src/gba/audio.c (view raw)
1/* Copyright (c) 2013-2015 Jeffrey Pfau
2 *
3 * This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
6#include "audio.h"
7
8#include "gba/gba.h"
9#include "gba/io.h"
10#include "gba/serialize.h"
11#include "gba/supervisor/thread.h"
12#include "gba/video.h"
13
14const unsigned GBA_AUDIO_SAMPLES = 2048;
15const unsigned BLIP_BUFFER_SIZE = 0x4000;
16const unsigned GBA_AUDIO_FIFO_SIZE = 8 * sizeof(int32_t);
17const int GBA_AUDIO_VOLUME_MAX = 0x100;
18#define SWEEP_CYCLES (GBA_ARM7TDMI_FREQUENCY / 128)
19
20#if RESAMPLE_LIBRARY == RESAMPLE_BLIP_BUF
21static const int CLOCKS_PER_FRAME = 0x400;
22#endif
23
24static bool _writeEnvelope(struct GBAAudioEnvelope* envelope, uint16_t value);
25static int32_t _updateSquareChannel(struct GBAAudioSquareControl* envelope, int duty);
26static void _updateEnvelope(struct GBAAudioEnvelope* envelope);
27static bool _updateSweep(struct GBAAudioChannel1* ch);
28static int32_t _updateChannel1(struct GBAAudioChannel1* ch);
29static int32_t _updateChannel2(struct GBAAudioChannel2* ch);
30static int32_t _updateChannel3(struct GBAAudioChannel3* ch);
31static int32_t _updateChannel4(struct GBAAudioChannel4* ch);
32static int _applyBias(struct GBAAudio* audio, int sample);
33static void _sample(struct GBAAudio* audio);
34
35void GBAAudioInit(struct GBAAudio* audio, size_t samples) {
36 audio->samples = samples;
37#if RESAMPLE_LIBRARY != RESAMPLE_BLIP_BUF
38 CircleBufferInit(&audio->left, samples * sizeof(int16_t));
39 CircleBufferInit(&audio->right, samples * sizeof(int16_t));
40#else
41 audio->left = blip_new(BLIP_BUFFER_SIZE);
42 audio->right = blip_new(BLIP_BUFFER_SIZE);
43 // Guess too large; we hang producing extra samples if we guess too low
44 blip_set_rates(audio->left, GBA_ARM7TDMI_FREQUENCY, 96000);
45 blip_set_rates(audio->right, GBA_ARM7TDMI_FREQUENCY, 96000);
46#endif
47 CircleBufferInit(&audio->chA.fifo, GBA_AUDIO_FIFO_SIZE);
48 CircleBufferInit(&audio->chB.fifo, GBA_AUDIO_FIFO_SIZE);
49
50 audio->forceDisableCh[0] = false;
51 audio->forceDisableCh[1] = false;
52 audio->forceDisableCh[2] = false;
53 audio->forceDisableCh[3] = false;
54 audio->forceDisableChA = false;
55 audio->forceDisableChB = false;
56 audio->masterVolume = GBA_AUDIO_VOLUME_MAX;
57}
58
59void GBAAudioReset(struct GBAAudio* audio) {
60 audio->nextEvent = 0;
61 audio->nextCh1 = 0;
62 audio->nextCh2 = 0;
63 audio->nextCh3 = 0;
64 audio->nextCh4 = 0;
65 audio->ch1 = (struct GBAAudioChannel1) { .envelope = { .nextStep = INT_MAX }, .nextSweep = INT_MAX };
66 audio->ch2 = (struct GBAAudioChannel2) { .envelope = { .nextStep = INT_MAX } };
67 audio->ch3 = (struct GBAAudioChannel3) { .bank = { .bank = 0 } };
68 audio->ch4 = (struct GBAAudioChannel4) { .envelope = { .nextStep = INT_MAX } };
69 audio->chA.dmaSource = 1;
70 audio->chB.dmaSource = 2;
71 audio->chA.sample = 0;
72 audio->chB.sample = 0;
73 audio->eventDiff = 0;
74 audio->nextSample = 0;
75 audio->sampleRate = 0x8000;
76 audio->soundbias = 0x200;
77 audio->volumeRight = 0;
78 audio->volumeLeft = 0;
79 audio->ch1Right = false;
80 audio->ch2Right = false;
81 audio->ch3Right = false;
82 audio->ch4Right = false;
83 audio->ch1Left = false;
84 audio->ch2Left = false;
85 audio->ch3Left = false;
86 audio->ch4Left = false;
87 audio->volume = 0;
88 audio->volumeChA = false;
89 audio->volumeChB = false;
90 audio->chARight = false;
91 audio->chALeft = false;
92 audio->chATimer = false;
93 audio->chBRight = false;
94 audio->chBLeft = false;
95 audio->chBTimer = false;
96 audio->playingCh1 = false;
97 audio->playingCh2 = false;
98 audio->playingCh3 = false;
99 audio->playingCh4 = false;
100 audio->enable = false;
101 audio->sampleInterval = GBA_ARM7TDMI_FREQUENCY / audio->sampleRate;
102
103#if RESAMPLE_LIBRARY != RESAMPLE_BLIP_BUF
104 CircleBufferClear(&audio->left);
105 CircleBufferClear(&audio->right);
106#else
107 blip_clear(audio->left);
108 blip_clear(audio->right);
109 audio->clock = 0;
110#endif
111 CircleBufferClear(&audio->chA.fifo);
112 CircleBufferClear(&audio->chB.fifo);
113}
114
115void GBAAudioDeinit(struct GBAAudio* audio) {
116#if RESAMPLE_LIBRARY != RESAMPLE_BLIP_BUF
