all repos — mgba @ 673f4aa1492ac9a01b081b083af0c2ba1bca008c

mGBA Game Boy Advance Emulator

src/gb/memory.c (view raw)

  1/* Copyright (c) 2013-2016 Jeffrey Pfau
  2 *
  3 * This Source Code Form is subject to the terms of the Mozilla Public
  4 * License, v. 2.0. If a copy of the MPL was not distributed with this
  5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  6#include <mgba/internal/gb/memory.h>
  7
  8#include <mgba/core/interface.h>
  9#include <mgba/internal/gb/gb.h>
 10#include <mgba/internal/gb/io.h>
 11#include <mgba/internal/gb/mbc.h>
 12#include <mgba/internal/gb/serialize.h>
 13#include <mgba/internal/sm83/sm83.h>
 14
 15#include <mgba-util/memory.h>
 16
 17mLOG_DEFINE_CATEGORY(GB_MEM, "GB Memory", "gb.memory");
 18
 19static const uint8_t _yankBuffer[] = { 0xFF };
 20
 21enum GBBus {
 22	GB_BUS_CPU,
 23	GB_BUS_MAIN,
 24	GB_BUS_VRAM,
 25	GB_BUS_RAM
 26};
 27
 28static const enum GBBus _oamBlockDMG[] = {
 29	GB_BUS_MAIN, // 0x0000
 30	GB_BUS_MAIN, // 0x2000
 31	GB_BUS_MAIN, // 0x4000
 32	GB_BUS_MAIN, // 0x6000
 33	GB_BUS_VRAM, // 0x8000
 34	GB_BUS_MAIN, // 0xA000
 35	GB_BUS_MAIN, // 0xC000
 36	GB_BUS_CPU, // 0xE000
 37};
 38
 39static const enum GBBus _oamBlockCGB[] = {
 40	GB_BUS_MAIN, // 0x0000
 41	GB_BUS_MAIN, // 0x2000
 42	GB_BUS_MAIN, // 0x4000
 43	GB_BUS_MAIN, // 0x6000
 44	GB_BUS_VRAM, // 0x8000
 45	GB_BUS_MAIN, // 0xA000
 46	GB_BUS_RAM, // 0xC000
 47	GB_BUS_CPU // 0xE000
 48};
 49
 50static const uint8_t _blockedRegion[1] = { 0xFF };
 51
 52static void _pristineCow(struct GB* gba);
 53
 54static uint8_t GBFastLoad8(struct SM83Core* cpu, uint16_t address) {
 55	if (UNLIKELY(address >= cpu->memory.activeRegionEnd)) {
 56		cpu->memory.setActiveRegion(cpu, address);
 57		return cpu->memory.cpuLoad8(cpu, address);
 58	}
 59	return cpu->memory.activeRegion[address & cpu->memory.activeMask];
 60}
 61
 62static void GBSetActiveRegion(struct SM83Core* cpu, uint16_t address) {
 63	struct GB* gb = (struct GB*) cpu->master;
 64	struct GBMemory* memory = &gb->memory;
 65	switch (address >> 12) {
 66	case GB_REGION_CART_BANK0:
 67	case GB_REGION_CART_BANK0 + 1:
 68	case GB_REGION_CART_BANK0 + 2:
 69	case GB_REGION_CART_BANK0 + 3:
 70		cpu->memory.cpuLoad8 = GBFastLoad8;
 71		cpu->memory.activeRegion = memory->romBase;
 72		cpu->memory.activeRegionEnd = GB_BASE_CART_BANK1;
 73		cpu->memory.activeMask = GB_SIZE_CART_BANK0 - 1;
 74		if (gb->memory.romSize < GB_SIZE_CART_BANK0) {
 75			if (address >= gb->memory.romSize) {
 76				cpu->memory.activeRegion = _yankBuffer;
 77				cpu->memory.activeMask = 0;
 78			} else {
 79				cpu->memory.activeRegionEnd = gb->memory.romSize;
 80			}
 81		}
 82		break;
 83	case GB_REGION_CART_BANK1:
 84	case GB_REGION_CART_BANK1 + 1:
 85	case GB_REGION_CART_BANK1 + 2:
 86	case GB_REGION_CART_BANK1 + 3:
 87		cpu->memory.cpuLoad8 = GBFastLoad8;
 88		if (gb->memory.mbcType != GB_MBC6) {
 89			cpu->memory.activeRegion = memory->romBank;
 90			cpu->memory.activeRegionEnd = GB_BASE_VRAM;
 91			cpu->memory.activeMask = GB_SIZE_CART_BANK0 - 1;
 92		} else {
 93			cpu->memory.activeMask = GB_SIZE_CART_HALFBANK - 1;
 94			if (address & 0x2000) {
 95				cpu->memory.activeRegion = memory->mbcState.mbc6.romBank1;
