src/gb/gb.c (view raw)
1/* Copyright (c) 2013-2016 Jeffrey Pfau
2 *
3 * This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
6#include "gb.h"
7
8#include "gb/io.h"
9#include "gb/mbc.h"
10
11#include "core/core.h"
12#include "core/cheats.h"
13#include "util/crc32.h"
14#include "util/memory.h"
15#include "util/math.h"
16#include "util/patch.h"
17#include "util/vfs.h"
18
19#define CLEANUP_THRESHOLD 15
20
21const uint32_t CGB_LR35902_FREQUENCY = 0x800000;
22const uint32_t SGB_LR35902_FREQUENCY = 0x418B1E;
23
24const uint32_t GB_COMPONENT_MAGIC = 0x400000;
25
26#define DMG_BIOS_CHECKSUM 0xC2F5CC97
27#define DMG_2_BIOS_CHECKSUM 0x59C8598E
28#define CGB_BIOS_CHECKSUM 0x41884E46
29
30mLOG_DEFINE_CATEGORY(GB, "GB");
31
32static void GBInit(void* cpu, struct mCPUComponent* component);
33static void GBInterruptHandlerInit(struct LR35902InterruptHandler* irqh);
34static void GBProcessEvents(struct LR35902Core* cpu);
35static void GBSetInterrupts(struct LR35902Core* cpu, bool enable);
36static void GBIllegal(struct LR35902Core* cpu);
37static void GBStop(struct LR35902Core* cpu);
38
39#ifdef _3DS
40extern uint32_t* romBuffer;
41extern size_t romBufferSize;
42#endif
43
44void GBCreate(struct GB* gb) {
45 gb->d.id = GB_COMPONENT_MAGIC;
46 gb->d.init = GBInit;
47 gb->d.deinit = 0;
48}
49
50static void GBInit(void* cpu, struct mCPUComponent* component) {
51 struct GB* gb = (struct GB*) component;
52 gb->cpu = cpu;
53 gb->sync = NULL;
54
55 GBInterruptHandlerInit(&gb->cpu->irqh);
56 GBMemoryInit(gb);
57
58 gb->video.p = gb;
59 GBVideoInit(&gb->video);
60
61 gb->audio.p = gb;
62 GBAudioInit(&gb->audio, 2048, &gb->memory.io[REG_NR52], GB_AUDIO_DMG); // TODO: Remove magic constant
63
64 gb->sio.p = gb;
65 GBSIOInit(&gb->sio);
66
67 gb->timer.p = gb;
68
69 gb->model = GB_MODEL_AUTODETECT;
70
71 gb->biosVf = 0;
72 gb->romVf = 0;
73 gb->sramVf = 0;
74
75 gb->pristineRom = 0;
76 gb->pristineRomSize = 0;
77 gb->yankedRomSize = 0;
78
79 gb->coreCallbacks = NULL;
80 gb->stream = NULL;
81}
82
83bool GBLoadROM(struct GB* gb, struct VFile* vf) {
84 GBUnloadROM(gb);
85 gb->romVf = vf;
86 gb->pristineRomSize = vf->size(vf);
87 vf->seek(vf, 0, SEEK_SET);
88#ifdef _3DS
89 gb->pristineRom = 0;
90 if (gb->pristineRomSize <= romBufferSize) {
91 gb->pristineRom = romBuffer;
92 vf->read(vf, romBuffer, gb->pristineRomSize);
93 }
94#else
95 gb->pristineRom = vf->map(vf, gb->pristineRomSize, MAP_READ);
96#endif
97 if (!gb->pristineRom) {
98 return false;
99 }
100 gb->yankedRomSize = 0;
101 gb->memory.rom = gb->pristineRom;
102 gb->memory.romBase = gb->memory.rom;
103 gb->memory.romSize = gb->pristineRomSize;
104 gb->romCrc32 = doCrc32(gb->memory.rom, gb->memory.romSize);
105
106 if (gb->cpu) {
107 struct LR35902Core* cpu = gb->cpu;
108 cpu->memory.setActiveRegion(cpu, cpu->pc);
109 }
110
111 // TODO: error check
112 return true;
113}
114
115bool GBLoadSave(struct GB* gb, struct VFile* vf) {
116 gb->sramVf = vf;
117 gb->sramRealVf = vf;
118 return vf;
119}
120
121static void GBSramDeinit(struct GB* gb) {