117 CircleBufferDeinit(&audio->left);
118 CircleBufferDeinit(&audio->right);
119#else
120 blip_delete(audio->left);
121 blip_delete(audio->right);
122#endif
123 CircleBufferDeinit(&audio->chA.fifo);
124 CircleBufferDeinit(&audio->chB.fifo);
125}
126
127void GBAAudioResizeBuffer(struct GBAAudio* audio, size_t samples) {
128 mCoreSyncLockAudio(audio->p->sync);
129 audio->samples = samples;
130#if RESAMPLE_LIBRARY != RESAMPLE_BLIP_BUF
131 size_t oldCapacity = audio->left.capacity;
132 int16_t* buffer = malloc(oldCapacity);
133 int16_t dummy;
134 size_t read;
135 size_t i;
136
137 read = CircleBufferDump(&audio->left, buffer, oldCapacity);
138 CircleBufferDeinit(&audio->left);
139 CircleBufferInit(&audio->left, samples * sizeof(int16_t));
140 for (i = 0; i * sizeof(int16_t) < read; ++i) {
141 if (!CircleBufferWrite16(&audio->left, buffer[i])) {
142 CircleBufferRead16(&audio->left, &dummy);
143 CircleBufferWrite16(&audio->left, buffer[i]);
144 }
145 }
146
147 read = CircleBufferDump(&audio->right, buffer, oldCapacity);
148 CircleBufferDeinit(&audio->right);
149 CircleBufferInit(&audio->right, samples * sizeof(int16_t));
150 for (i = 0; i * sizeof(int16_t) < read; ++i) {
151 if (!CircleBufferWrite16(&audio->right, buffer[i])) {
152 CircleBufferRead16(&audio->right, &dummy);
153 CircleBufferWrite16(&audio->right, buffer[i]);
154 }
155 }
156
157 free(buffer);
158#else
159 blip_clear(audio->left);
160 blip_clear(audio->right);
161 audio->clock = 0;
162#endif
163
164 mCoreSyncConsumeAudio(audio->p->sync);
165}
166
167int32_t GBAAudioProcessEvents(struct GBAAudio* audio, int32_t cycles) {
168 audio->nextEvent -= cycles;
169 audio->eventDiff += cycles;
170 while (audio->nextEvent <= 0) {
171 audio->nextEvent = INT_MAX;
172 if (audio->enable) {
173 if (audio->playingCh1 && !audio->ch1.envelope.dead) {
174 audio->nextCh1 -= audio->eventDiff;
175 if (audio->ch1.envelope.nextStep != INT_MAX) {
176 audio->ch1.envelope.nextStep -= audio->eventDiff;
177 if (audio->ch1.envelope.nextStep <= 0) {
178 int8_t sample = audio->ch1.control.hi * 0x10 - 0x8;
179 _updateEnvelope(&audio->ch1.envelope);
180 if (audio->ch1.envelope.nextStep < audio->nextEvent) {
181 audio->nextEvent = audio->ch1.envelope.nextStep;
182 }
183 audio->ch1.sample = sample * audio->ch1.envelope.currentVolume;
184 }
185 }
186
187 if (audio->ch1.nextSweep != INT_MAX) {
188 audio->ch1.nextSweep -= audio->eventDiff;
189 if (audio->ch1.nextSweep <= 0) {
190 audio->playingCh1 = _updateSweep(&audio->ch1);
191 if (audio->ch1.nextSweep < audio->nextEvent) {
192 audio->nextEvent = audio->ch1.nextSweep;
193 }
194 }
195 }
196
197 if (audio->nextCh1 <= 0) {
198 audio->nextCh1 += _updateChannel1(&audio->ch1);
199 if (audio->nextCh1 < audio->nextEvent) {
200 audio->nextEvent = audio->nextCh1;
201 }
202 }
203
204 if (audio->ch1.control.stop) {
205 audio->ch1.control.endTime -= audio->eventDiff;
206 if (audio->ch1.control.endTime <= 0) {
207 audio->playingCh1 = 0;
208 }
209 }
210 }
211
212 if (audio->playingCh2 && !audio->ch2.envelope.dead) {
213 audio->nextCh2 -= audio->eventDiff;
214 if (audio->ch2.envelope.nextStep != INT_MAX) {
215 audio->ch2.envelope.nextStep -= audio->eventDiff;
216 if (audio->ch2.envelope.nextStep <= 0) {
217 int8_t sample = audio->ch2.control.hi * 0x10 - 0x8;
218 _updateEnvelope(&audio->ch2.envelope);
219 if (audio->ch2.envelope.nextStep < audio->nextEvent) {
220 audio->nextEvent = audio->ch2.envelope.nextStep;
221 }
222 audio->ch2.sample = sample * audio->ch2.envelope.currentVolume;
223 }
224 }
225
226 if (audio->nextCh2 <= 0) {
227 audio->nextCh2 += _updateChannel2(&audio->ch2);
228 if (audio->nextCh2 < audio->nextEvent) {
229 audio->nextEvent = audio->nextCh2;
230 }
231 }
232
233 if (audio->ch2.control.stop) {
234 audio->ch2.control.endTime -= audio->eventDiff;
235 if (audio->ch2.control.endTime <= 0) {
236 audio->playingCh2 = 0;
237 }
238 }
239 }
240
241 if (audio->playingCh3) {
242 audio->nextCh3 -= audio->eventDiff;
243 if (audio->nextCh3 <= 0) {
244 audio->nextCh3 += _updateChannel3(&audio->ch3);
245 if (audio->nextCh3 < audio->nextEvent) {
246 audio->nextEvent = audio->nextCh3;
247 }
248 }
249
250 if (audio->ch3.control.stop) {