 96				cpu->memory.activeRegionEnd = GB_BASE_VRAM;
 97			} else {
 98				cpu->memory.activeRegion = memory->romBank;
 99				cpu->memory.activeRegionEnd = GB_BASE_CART_BANK1 + 0x2000;
100			}
101		}
102		if (gb->memory.romSize < GB_SIZE_CART_BANK0 * 2) {
103			if (address >= gb->memory.romSize) {
104				cpu->memory.activeRegion = _yankBuffer;
105				cpu->memory.activeMask = 0;
106			} else {
107				cpu->memory.activeRegionEnd = gb->memory.romSize;
108			}
109		}
110		break;
111	default:
112		cpu->memory.cpuLoad8 = GBLoad8;
113		break;
114	}
115	if (gb->memory.dmaRemaining) {
116		const enum GBBus* block = gb->model < GB_MODEL_CGB ? _oamBlockDMG : _oamBlockCGB;
117		enum GBBus dmaBus = block[memory->dmaSource >> 13];
118		enum GBBus accessBus = block[address >> 13];
119		if ((dmaBus != GB_BUS_CPU && dmaBus == accessBus) || (address >= GB_BASE_OAM && address < GB_BASE_UNUSABLE)) {
120			cpu->memory.activeRegion = _blockedRegion;
121			cpu->memory.activeMask = 0;
122		}
123	}
124}
125
126static void _GBMemoryDMAService(struct mTiming* timing, void* context, uint32_t cyclesLate);
127static void _GBMemoryHDMAService(struct mTiming* timing, void* context, uint32_t cyclesLate);
128
129void GBMemoryInit(struct GB* gb) {
130	struct SM83Core* cpu = gb->cpu;
131	cpu->memory.cpuLoad8 = GBLoad8;
132	cpu->memory.load8 = GBLoad8;
133	cpu->memory.store8 = GBStore8;
134	cpu->memory.currentSegment = GBCurrentSegment;
135	cpu->memory.setActiveRegion = GBSetActiveRegion;
136
137	gb->memory.wram = 0;
138	gb->memory.wramBank = 0;
139	gb->memory.rom = 0;
140	gb->memory.romBank = 0;
141	gb->memory.romSize = 0;
142	gb->memory.sram = 0;
143	gb->memory.mbcType = GB_MBC_AUTODETECT;
144	gb->memory.mbcRead = NULL;
145	gb->memory.mbcWrite = NULL;
146
147	gb->memory.rtc = NULL;
148	gb->memory.rotation = NULL;
149	gb->memory.rumble = NULL;
150	gb->memory.cam = NULL;
151
152	GBIOInit(gb);
153}
154
155void GBMemoryDeinit(struct GB* gb) {
156	mappedMemoryFree(gb->memory.wram, GB_SIZE_WORKING_RAM);
157	if (gb->memory.rom) {
158		mappedMemoryFree(gb->memory.rom, gb->memory.romSize);
159	}
160}
161
162void GBMemoryReset(struct GB* gb) {
163	if (gb->memory.wram) {
164		mappedMemoryFree(gb->memory.wram, GB_SIZE_WORKING_RAM);
165	}
166	gb->memory.wram = anonymousMemoryMap(GB_SIZE_WORKING_RAM);
167	if (gb->model >= GB_MODEL_CGB) {
168		uint32_t* base = (uint32_t*) gb->memory.wram;
169		size_t i;
170		uint32_t pattern = 0;
171		for (i = 0; i < GB_SIZE_WORKING_RAM / 4; i += 4) {
172			if ((i & 0x1FF) == 0) {
173				pattern = ~pattern;
174			}
175			base[i + 0] = pattern;
176			base[i + 1] = pattern;
177			base[i + 2] = ~pattern;
178			base[i + 3] = ~pattern;
179		}
180	}
181	GBMemorySwitchWramBank(&gb->memory, 1);
182	gb->memory.romBank = &gb->memory.rom[GB_SIZE_CART_BANK0];
183	gb->memory.currentBank = 1;
184	gb->memory.sramCurrentBank = 0;
185
186	gb->memory.ime = false;
187	gb->memory.ie = 0;
188
189	gb->memory.dmaRemaining = 0;
190	gb->memory.dmaSource = 0;
191	gb->memory.dmaDest = 0;
192	gb->memory.hdmaRemaining = 0;
193	gb->memory.hdmaSource = 0;
194	gb->memory.hdmaDest = 0;
195	gb->memory.isHdma = false;
196
197
198	gb->memory.dmaEvent.context = gb;
199	gb->memory.dmaEvent.name = "GB DMA";