122 if (gb->sramVf) {
123 gb->sramVf->unmap(gb->sramVf, gb->memory.sram, gb->sramSize);
124 if (gb->memory.mbcType == GB_MBC3_RTC && gb->sramVf == gb->sramRealVf) {
125 GBMBCRTCWrite(gb);
126 }
127 gb->sramVf = NULL;
128 } else if (gb->memory.sram) {
129 mappedMemoryFree(gb->memory.sram, gb->sramSize);
130 }
131 gb->memory.sram = 0;
132}
133
134void GBResizeSram(struct GB* gb, size_t size) {
135 if (gb->memory.sram && size <= gb->sramSize) {
136 return;
137 }
138 mLOG(GB, INFO, "Resizing SRAM to %"PRIz"u bytes", size);
139 struct VFile* vf = gb->sramVf;
140 if (vf) {
141 if (vf == gb->sramRealVf) {
142 ssize_t vfSize = vf->size(vf);
143 if (vfSize >= 0 && (size_t) vfSize < size) {
144 uint8_t extdataBuffer[0x100];
145 if (vfSize & 0xFF) {
146 vf->seek(vf, -(vfSize & 0xFF), SEEK_END);
147 vf->read(vf, extdataBuffer, vfSize & 0xFF);
148 }
149 if (gb->memory.sram) {
150 vf->unmap(vf, gb->memory.sram, gb->sramSize);
151 }
152 vf->truncate(vf, size + (vfSize & 0xFF));
153 if (vfSize & 0xFF) {
154 vf->seek(vf, size, SEEK_SET);
155 vf->write(vf, extdataBuffer, vfSize & 0xFF);
156 }
157 gb->memory.sram = vf->map(vf, size, MAP_WRITE);
158 memset(&gb->memory.sram[gb->sramSize], 0xFF, size - gb->sramSize);
159 } else if (size > gb->sramSize || !gb->memory.sram) {
160 if (gb->memory.sram) {
161 vf->unmap(vf, gb->memory.sram, gb->sramSize);
162 }
163 gb->memory.sram = vf->map(vf, size, MAP_WRITE);
164 }
165 } else {
166 if (gb->memory.sram) {
167 vf->unmap(vf, gb->memory.sram, gb->sramSize);
168 }
169 gb->memory.sram = vf->map(vf, size, MAP_READ);
170 }
171 if (gb->memory.sram == (void*) -1) {
172 gb->memory.sram = NULL;
173 }
174 } else {
175 uint8_t* newSram = anonymousMemoryMap(size);
176 if (gb->memory.sram) {
177 if (size > gb->sramSize) {
178 memcpy(newSram, gb->memory.sram, gb->sramSize);
179 memset(&newSram[gb->sramSize], 0xFF, size - gb->sramSize);
180 } else {
181 memcpy(newSram, gb->memory.sram, size);
182 }
183 mappedMemoryFree(gb->memory.sram, gb->sramSize);
184 } else {
185 memset(newSram, 0xFF, size);
186 }
187 gb->memory.sram = newSram;
188 }
189 if (gb->sramSize < size) {
190 gb->sramSize = size;
191 }
192}
193
194void GBSramClean(struct GB* gb, uint32_t frameCount) {
195 // TODO: Share with GBASavedataClean
196 if (!gb->sramVf || gb->sramVf != gb->sramRealVf) {
197 return;
198 }
199 if (gb->sramDirty & GB_SRAM_DIRT_NEW) {
200 gb->sramDirtAge = frameCount;
201 gb->sramDirty &= ~GB_SRAM_DIRT_NEW;
202 if (!(gb->sramDirty & GB_SRAM_DIRT_SEEN)) {
203 gb->sramDirty |= GB_SRAM_DIRT_SEEN;
204 }
205 } else if ((gb->sramDirty & GB_SRAM_DIRT_SEEN) && frameCount - gb->sramDirtAge > CLEANUP_THRESHOLD) {
206 if (gb->memory.mbcType == GB_MBC3_RTC) {
207 GBMBCRTCWrite(gb);
208 }
209 gb->sramDirty = 0;
210 if (gb->memory.sram && gb->sramVf->sync(gb->sramVf, gb->memory.sram, gb->sramSize)) {
211 mLOG(GB_MEM, INFO, "Savedata synced");
212 } else {
213 mLOG(GB_MEM, INFO, "Savedata failed to sync!");
214 }
215 }
216}
217
218void GBSavedataMask(struct GB* gb, struct VFile* vf, bool writeback) {