251 audio->ch3.control.endTime -= audio->eventDiff;
252 if (audio->ch3.control.endTime <= 0) {
253 audio->playingCh3 = 0;
254 }
255 }
256 }
257
258 if (audio->playingCh4 && !audio->ch4.envelope.dead) {
259 audio->nextCh4 -= audio->eventDiff;
260 if (audio->ch4.envelope.nextStep != INT_MAX) {
261 audio->ch4.envelope.nextStep -= audio->eventDiff;
262 if (audio->ch4.envelope.nextStep <= 0) {
263 int8_t sample = (audio->ch4.sample >> 31) * 0x8;
264 _updateEnvelope(&audio->ch4.envelope);
265 if (audio->ch4.envelope.nextStep < audio->nextEvent) {
266 audio->nextEvent = audio->ch4.envelope.nextStep;
267 }
268 audio->ch4.sample = sample * audio->ch4.envelope.currentVolume;
269 }
270 }
271
272 if (audio->nextCh4 <= 0) {
273 audio->nextCh4 += _updateChannel4(&audio->ch4);
274 if (audio->nextCh4 < audio->nextEvent) {
275 audio->nextEvent = audio->nextCh4;
276 }
277 }
278
279 if (audio->ch4.control.stop) {
280 audio->ch4.control.endTime -= audio->eventDiff;
281 if (audio->ch4.control.endTime <= 0) {
282 audio->playingCh4 = 0;
283 }
284 }
285 }
286
287 audio->p->memory.io[REG_SOUNDCNT_X >> 1] &= ~0x000F;
288 audio->p->memory.io[REG_SOUNDCNT_X >> 1] |= audio->playingCh1;
289 audio->p->memory.io[REG_SOUNDCNT_X >> 1] |= audio->playingCh2 << 1;
290 audio->p->memory.io[REG_SOUNDCNT_X >> 1] |= audio->playingCh3 << 2;
291 audio->p->memory.io[REG_SOUNDCNT_X >> 1] |= audio->playingCh4 << 3;
292 }
293
294 audio->nextSample -= audio->eventDiff;
295 if (audio->nextSample <= 0) {
296 _sample(audio);
297 audio->nextSample += audio->sampleInterval;
298 }
299
300 if (audio->nextSample < audio->nextEvent) {
301 audio->nextEvent = audio->nextSample;
302 }
303 audio->eventDiff = 0;
304 }
305 return audio->nextEvent;
306}
307
308void GBAAudioScheduleFifoDma(struct GBAAudio* audio, int number, struct GBADMA* info) {
309 switch (info->dest) {
310 case BASE_IO | REG_FIFO_A_LO:
311 audio->chA.dmaSource = number;
312 break;
313 case BASE_IO | REG_FIFO_B_LO:
314 audio->chB.dmaSource = number;
315 break;
316 default:
317 GBALog(audio->p, GBA_LOG_GAME_ERROR, "Invalid FIFO destination: 0x%08X", info->dest);
318 return;
319 }
320 info->reg = GBADMARegisterSetDestControl(info->reg, DMA_FIXED);
321}
322
323void GBAAudioWriteSOUND1CNT_LO(struct GBAAudio* audio, uint16_t value) {
324 audio->ch1.sweep.shift = GBAAudioRegisterSquareSweepGetShift(value);
325 audio->ch1.sweep.direction = GBAAudioRegisterSquareSweepGetDirection(value);
326 audio->ch1.sweep.time = GBAAudioRegisterSquareSweepGetTime(value);
327 if (audio->ch1.sweep.time) {
328 audio->ch1.nextSweep = audio->ch1.sweep.time * SWEEP_CYCLES;
329 } else {
330 audio->ch1.nextSweep = INT_MAX;
331 }
332}
333
334void GBAAudioWriteSOUND1CNT_HI(struct GBAAudio* audio, uint16_t value) {
335 if (!_writeEnvelope(&audio->ch1.envelope, value)) {
336 audio->ch1.sample = 0;
337 }
338}
339
340void GBAAudioWriteSOUND1CNT_X(struct GBAAudio* audio, uint16_t value) {
341 audio->ch1.control.frequency = GBAAudioRegisterControlGetFrequency(value);
342 audio->ch1.control.stop = GBAAudioRegisterControlGetStop(value);
343 audio->ch1.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch1.envelope.length)) >> 8;
344 if (GBAAudioRegisterControlIsRestart(value)) {
345 if (audio->ch1.sweep.time) {
346 audio->ch1.nextSweep = audio->ch1.sweep.time * SWEEP_CYCLES;
347 } else {
348 audio->ch1.nextSweep = INT_MAX;
349 }
350 if (!audio->playingCh1) {
351 audio->nextCh1 = 0;
352 }
353 audio->playingCh1 = 1;
354 audio->ch1.envelope.currentVolume = audio->ch1.envelope.initialVolume;
355 if (audio->ch1.envelope.currentVolume > 0) {
356 audio->ch1.envelope.dead = 0;
357 }
358 if (audio->ch1.envelope.stepTime) {
359 audio->ch1.envelope.nextStep = 0;
360 } else {
361 audio->ch1.envelope.nextStep = INT_MAX;
362 }
363 }
364}
365
366void GBAAudioWriteSOUND2CNT_LO(struct GBAAudio* audio, uint16_t value) {
367 if (!_writeEnvelope(&audio->ch2.envelope, value)) {
368 audio->ch2.sample = 0;
369 }
370}
371
372void GBAAudioWriteSOUND2CNT_HI(struct GBAAudio* audio, uint16_t value) {
373 audio->ch2.control.frequency = GBAAudioRegisterControlGetFrequency(value);
374 audio->ch2.control.stop = GBAAudioRegisterControlGetStop(value);
