->audio.ch3.wavebanks, audio->ch3.wavedata, sizeof(state->audio.ch3.wavebanks));
860	state->audio.ch3.endTime = audio->ch3.control.endTime;
861	state->audio.ch3.nextEvent = audio->nextCh3;
862
863	state->audio.ch4Volume = audio->ch4.envelope.currentVolume;
864	state->audio.ch4Dead = audio->ch4.envelope.dead;
865	state->audio.ch4.envelopeNextStep = audio->ch4.envelope.nextStep;
866	state->audio.ch4.lfsr = audio->ch4.lfsr;
867	state->audio.ch4.endTime = audio->ch4.control.endTime;
868	state->audio.ch4.nextEvent = audio->nextCh4;
869
870	CircleBufferDump(&audio->chA.fifo, state->audio.fifoA, sizeof(state->audio.fifoA));
871	CircleBufferDump(&audio->chB.fifo, state->audio.fifoB, sizeof(state->audio.fifoB));
872	state->audio.fifoSize = CircleBufferSize(&audio->chA.fifo);
873
874	state->audio.nextEvent = audio->nextEvent;
875	state->audio.eventDiff = audio->eventDiff;
876	state->audio.nextSample = audio->nextSample;
877}
878
879void GBAAudioDeserialize(struct GBAAudio* audio, const struct GBASerializedState* state) {
880	audio->ch1.envelope.currentVolume = state->audio.ch1Volume;
881	audio->ch1.envelope.dead = state->audio.ch1Dead;
882	audio->ch1.control.hi = state->audio.ch1Hi;
883	audio->ch1.envelope.nextStep = state->audio.ch1.envelopeNextStep;
884	audio->ch1.control.nextStep = state->audio.ch1.waveNextStep;
885	audio->ch1.nextSweep = state->audio.ch1.sweepNextStep;
886	audio->ch1.control.endTime = state->audio.ch1.endTime;
887	audio->nextCh1 = state->audio.ch1.nextEvent;
888
889	audio->ch2.envelope.currentVolume = state->audio.ch2Volume;
890	audio->ch2.envelope.dead = state->audio.ch2Dead;
891	audio->ch2.control.hi = state->audio.ch2Hi;
892	audio->ch2.envelope.nextStep = state->audio.ch2.envelopeNextStep;
893	audio->ch2.control.nextStep = state->audio.ch2.waveNextStep;
894	audio->ch2.control.endTime = state->audio.ch2.endTime;
895	audio->nextCh2 = state->audio.ch2.nextEvent;
896
897	memcpy(audio->ch3.wavedata, state->audio.ch3.wavebanks, sizeof(audio->ch3.wavedata));
898	audio->ch3.control.endTime = state->audio.ch3.endTime;
899	audio->nextCh3 = state->audio.ch3.nextEvent;
900
901	audio->ch4.envelope.currentVolume = state->audio.ch4Volume;
902	audio->ch4.envelope.dead = state->audio.ch4Dead;
903	audio->ch4.envelope.nextStep = state->audio.ch4.envelopeNextStep;
904	audio->ch4.lfsr = state->audio.ch4.lfsr;
905	audio->ch4.control.endTime = state->audio.ch4.endTime;
906	audio->nextCh4 = state->audio.ch4.nextEvent;
907
908	CircleBufferClear(&audio->chA.fifo);
909	CircleBufferClear(&audio->chB.fifo);
910	size_t fifoSize = state->audio.fifoSize;
911	if (state->audio.fifoSize > CircleBufferCapacity(&audio->chA.fifo)) {
912		fifoSize = CircleBufferCapacity(&audio->chA.fifo);
913	}
914	size_t i;
915	for (i = 0; i < fifoSize; ++i) {
916		CircleBufferWrite8(&audio->chA.fifo, state->audio.fifoA[i]);
917		CircleBufferWrite8(&audio->chB.fifo, state->audio.fifoB[i]);
918	}
919
920	audio->nextEvent = state->audio.nextEvent;
921	audio->eventDiff = state->audio.eventDiff;
922	audio->nextSample = state->audio.nextSample;
923}
924
925float GBAAudioCalculateRatio(float inputSampleRate, float desiredFPS, float desiredSampleRate) {
926	return desiredSampleRate * GBA_ARM7TDMI_FREQUENCY / (VIDEO_TOTAL_LENGTH * desiredFPS * inputSampleRate);
927}