219 GBSramDeinit(gb);
220 gb->sramVf = vf;
221 gb->sramMaskWriteback = writeback;
222 gb->memory.sram = vf->map(vf, gb->sramSize, MAP_READ);
223}
224
225void GBSavedataUnmask(struct GB* gb) {
226 if (gb->sramVf == gb->sramRealVf) {
227 return;
228 }
229 struct VFile* vf = gb->sramVf;
230 GBSramDeinit(gb);
231 gb->sramVf = gb->sramRealVf;
232 gb->memory.sram = gb->sramVf->map(gb->sramVf, gb->sramSize, MAP_WRITE);
233 if (gb->sramMaskWriteback) {
234 vf->read(vf, gb->memory.sram, gb->sramSize);
235 }
236 vf->close(vf);
237}
238
239void GBUnloadROM(struct GB* gb) {
240 // TODO: Share with GBAUnloadROM
241 if (gb->memory.rom && gb->pristineRom != gb->memory.rom) {
242 if (gb->yankedRomSize) {
243 gb->yankedRomSize = 0;
244 }
245 mappedMemoryFree(gb->memory.rom, GB_SIZE_CART_MAX);
246 gb->memory.rom = gb->pristineRom;
247 }
248 if (gb->memory.rom && gb->memory.romBase != gb->memory.rom) {
249 free(gb->memory.romBase);
250 }
251 gb->memory.rom = 0;
252
253 if (gb->romVf) {
254#ifndef _3DS
255 gb->romVf->unmap(gb->romVf, gb->pristineRom, gb->pristineRomSize);
256#endif
257 gb->romVf->close(gb->romVf);
258 gb->romVf = 0;
259 }
260 gb->pristineRom = 0;
261
262 GBSavedataUnmask(gb);
263 GBSramDeinit(gb);
264 if (gb->sramRealVf) {
265 gb->sramRealVf->close(gb->sramRealVf);
266 }
267 gb->sramRealVf = NULL;
268 gb->sramVf = NULL;
269}
270
271void GBLoadBIOS(struct GB* gb, struct VFile* vf) {
272 gb->biosVf = vf;
273}
274
275void GBApplyPatch(struct GB* gb, struct Patch* patch) {
276 size_t patchedSize = patch->outputSize(patch, gb->memory.romSize);
277 if (!patchedSize) {
278 return;
279 }
280 if (patchedSize > GB_SIZE_CART_MAX) {
281 patchedSize = GB_SIZE_CART_MAX;
282 }
283 gb->memory.rom = anonymousMemoryMap(GB_SIZE_CART_MAX);
284 if (!patch->applyPatch(patch, gb->pristineRom, gb->pristineRomSize, gb->memory.rom, patchedSize)) {
285 mappedMemoryFree(gb->memory.rom, patchedSize);
286 gb->memory.rom = gb->pristineRom;
287 return;
288 }
289 gb->memory.romSize = patchedSize;
290 gb->romCrc32 = doCrc32(gb->memory.rom, gb->memory.romSize);
291}
292
293void GBDestroy(struct GB* gb) {
294 GBUnloadROM(gb);
295
296 if (gb->biosVf) {
297 gb->biosVf->close(gb->biosVf);
298 gb->biosVf = 0;
299 }
300
301 GBMemoryDeinit(gb);
302 GBVideoDeinit(&gb->video);
303 GBSIODeinit(&gb->sio);
304}
305
306void GBInterruptHandlerInit(struct LR35902InterruptHandler* irqh) {
307 irqh->reset = GBReset;
308 irqh->processEvents = GBProcessEvents;
309 irqh->setInterrupts = GBSetInterrupts;
310 irqh->hitIllegal = GBIllegal;
311 irqh->stop = GBStop;
312 irqh->halt = GBHalt;
313}
314
315static uint32_t _GBBiosCRC32(struct VFile* vf) {
316 ssize_t size = vf->size(vf);
317 if (size <= 0 || size > GB_SIZE_CART_BANK0) {
318 return 0;
319 }
320 void* bios = vf->map(vf, size, MAP_READ);
321 uint32_t biosCrc = doCrc32(bios, size);
322 vf->unmap(vf, bios, size);
323 return biosCrc;
324}
325
326bool GBIsBIOS(struct VFile* vf) {
327 switch (_GBBiosCRC32(vf)) {
328 case DMG_BIOS_CHECKSUM:
329 case DMG_2_BIOS_CHECKSUM:
330 case CGB_BIOS_CHECKSUM:
331 return true;
332 default:
333 return false;
334 }
335}
336
337void GBReset(struct LR35902Core* cpu) {
338 struct GB* gb = (struct GB*) cpu->master;
339 GBDetectModel(gb);
340 if (gb->biosVf) {
341 if (!GBIsBIOS(gb->biosVf)) {
342 gb->biosVf->close(gb->biosVf);
343 gb->biosVf = NULL;
344 } else {
345 gb->biosVf->seek(gb->biosVf, 0, SEEK_SET);
346 gb->memory.romBase = malloc(GB_SIZE_CART_BANK0);
347 ssize_t size = gb->biosVf->read(gb->biosVf, gb->memory.romBase, GB_SIZE_CART_BANK0);
348 memcpy(&gb->memory.romBase[size], &gb->memory.rom[size], GB_SIZE_CART_BANK0 - size);
349 if (size > 0x100) {
350 memcpy(&gb->memory.romBase[0x100], &gb->memory.rom[0x100], sizeof(struct GBCartridge));
351 }
352
353 cpu->a = 0;
354 cpu->f.packed = 0;
355 cpu->c = 0;
356 cpu->e = 0;
357 cpu->h = 0;
358 cpu->l = 0;
359 cpu->sp = 0;
360 cpu->pc = 0;
361 }
362 }
363
364 cpu->b = 0;
365 cpu->d = 0;
366
367 if (!gb->biosVf) {
368 switch (gb->model) {
369 case GB_MODEL_DMG:
370 // TODO: SGB
371 case GB_MODEL_SGB:
372 case GB_MODEL_AUTODETECT: // Silence warnings
373 gb->model = GB_MODEL_DMG;
374 cpu->a = 1;
375 cpu->f.packed = 0xB0;
376 cpu->c = 0x13;
377 cpu->e = 0xD8;
378 cpu->h = 1;
379 cpu->l = 0x4D;
380 break;
381 case GB_MODEL_AGB:
382 cpu->b = 1;
383 // Fall through
384 case GB_MODEL_CGB:
385 cpu->a = 0x11;
386 cpu->f.packed = 0x80;
387 cpu->c = 0;
388 cpu->e = 0x08;
389 cpu->h = 0;
390 cpu->l = 0x7C;
391 break;
392 }
393
394 cpu->sp = 0xFFFE;
395 cpu->pc = 0x100;
396 }
397
398 gb->eiPending = INT_MAX;
399 gb->doubleSpeed = 0;
400
401 cpu->memory.setActiveRegion(cpu, cpu->pc);
402
403 if (gb->yankedRomSize) {
404 gb->memory.romSize = gb->yankedRomSize;
405 gb->yankedRomSize = 0;
406 }
407 GBMemoryReset(gb);
408 GBVideoReset(&gb->video);
409 GBTimerReset(&gb->timer);
410 GBAudioReset(&gb->audio);
411 GBIOReset(gb);
412 GBSIOReset(&gb->sio);
413
414 GBSavedataUnmask(gb);
415}
416
417void GBDetectModel(struct GB* gb) {
418 if (gb->model != GB_MODEL_AUTODETECT) {
419 return;
420 }
421 if (gb->biosVf) {
422 switch (_GBBiosCRC32(gb->biosVf)) {
423 case DMG_BIOS_CHECKSUM:
424 case DMG_2_BIOS_CHECKSUM:
425 gb->model = GB_MODEL_DMG;
426 break;
427 case CGB_BIOS_CHECKSUM:
428 gb->model = GB_MODEL_CGB;
429 break;
430 default:
431 gb->biosVf->close(gb->biosVf);
432 gb->biosVf = NULL;
433 }
434 }
435 if (gb->model == GB_MODEL_AUTODETECT && gb->memory.rom) {
436 const struct GBCartridge* cart = (const struct GBCartridge*) &gb->memory.rom[0x100];
437 if (cart->cgb & 0x80) {
438 gb->model = GB_MODEL_CGB;
439 } else {
440 gb->model = GB_MODEL_DMG;
441 }
442 }
443
444 switch (gb->model) {
445 case GB_MODEL_DMG:
446 case GB_MODEL_SGB:
447 case GB_MODEL_AUTODETECT: //Silence warnings
448 gb->audio.style = GB_AUDIO_DMG;
449 break;
450 case GB_MODEL_AGB:
451 case GB_MODEL_CGB:
452 gb->audio.style = GB_AUDIO_CGB;
453 break;
454 }
455}
456
457void GBUpdateIRQs(struct GB* gb) {
458 int irqs = gb->memory.ie & gb->memory.io[REG_IF];
459 if (!irqs) {
460 return;
461 }
462 gb->cpu->halted = false;