375 audio->ch2.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch2.envelope.length)) >> 8;
376 if (GBAAudioRegisterControlIsRestart(value)) {
377 audio->playingCh2 = 1;
378 audio->ch2.envelope.currentVolume = audio->ch2.envelope.initialVolume;
379 if (audio->ch2.envelope.currentVolume > 0) {
380 audio->ch2.envelope.dead = 0;
381 }
382 if (audio->ch2.envelope.stepTime) {
383 audio->ch2.envelope.nextStep = 0;
384 } else {
385 audio->ch2.envelope.nextStep = INT_MAX;
386 }
387 audio->nextCh2 = 0;
388 }
389}
390
391void GBAAudioWriteSOUND3CNT_LO(struct GBAAudio* audio, uint16_t value) {
392 audio->ch3.bank.size = GBAAudioRegisterBankGetSize(value);
393 audio->ch3.bank.bank = GBAAudioRegisterBankGetBank(value);
394 audio->ch3.bank.enable = GBAAudioRegisterBankGetEnable(value);
395 if (audio->ch3.control.endTime >= 0) {
396 audio->playingCh3 = audio->ch3.bank.enable;
397 }
398}
399
400void GBAAudioWriteSOUND3CNT_HI(struct GBAAudio* audio, uint16_t value) {
401 audio->ch3.wave.length = GBAAudioRegisterBankWaveGetLength(value);
402 audio->ch3.wave.volume = GBAAudioRegisterBankWaveGetVolume(value);
403}
404
405void GBAAudioWriteSOUND3CNT_X(struct GBAAudio* audio, uint16_t value) {
406 audio->ch3.control.rate = GBAAudioRegisterControlGetRate(value);
407 audio->ch3.control.stop = GBAAudioRegisterControlGetStop(value);
408 audio->ch3.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (256 - audio->ch3.wave.length)) >> 8;
409 if (GBAAudioRegisterControlIsRestart(value)) {
410 audio->playingCh3 = audio->ch3.bank.enable;
411 }
412}
413
414void GBAAudioWriteSOUND4CNT_LO(struct GBAAudio* audio, uint16_t value) {
415 if (!_writeEnvelope(&audio->ch4.envelope, value)) {
416 audio->ch4.sample = 0;
417 }
418}
419
420void GBAAudioWriteSOUND4CNT_HI(struct GBAAudio* audio, uint16_t value) {
421 audio->ch4.control.ratio = GBAAudioRegisterCh4ControlGetRatio(value);
422 audio->ch4.control.frequency = GBAAudioRegisterCh4ControlGetFrequency(value);
423 audio->ch4.control.power = GBAAudioRegisterCh4ControlGetPower(value);
424 audio->ch4.control.stop = GBAAudioRegisterCh4ControlGetStop(value);
425 audio->ch4.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch4.envelope.length)) >> 8;
426 if (GBAAudioRegisterCh4ControlIsRestart(value)) {
427 audio->playingCh4 = 1;
428 audio->ch4.envelope.currentVolume = audio->ch4.envelope.initialVolume;
429 if (audio->ch4.envelope.currentVolume > 0) {
430 audio->ch4.envelope.dead = 0;
431 }
432 if (audio->ch4.envelope.stepTime) {
433 audio->ch4.envelope.nextStep = 0;
434 } else {
435 audio->ch4.envelope.nextStep = INT_MAX;
436 }
437 if (audio->ch4.control.power) {
438 audio->ch4.lfsr = 0x40;
439 } else {
440 audio->ch4.lfsr = 0x4000;
441 }
442 audio->nextCh4 = 0;
443 }
444}
445
446void GBAAudioWriteSOUNDCNT_LO(struct GBAAudio* audio, uint16_t value) {
447 audio->volumeRight = GBARegisterSOUNDCNT_LOGetVolumeRight(value);
448 audio->volumeLeft = GBARegisterSOUNDCNT_LOGetVolumeLeft(value);
449 audio->ch1Right = GBARegisterSOUNDCNT_LOGetCh1Right(value);
450 audio->ch2Right = GBARegisterSOUNDCNT_LOGetCh2Right(value);
451 audio->ch3Right = GBARegisterSOUNDCNT_LOGetCh3Right(value);
452 audio->ch4Right = GBARegisterSOUNDCNT_LOGetCh4Right(value);
453 audio->ch1Left = GBARegisterSOUNDCNT_LOGetCh1Left(value);
454 audio->ch2Left = GBARegisterSOUNDCNT_LOGetCh2Left(value);
455 audio->ch3Left = GBARegisterSOUNDCNT_LOGetCh3Left(value);
456 audio->ch4Left = GBARegisterSOUNDCNT_LOGetCh4Left(value);
457}
458
459void GBAAudioWriteSOUNDCNT_HI(struct GBAAudio* audio, uint16_t value) {
460 audio->volume = GBARegisterSOUNDCNT_HIGetVolume(value);
461 audio->volumeChA = GBARegisterSOUNDCNT_HIGetVolumeChA(value);
462 audio->volumeChB = GBARegisterSOUNDCNT_HIGetVolumeChB(value);
463 audio->chARight = GBARegisterSOUNDCNT_HIGetChARight(value);
464 audio->chALeft = GBARegisterSOUNDCNT_HIGetChALeft(value);
465 audio->chATimer = GBARegisterSOUNDCNT_HIGetChATimer(value);
466 audio->chBRight = GBARegisterSOUNDCNT_HIGetChBRight(value);
467 audio->chBLeft = GBARegisterSOUNDCNT_HIGetChBLeft(value);
468 audio->chBTimer = GBARegisterSOUNDCNT_HIGetChBTimer(value);