200	gb->memory.dmaEvent.callback = _GBMemoryDMAService;
201	gb->memory.dmaEvent.priority = 0x40;
202	gb->memory.hdmaEvent.context = gb;
203	gb->memory.hdmaEvent.name = "GB HDMA";
204	gb->memory.hdmaEvent.callback = _GBMemoryHDMAService;
205	gb->memory.hdmaEvent.priority = 0x41;
206
207	memset(&gb->memory.hram, 0, sizeof(gb->memory.hram));
208
209	memset(&gb->memory.mbcState, 0, sizeof(gb->memory.mbcState));
210	GBMBCInit(gb);
211	switch (gb->memory.mbcType) {
212	case GB_MBC1:
213		gb->memory.mbcState.mbc1.mode = 0;
214		break;
215	case GB_MBC6:
216		GBMBCSwitchHalfBank(gb, 0, 2);
217		GBMBCSwitchHalfBank(gb, 1, 3);
218		gb->memory.mbcState.mbc6.sramAccess = false;
219		GBMBCSwitchSramHalfBank(gb, 0, 0);
220		GBMBCSwitchSramHalfBank(gb, 0, 1);
221		break;
222	case GB_MMM01:
223		GBMBCSwitchBank0(gb, gb->memory.romSize / GB_SIZE_CART_BANK0 - 2);
224		GBMBCSwitchBank(gb, gb->memory.romSize / GB_SIZE_CART_BANK0 - 1);
225		break;
226	default:
227		break;
228	}
229	gb->memory.sramBank = gb->memory.sram;
230
231	if (!gb->memory.wram) {
232		GBMemoryDeinit(gb);
233	}
234}
235
236void GBMemorySwitchWramBank(struct GBMemory* memory, int bank) {
237	bank &= 7;
238	if (!bank) {
239		bank = 1;
240	}
241	memory->wramBank = &memory->wram[GB_SIZE_WORKING_RAM_BANK0 * bank];
242	memory->wramCurrentBank = bank;
243}
244
245uint8_t GBLoad8(struct SM83Core* cpu, uint16_t address) {
246	struct GB* gb = (struct GB*) cpu->master;
247	struct GBMemory* memory = &gb->memory;
248	if (gb->memory.dmaRemaining) {
249		const enum GBBus* block = gb->model < GB_MODEL_CGB ? _oamBlockDMG : _oamBlockCGB;
250		enum GBBus dmaBus = block[memory->dmaSource >> 13];
251		enum GBBus accessBus = block[address >> 13];
252		if (dmaBus != GB_BUS_CPU && dmaBus == accessBus) {
253			return 0xFF;
254		}
255		if (address >= GB_BASE_OAM && address < GB_BASE_IO) {
256			return 0xFF;
257		}
258	}
259	switch (address >> 12) {
260	case GB_REGION_CART_BANK0:
261	case GB_REGION_CART_BANK0 + 1:
262	case GB_REGION_CART_BANK0 + 2:
263	case GB_REGION_CART_BANK0 + 3:
264		if (address >= memory->romSize) {
265			return 0xFF;
266		}
267		return memory->romBase[address & (GB_SIZE_CART_BANK0 - 1)];
268	case GB_REGION_CART_BANK1 + 2:
269	case GB_REGION_CART_BANK1 + 3:
270		if (memory->mbcType == GB_MBC6) {
271			return memory->mbcState.mbc6.romBank1[address & (GB_SIZE_CART_HALFBANK - 1)];
272		}
273		// Fall through
274	case GB_REGION_CART_BANK1:
275	case GB_REGION_CART_BANK1 + 1:
276		if (address >= memory->romSize) {
277			return 0xFF;
278		}
279		return memory->romBank[address & (GB_SIZE_CART_BANK0 - 1)];
280	case GB_REGION_VRAM:
281	case GB_REGION_VRAM + 1:
282		if (gb->video.mode != 3) {
283			return gb->video.vramBank[address & (GB_SIZE_VRAM_BANK0 - 1)];
284		}
285		return 0xFF;
286	case GB_REGION_EXTERNAL_RAM:
287	case GB_REGION_EXTERNAL_RAM + 1:
288		if (memory->rtcAccess) {
289			return memory->rtcRegs[memory->activeRtcReg];
290		} else if (memory->mbcRead) {
291			return memory->mbcRead(memory, address);
292		} else if (memory->sramAccess && memory->sram) {
293			return memory->sramBank[address & (GB_SIZE_EXTERNAL_RAM - 1)];
294		} else if (memory->mbcType == GB_HuC3) {
295			return 0x01; // TODO: Is this supposed to be the current SRAM bank?