463
464 if (!gb->memory.ime || gb->cpu->irqPending) {
465 return;
466 }
467
468 if (irqs & (1 << GB_IRQ_VBLANK)) {
469 LR35902RaiseIRQ(gb->cpu, GB_VECTOR_VBLANK);
470 gb->memory.io[REG_IF] &= ~(1 << GB_IRQ_VBLANK);
471 return;
472 }
473 if (irqs & (1 << GB_IRQ_LCDSTAT)) {
474 LR35902RaiseIRQ(gb->cpu, GB_VECTOR_LCDSTAT);
475 gb->memory.io[REG_IF] &= ~(1 << GB_IRQ_LCDSTAT);
476 return;
477 }
478 if (irqs & (1 << GB_IRQ_TIMER)) {
479 LR35902RaiseIRQ(gb->cpu, GB_VECTOR_TIMER);
480 gb->memory.io[REG_IF] &= ~(1 << GB_IRQ_TIMER);
481 return;
482 }
483 if (irqs & (1 << GB_IRQ_SIO)) {
484 LR35902RaiseIRQ(gb->cpu, GB_VECTOR_SIO);
485 gb->memory.io[REG_IF] &= ~(1 << GB_IRQ_SIO);
486 return;
487 }
488 if (irqs & (1 << GB_IRQ_KEYPAD)) {
489 LR35902RaiseIRQ(gb->cpu, GB_VECTOR_KEYPAD);
490 gb->memory.io[REG_IF] &= ~(1 << GB_IRQ_KEYPAD);
491 }
492}
493
494void GBProcessEvents(struct LR35902Core* cpu) {
495 struct GB* gb = (struct GB*) cpu->master;
496 do {
497 int32_t cycles = cpu->nextEvent;
498 int32_t nextEvent = INT_MAX;
499 int32_t testEvent;
500
501 if (gb->eiPending != INT_MAX) {
502 gb->eiPending -= cycles;
503 if (gb->eiPending <= 0) {
504 gb->memory.ime = true;
505 GBUpdateIRQs(gb);
506 gb->eiPending = INT_MAX;
507 } else {
508 nextEvent = gb->eiPending;
509 }
510 }
511
512 testEvent = GBVideoProcessEvents(&gb->video, cycles >> gb->doubleSpeed);
513 if (testEvent != INT_MAX) {
514 testEvent <<= gb->doubleSpeed;
515 if (testEvent < nextEvent) {
516 nextEvent = testEvent;
517 }
518 }
519
520 testEvent = GBAudioProcessEvents(&gb->audio, cycles >> gb->doubleSpeed);
521 if (testEvent != INT_MAX) {
522 testEvent <<= gb->doubleSpeed;
523 if (testEvent < nextEvent) {
524 nextEvent = testEvent;
525 }
526 }
527
528 testEvent = GBTimerProcessEvents(&gb->timer, cycles);
529 if (testEvent < nextEvent) {
530 nextEvent = testEvent;
531 }
532
533 testEvent = GBSIOProcessEvents(&gb->sio, cycles);
534 if (testEvent < nextEvent) {
535 nextEvent = testEvent;
536 }
537
538 testEvent = GBMemoryProcessEvents(gb, cycles);
539 if (testEvent < nextEvent) {
540 nextEvent = testEvent;
541 }
542
543 cpu->cycles -= cycles;
544 cpu->nextEvent = nextEvent;
545
546 if (cpu->halted) {
547 cpu->cycles = cpu->nextEvent;
548 if (!gb->memory.ie || !gb->memory.ime) {
549 break;
550 }
551 }
552 } while (cpu->cycles >= cpu->nextEvent);
553}
554
555void GBSetInterrupts(struct LR35902Core* cpu, bool enable) {
556 struct GB* gb = (struct GB*) cpu->master;
557 if (!enable) {
558 gb->memory.ime = enable;
559 gb->eiPending = INT_MAX;
560 GBUpdateIRQs(gb);
561 } else {
562 if (cpu->nextEvent > cpu->cycles + 4) {
563 cpu->nextEvent = cpu->cycles + 4;
564 }
565 gb->eiPending = cpu->cycles + 4;
566 }
567}
568
569void GBHalt(struct LR35902Core* cpu) {
570 if (!cpu->irqPending) {
571 cpu->cycles = cpu->nextEvent;
572 cpu->halted = true;
573 }
574}
575
576void GBStop(struct LR35902Core* cpu) {
577 struct GB* gb = (struct GB*) cpu->master;
578 if (cpu->bus) {
579 mLOG(GB, GAME_ERROR, "Hit illegal stop at address %04X:%02X\n", cpu->pc, cpu->bus);