469 if (GBARegisterSOUNDCNT_HIIsChAReset(value)) {
470 CircleBufferClear(&audio->chA.fifo);
471 }
472 if (GBARegisterSOUNDCNT_HIIsChBReset(value)) {
473 CircleBufferClear(&audio->chB.fifo);
474 }
475}
476
477void GBAAudioWriteSOUNDCNT_X(struct GBAAudio* audio, uint16_t value) {
478 audio->enable = GBARegisterSOUNDCNT_XGetEnable(value);
479}
480
481void GBAAudioWriteSOUNDBIAS(struct GBAAudio* audio, uint16_t value) {
482 audio->soundbias = value;
483}
484
485void GBAAudioWriteWaveRAM(struct GBAAudio* audio, int address, uint32_t value) {
486 audio->ch3.wavedata[address | (!audio->ch3.bank.bank * 4)] = value;
487}
488
489void GBAAudioWriteFIFO(struct GBAAudio* audio, int address, uint32_t value) {
490 struct CircleBuffer* fifo;
491 switch (address) {
492 case REG_FIFO_A_LO:
493 fifo = &audio->chA.fifo;
494 break;
495 case REG_FIFO_B_LO:
496 fifo = &audio->chB.fifo;
497 break;
498 default:
499 GBALog(audio->p, GBA_LOG_ERROR, "Bad FIFO write to address 0x%03x", address);
500 return;
501 }
502 int i;
503 for (i = 0; i < 4; ++i) {
504 while (!CircleBufferWrite8(fifo, value >> (8 * i))) {
505 int8_t dummy;
506 CircleBufferRead8(fifo, &dummy);
507 }
508 }
509}
510
511void GBAAudioSampleFIFO(struct GBAAudio* audio, int fifoId, int32_t cycles) {
512 struct GBAAudioFIFO* channel;
513 if (fifoId == 0) {
514 channel = &audio->chA;
515 } else if (fifoId == 1) {
516 channel = &audio->chB;
517 } else {
518 GBALog(audio->p, GBA_LOG_ERROR, "Bad FIFO write to address 0x%03x", fifoId);
519 return;
520 }
521 if (CircleBufferSize(&channel->fifo) <= 4 * sizeof(int32_t) && channel->dmaSource > 0) {
522 struct GBADMA* dma = &audio->p->memory.dma[channel->dmaSource];
523 if (GBADMARegisterGetTiming(dma->reg) == DMA_TIMING_CUSTOM) {
524 dma->nextCount = 4;
525 dma->nextEvent = 0;
526 dma->reg = GBADMARegisterSetWidth(dma->reg, 1);
527 GBAMemoryUpdateDMAs(audio->p, -cycles);
528 } else {
529 channel->dmaSource = 0;
530 }
531 }
532 CircleBufferRead8(&channel->fifo, (int8_t*) &channel->sample);
533}
534
535#if RESAMPLE_LIBRARY != RESAMPLE_BLIP_BUF
536unsigned GBAAudioCopy(struct GBAAudio* audio, void* left, void* right, unsigned nSamples) {
537 mCoreSyncLockAudio(audio->p->sync);
538 unsigned read = 0;
539 if (left) {
540 unsigned readL = CircleBufferRead(&audio->left, left, nSamples * sizeof(int16_t)) >> 1;
541 if (readL < nSamples) {
542 memset((int16_t*) left + readL, 0, nSamples - readL);
543 }
544 read = readL;
545 }
546 if (right) {
547 unsigned readR = CircleBufferRead(&audio->right, right, nSamples * sizeof(int16_t)) >> 1;
548 if (readR < nSamples) {
549 memset((int16_t*) right + readR, 0, nSamples - readR);
550 }
551 read = read >= readR ? read : readR;
552 }
553 mCoreSyncConsumeAudio(audio->p->sync);
554 return read;
555}
556
557unsigned GBAAudioResampleNN(struct GBAAudio* audio, float ratio, float* drift, struct GBAStereoSample* output, unsigned nSamples) {
558 int16_t left[GBA_AUDIO_SAMPLES];
559 int16_t right[GBA_AUDIO_SAMPLES];
560
561 // toRead is in GBA samples
562 // TODO: Do this with fixed-point math
563 unsigned toRead = ceilf(nSamples / ratio);
564 unsigned totalRead = 0;
565 while (nSamples) {
566 unsigned currentRead = GBA_AUDIO_SAMPLES;
567 if (currentRead > toRead) {
568 currentRead = toRead;
569 }
570 unsigned read = GBAAudioCopy(audio, left, right, currentRead);
571 toRead -= read;
572 unsigned i;
573 for (i = 0; i < read; ++i) {
574 *drift += ratio;
575 while (*drift >= 1.f) {
576 output->left = left[i];
577 output->right = right[i];
578 ++output;
579 ++totalRead;
580 --nSamples;
581 *drift -= 1.f;
582 if (!nSamples) {
583 return totalRead;
584 }
585 }
586 }
587 if (read < currentRead) {
588 memset(output, 0, nSamples * sizeof(struct GBAStereoSample));
589 break;
590 }
591 }
592 return totalRead;
593}
594#endif
595
596bool _writeEnvelope(struct GBAAudioEnvelope* envelope, uint16_t value) {
597 envelope->length = GBAAudioRegisterEnvelopeGetLength(value);
598 envelope->duty = GBAAudioRegisterEnvelopeGetDuty(value);
599 envelope->stepTime = GBAAudioRegisterEnvelopeGetStepTime(value);
600 envelope->direction = GBAAudioRegisterEnvelopeGetDirection(value);