580 }
581 if (gb->memory.io[REG_KEY1] & 1) {
582 gb->doubleSpeed ^= 1;
583 gb->memory.io[REG_KEY1] = 0;
584 gb->memory.io[REG_KEY1] |= gb->doubleSpeed << 7;
585 } else if (cpu->bus) {
586 if (cpu->components && cpu->components[CPU_COMPONENT_DEBUGGER]) {
587 struct mDebuggerEntryInfo info = {
588 .address = cpu->pc - 1,
589 .opcode = 0x1000 | cpu->bus
590 };
591 mDebuggerEnter((struct mDebugger*) cpu->components[CPU_COMPONENT_DEBUGGER], DEBUGGER_ENTER_ILLEGAL_OP, &info);
592 }
593 // Hang forever
594 gb->memory.ime = 0;
595 cpu->pc -= 2;
596 }
597 // TODO: Actually stop
598}
599
600void GBIllegal(struct LR35902Core* cpu) {
601 struct GB* gb = (struct GB*) cpu->master;
602 mLOG(GB, GAME_ERROR, "Hit illegal opcode at address %04X:%02X\n", cpu->pc, cpu->bus);
603 if (cpu->components && cpu->components[CPU_COMPONENT_DEBUGGER]) {
604 struct mDebuggerEntryInfo info = {
605 .address = cpu->pc,
606 .opcode = cpu->bus
607 };
608 mDebuggerEnter((struct mDebugger*) cpu->components[CPU_COMPONENT_DEBUGGER], DEBUGGER_ENTER_ILLEGAL_OP, &info);
609 }
610 // Hang forever
611 gb->memory.ime = 0;
612 --cpu->pc;
613}
614
615bool GBIsROM(struct VFile* vf) {
616 vf->seek(vf, 0x104, SEEK_SET);
617 uint8_t header[4];
618 static const uint8_t knownHeader[4] = { 0xCE, 0xED, 0x66, 0x66};
619
620 if (vf->read(vf, &header, sizeof(header)) < (ssize_t) sizeof(header)) {
621 return false;
622 }
623 if (memcmp(header, knownHeader, sizeof(header))) {
624 return false;
625 }
626 return true;
627}
628
629void GBGetGameTitle(const struct GB* gb, char* out) {
630 const struct GBCartridge* cart = NULL;
631 if (gb->memory.rom) {
632 cart = (const struct GBCartridge*) &gb->memory.rom[0x100];
633 }
634 if (gb->pristineRom) {
635 cart = (const struct GBCartridge*) &((uint8_t*) gb->pristineRom)[0x100];
636 }
637 if (!cart) {
638 return;
639 }
640 if (cart->oldLicensee != 0x33) {
641 memcpy(out, cart->titleLong, 16);
642 } else {
643 memcpy(out, cart->titleShort, 11);
644 }
645}
646
647void GBGetGameCode(const struct GB* gb, char* out) {
648 memset(out, 0, 8);
649 const struct GBCartridge* cart = NULL;
650 if (gb->memory.rom) {
651 cart = (const struct GBCartridge*) &gb->memory.rom[0x100];
652 }
653 if (gb->pristineRom) {
654 cart = (const struct GBCartridge*) &((uint8_t*) gb->pristineRom)[0x100];
655 }
656 if (!cart) {
657 return;
658 }
659 if (cart->cgb == 0xC0) {
660 memcpy(out, "CGB-????", 8);
661 } else {
662 memcpy(out, "DMG-????", 8);
663 }
664 if (cart->oldLicensee == 0x33) {
665 memcpy(&out[4], cart->maker, 4);
666 }
667}
668
669void GBFrameEnded(struct GB* gb) {
670 GBSramClean(gb, gb->video.frameCounter);
671
672 if (gb->cpu->components && gb->cpu->components[CPU_COMPONENT_CHEAT_DEVICE]) {
673 struct mCheatDevice* device = (struct mCheatDevice*) gb->cpu->components[CPU_COMPONENT_CHEAT_DEVICE];
674 size_t i;
675 for (i = 0; i < mCheatSetsSize(&device->cheats); ++i) {
676 struct mCheatSet* cheats = *mCheatSetsGetPointer(&device->cheats, i);
677 mCheatRefresh(device, cheats);
678 }
679 }
680}