601 envelope->initialVolume = GBAAudioRegisterEnvelopeGetInitialVolume(value);
602 envelope->dead = 0;
603 if (envelope->stepTime) {
604 envelope->nextStep = 0;
605 } else {
606 envelope->nextStep = INT_MAX;
607 if (envelope->initialVolume == 0) {
608 envelope->dead = 1;
609 return false;
610 }
611 }
612 return true;
613}
614
615static int32_t _updateSquareChannel(struct GBAAudioSquareControl* control, int duty) {
616 control->hi = !control->hi;
617 int period = 16 * (2048 - control->frequency);
618 switch (duty) {
619 case 0:
620 return control->hi ? period : period * 7;
621 case 1:
622 return control->hi ? period * 2 : period * 6;
623 case 2:
624 return period * 4;
625 case 3:
626 return control->hi ? period * 6 : period * 2;
627 default:
628 // This should never be hit
629 return period * 4;
630 }
631}
632
633static void _updateEnvelope(struct GBAAudioEnvelope* envelope) {
634 if (envelope->direction) {
635 ++envelope->currentVolume;
636 } else {
637 --envelope->currentVolume;
638 }
639 if (envelope->currentVolume >= 15) {
640 envelope->currentVolume = 15;
641 envelope->nextStep = INT_MAX;
642 } else if (envelope->currentVolume <= 0) {
643 envelope->currentVolume = 0;
644 envelope->dead = 1;
645 envelope->nextStep = INT_MAX;
646 } else {
647 envelope->nextStep += envelope->stepTime * (GBA_ARM7TDMI_FREQUENCY >> 6);
648 }
649}
650
651static bool _updateSweep(struct GBAAudioChannel1* ch) {
652 if (ch->sweep.direction) {
653 int frequency = ch->control.frequency;
654 frequency -= frequency >> ch->sweep.shift;
655 if (frequency >= 0) {
656 ch->control.frequency = frequency;
657 }
658 } else {
659 int frequency = ch->control.frequency;
660 frequency += frequency >> ch->sweep.shift;
661 if (frequency < 2048) {
662 ch->control.frequency = frequency;
663 } else {
664 return false;
665 }
666 }
667 ch->nextSweep += ch->sweep.time * SWEEP_CYCLES;
668 return true;
669}
670
671static int32_t _updateChannel1(struct GBAAudioChannel1* ch) {
672 int timing = _updateSquareChannel(&ch->control, ch->envelope.duty);
673 ch->sample = ch->control.hi * 0x10 - 0x8;
674 ch->sample *= ch->envelope.currentVolume;
675 return timing;
676}
677
678static int32_t _updateChannel2(struct GBAAudioChannel2* ch) {
679 int timing = _updateSquareChannel(&ch->control, ch->envelope.duty);
680 ch->sample = ch->control.hi * 0x10 - 0x8;
681 ch->sample *= ch->envelope.currentVolume;
682 return timing;
683}
684
685static int32_t _updateChannel3(struct GBAAudioChannel3* ch) {
686 int i;
687 int start;
688 int end;
689 int volume;
690 switch (ch->wave.volume) {
691 case 0:
692 volume = 0;
693 break;
694 case 1:
695 volume = 4;
696 break;
697 case 2:
698 volume = 2;
699 break;
700 case 3:
701 volume = 1;
702 break;
703 default:
704 volume = 3;
705 break;
706 }
707 if (ch->bank.size) {
708 start = 7;
709 end = 0;
710 } else if (ch->bank.bank) {
711 start = 7;
712 end = 4;
713 } else {
714 start = 3;
715 end = 0;
716 }
717 uint32_t bitsCarry = ch->wavedata[end] & 0x000000F0;
718 uint32_t bits;
719 for (i = start; i >= end; --i) {
720 bits = ch->wavedata[i] & 0x000000F0;
721 ch->wavedata[i] = ((ch->wavedata[i] & 0x0F0F0F0F) << 4) | ((ch->wavedata[i] & 0xF0F0F000) >> 12);
722 ch->wavedata[i] |= bitsCarry << 20;
723 bitsCarry = bits;
724 }
725 ch->sample = bitsCarry >> 4;
726 ch->sample -= 8;
727 ch->sample *= volume * 4;
728 return 8 * (2048 - ch->control.rate);
729}
730
731static int32_t _updateChannel4(struct GBAAudioChannel4* ch) {
732 int lsb = ch->lfsr & 1;
733 ch->sample = lsb * 0x10 - 0x8;
734 ch->sample *= ch->envelope.currentVolume;
735 ch->lfsr >>= 1;
736 ch->lfsr ^= (lsb * 0x60) << (ch->control.power ? 0 : 8);
737 int timing = ch->control.ratio ? 2 * ch->control.ratio : 1;
738 timing <<= ch->control.frequency;
739 timing *= 32;
740 return timing;
741}
742
743static int _applyBias(struct GBAAudio* audio, int sample) {
744 sample += GBARegisterSOUNDBIASGetBias(audio->soundbias);
745 if (sample >= 0x400) {
746 sample = 0x3FF;
747 } else if (sample < 0) {
748 sample = 0;
749 }
750 return ((sample - GBARegisterSOUNDBIASGetBias(audio->soundbias)) * audio->masterVolume) >> 3;
751}
752
753static void _sample(struct GBAAudio* audio) {
754 int16_t sampleLeft = 0;
755 int16_t sampleRight = 0;
756 int psgShift = 5 - audio->volume;
757
758 if (audio->playingCh1 && !audio->forceDisableCh[0]) {
759 if (audio->ch1Left) {
760 sampleLeft += audio->ch1.sample;
761 }
762
763 if (audio->ch1Right) {
764 sampleRight += audio->ch1.sample;
765 }
766 }
767
768 if (audio->playingCh2 && !audio->forceDisableCh[1]) {
769 if (audio->ch2Left) {
770 sampleLeft += audio->ch2.sample;
771 }
772
773 if (audio->ch2Right) {
774 sampleRight += audio->ch2.sample;
775 }
776 }
777
778 if (audio->playingCh3 && !audio->forceDisableCh[2]) {
779 if (audio->ch3Left) {
780 sampleLeft += audio->ch3.sample;
781 }
782
783 if (audio->ch3Right) {
784 sampleRight += audio->ch3.sample;
785 }
786 }
787
788 if (audio->playingCh4 && !audio->forceDisableCh[3]) {
789 if (audio->ch4Left) {
790 sampleLeft += audio->ch4.sample;
791 }
792
793 if (audio->ch4Right) {
794 sampleRight += audio->ch4.sample;
795 }
796 }
797
798 sampleLeft = (sampleLeft * (1 + audio->volumeLeft)) >> psgShift;
799 sampleRight = (sampleRight * (1 + audio->volumeRight)) >> psgShift;
800
801 if (!audio->forceDisableChA) {
802 if (audio->chALeft) {
803 sampleLeft += (audio->chA.sample << 2) >> !audio->volumeChA;
804 }
805
806 if (audio->chARight) {
807 sampleRight += (audio->chA.sample << 2) >> !audio->volumeChA;
808 }
809 }
810
811 if (!audio->forceDisableChB) {
812 if (audio->chBLeft) {
813 sampleLeft += (audio->chB.sample << 2) >> !audio->volumeChB;
814 }
815
816 if (audio->chBRight) {
817 sampleRight += (audio->chB.sample << 2) >> !audio->volumeChB;
818 }
819 }
820
821 sampleLeft = _applyBias(audio, sampleLeft);
822 sampleRight = _applyBias(audio, sampleRight);
823
824 mCoreSyncLockAudio(audio->p->sync);
825 unsigned produced;
826#if RESAMPLE_LIBRARY != RESAMPLE_BLIP_BUF
827 CircleBufferWrite16(&audio->left, sampleLeft);
828 CircleBufferWrite16(&audio->right, sampleRight);
829 produced = CircleBufferSize(&audio->left) / 2;
830#else
831 if ((size_t) blip_samples_avail(audio->left) < audio->samples) {
832 blip_add_delta(audio->left, audio->clock, sampleLeft - audio->lastLeft);
833 blip_add_delta(audio->right, audio->clock, sampleRight - audio->lastRight);
834 audio->lastLeft = sampleLeft;
835 audio->lastRight = sampleRight;
836 audio->clock += audio->sampleInterval;
837 if (audio->clock >= CLOCKS_PER_FRAME) {
838 blip_end_frame(audio->left, audio->clock);
839 blip_end_frame(audio->right, audio->clock);
840 audio->clock -= CLOCKS_PER_FRAME;
841 }
842 }
843 produced = blip_samples_avail(audio->left);
844#endif
845 if (audio->p->stream && audio->p->stream->postAudioFrame) {
846 audio->p->stream->postAudioFrame(audio->p->stream, sampleLeft, sampleRight);
847 }
848 bool wait = produced >= audio->samples;
849 mCoreSyncProduceAudio(audio->p->sync, wait);
850
851 if (wait && audio->p->stream && audio->p->stream->postAudioBuffer) {
852 audio->p->stream->postAudioBuffer(audio->p->stream, audio);
853 }
854}
855
856void GBAAudioSerialize(const struct GBAAudio* audio, struct GBASerializedState* state) {
857 uint32_t flags = 0;
858
859 flags = GBASerializedAudioFlagsSetCh1Volume(flags, audio->ch1.envelope.currentVolume);
860 flags = GBASerializedAudioFlagsSetCh1Dead(flags, audio->ch1.envelope.dead);
861 flags = GBASerializedAudioFlagsSetCh1Hi(flags, audio->ch1.control.hi);
862 STORE_32(audio->ch1.envelope.nextStep, 0, &state->audio.ch1.envelopeNextStep);
863 STORE_32(audio->ch1.control.nextStep, 0, &state->audio.ch1.waveNextStep);
864 STORE_32(audio->ch1.nextSweep, 0, &state->audio.ch1.sweepNextStep);
865 STORE_32(audio->ch1.control.endTime, 0, &state->audio.ch1.endTime);
866 STORE_32(audio->nextCh1, 0, &state->audio.ch1.nextEvent);
867
868 flags = GBASerializedAudioFlagsSetCh2Volume(flags, audio->ch2.envelope.currentVolume);
869 flags = GBASerializedAudioFlagsSetCh2Dead(flags, audio->ch2.envelope.dead);
870 flags = GBASerializedAudioFlagsSetCh2Hi(flags, audio->ch2.control.hi);
871 STORE_32(audio->ch2.envelope.nextStep, 0, &state->audio.ch2.envelopeNextStep);
872 STORE_32(audio->ch2.control.nextStep, 0, &state->audio.ch2.waveNextStep);
873 STORE_32(audio->ch2.control.endTime, 0, &state->audio.ch2.endTime);
874 STORE_32(audio->nextCh2, 0, &state->audio.ch2.nextEvent);
875
876 memcpy(state->audio.ch3.wavebanks, audio->ch3.wavedata, sizeof(state->audio.ch3.wavebanks));
877 STORE_32(audio->ch3.control.endTime, 0, &state->audio.ch3.endTime);
878 STORE_32(audio->nextCh3, 0, &state->audio.ch3.nextEvent);
879
880 state->audio.flags = GBASerializedAudioFlagsSetCh4Volume(flags, audio->ch4.envelope.currentVolume);
881 state->audio.flags = GBASerializedAudioFlagsSetCh4Dead(flags, audio->ch4.envelope.dead);
882 STORE_32(audio->ch4.envelope.nextStep, 0, &state->audio.ch4.envelopeNextStep);
883 STORE_32(audio->ch4.lfsr, 0, &state->audio.ch4.lfsr);
884 STORE_32(audio->ch4.control.endTime, 0, &state->audio.ch4.endTime);
885 STORE_32(audio->nextCh4, 0, &state->audio.ch4.nextEvent);
886
887 STORE_32(flags, 0, &state->audio.flags);
888
889 CircleBufferDump(&audio->chA.fifo, state->audio.fifoA, sizeof(state->audio.fifoA));
890 CircleBufferDump(&audio->chB.fifo, state->audio.fifoB, sizeof(state->audio.fifoB));
891 uint32_t fifoSize = CircleBufferSize(&audio->chA.fifo);
892 STORE_32(fifoSize, 0, &state->audio.fifoSize);
893
894 STORE_32(audio->nextEvent, 0, &state->audio.nextEvent);
895 STORE_32(audio->eventDiff, 0, &state->audio.eventDiff);
896 STORE_32(audio->nextSample, 0, &state->audio.nextSample);
897}
898
899void GBAAudioDeserialize(struct GBAAudio* audio, const struct GBASerializedState* state) {
900 uint32_t flags;
901 LOAD_32(flags, 0, &state->audio.flags);
902 audio->ch1.envelope.currentVolume = GBASerializedAudioFlagsGetCh1Volume(flags);
903 audio->ch1.envelope.dead = GBASerializedAudioFlagsGetCh1Dead(flags);
904 audio->ch1.control.hi = GBASerializedAudioFlagsGetCh1Hi(flags);
905 LOAD_32(audio->ch1.envelope.nextStep, 0, &state->audio.ch1.envelopeNextStep);
906 LOAD_32(audio->ch1.control.nextStep, 0, &state->audio.ch1.waveNextStep);
907 LOAD_32(audio->ch1.nextSweep, 0, &state->audio.ch1.sweepNextStep);
908 LOAD_32(audio->ch1.control.endTime, 0, &state->audio.ch1.endTime);
909 LOAD_32(audio->nextCh1, 0, &state->audio.ch1.nextEvent);
910
911 audio->ch2.envelope.currentVolume = GBASerializedAudioFlagsGetCh2Volume(flags);
912 audio->ch2.envelope.dead = GBASerializedAudioFlagsGetCh2Dead(flags);
913 audio->ch2.control.hi = GBASerializedAudioFlagsGetCh2Hi(flags);
914 LOAD_32(audio->ch2.envelope.nextStep, 0, &state->audio.ch2.envelopeNextStep);
915 LOAD_32(audio->ch2.control.nextStep, 0, &state->audio.ch2.waveNextStep);
916 LOAD_32(audio->ch2.control.endTime, 0, &state->audio.ch2.endTime);
917 LOAD_32(audio->nextCh2, 0, &state->audio.ch2.nextEvent);
918
919 // TODO: Big endian?
920 memcpy(audio->ch3.wavedata, state->audio.ch3.wavebanks, sizeof(audio->ch3.wavedata));
921 LOAD_32(audio->ch3.control.endTime, 0, &state->audio.ch3.endTime);
922 LOAD_32(audio->nextCh3, 0, &state->audio.ch3.nextEvent);
923
924 audio->ch4.envelope.currentVolume = GBASerializedAudioFlagsGetCh4Volume(flags);
925 audio->ch4.envelope.dead = GBASerializedAudioFlagsGetCh4Dead(flags);
926 LOAD_32(audio->ch4.envelope.nextStep, 0, &state->audio.ch4.envelopeNextStep);
927 LOAD_32(audio->ch4.lfsr, 0, &state->audio.ch4.lfsr);
928 LOAD_32(audio->ch4.control.endTime, 0, &state->audio.ch4.endTime);
929 LOAD_32(audio->nextCh4, 0, &state->audio.ch4.nextEvent);
930
931 CircleBufferClear(&audio->chA.fifo);
932 CircleBufferClear(&audio->chB.fifo);
933 uint32_t fifoSize;
934 LOAD_32(fifoSize, 0, &state->audio.fifoSize);
935 if (state->audio.fifoSize > CircleBufferCapacity(&audio->chA.fifo)) {
936 fifoSize = CircleBufferCapacity(&audio->chA.fifo);
937 }
938 size_t i;
939 for (i = 0; i < fifoSize; ++i) {
940 CircleBufferWrite8(&audio->chA.fifo, state->audio.fifoA[i]);
941 CircleBufferWrite8(&audio->chB.fifo, state->audio.fifoB[i]);
942 }
943
944 LOAD_32(audio->nextEvent, 0, &state->audio.nextEvent);
945 LOAD_32(audio->eventDiff, 0, &state->audio.eventDiff);
946 LOAD_32(audio->nextSample, 0, &state->audio.nextSample);
947}
948
949float GBAAudioCalculateRatio(float inputSampleRate, float desiredFPS, float desiredSampleRate) {
950 return desiredSampleRate * GBA_ARM7TDMI_FREQUENCY / (VIDEO_TOTAL_LENGTH * desiredFPS * inputSampleRate);
951}