296		}
297		return 0xFF;
298	case GB_REGION_WORKING_RAM_BANK0:
299	case GB_REGION_WORKING_RAM_BANK0 + 2:
300		return memory->wram[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
301	case GB_REGION_WORKING_RAM_BANK1:
302		return memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
303	default:
304		if (address < GB_BASE_OAM) {
305			return memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
306		}
307		if (address < GB_BASE_UNUSABLE) {
308			if (gb->video.mode < 2) {
309				return gb->video.oam.raw[address & 0xFF];
310			}
311			return 0xFF;
312		}
313		if (address < GB_BASE_IO) {
314			mLOG(GB_MEM, GAME_ERROR, "Attempt to read from unusable memory: %04X", address);
315			return 0xFF;
316		}
317		if (address < GB_BASE_HRAM) {
318			return GBIORead(gb, address & (GB_SIZE_IO - 1));
319		}
320		if (address < GB_BASE_IE) {
321			return memory->hram[address & GB_SIZE_HRAM];
322		}
323		return GBIORead(gb, REG_IE);
324	}
325}
326
327void GBStore8(struct SM83Core* cpu, uint16_t address, int8_t value) {
328	struct GB* gb = (struct GB*) cpu->master;
329	struct GBMemory* memory = &gb->memory;
330	if (gb->memory.dmaRemaining) {
331		const enum GBBus* block = gb->model < GB_MODEL_CGB ? _oamBlockDMG : _oamBlockCGB;
332		enum GBBus dmaBus = block[memory->dmaSource >> 13];
333		enum GBBus accessBus = block[address >> 13];
334		if (dmaBus != GB_BUS_CPU && dmaBus == accessBus) {
335			return;
336		}
337		if (address >= GB_BASE_OAM && address < GB_BASE_UNUSABLE) {
338			return;
339		}
340	}
341	switch (address >> 12) {
342	case GB_REGION_CART_BANK0:
343	case GB_REGION_CART_BANK0 + 1:
344	case GB_REGION_CART_BANK0 + 2:
345	case GB_REGION_CART_BANK0 + 3:
346	case GB_REGION_CART_BANK1:
347	case GB_REGION_CART_BANK1 + 1:
348	case GB_REGION_CART_BANK1 + 2:
349	case GB_REGION_CART_BANK1 + 3:
350		memory->mbcWrite(gb, address, value);
351		cpu->memory.setActiveRegion(cpu, cpu->pc);
352		return;
353	case GB_REGION_VRAM:
354	case GB_REGION_VRAM + 1:
355		if (gb->video.mode != 3) {
356			gb->video.renderer->writeVRAM(gb->video.renderer, (address & (GB_SIZE_VRAM_BANK0 - 1)) | (GB_SIZE_VRAM_BANK0 * gb->video.vramCurrentBank));
357			gb->video.vramBank[address & (GB_SIZE_VRAM_BANK0 - 1)] = value;
358		}
359		return;
360	case GB_REGION_EXTERNAL_RAM:
361	case GB_REGION_EXTERNAL_RAM + 1:
362		if (memory->rtcAccess) {
363			memory->rtcRegs[memory->activeRtcReg] = value;
364		} else if (memory->sramAccess && memory->sram && memory->mbcType != GB_MBC2) {
365			memory->sramBank[address & (GB_SIZE_EXTERNAL_RAM - 1)] = value;
366		} else {
367			memory->mbcWrite(gb, address, value);
368		}
369		gb->sramDirty |= GB_SRAM_DIRT_NEW;
370		return;
371	case GB_REGION_WORKING_RAM_BANK0:
372	case GB_REGION_WORKING_RAM_BANK0 + 2:
373		memory->wram[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)] = value;
374		return;
375	case GB_REGION_WORKING_RAM_BANK1:
376		memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)] = value;
377		return;
378	default:
379		if (address < GB_BASE_OAM) {
380			memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)] = value;
381		} else if (address < GB_BASE_UNUSABLE) {
382			if (gb->video.mode < 2) {
383				gb->video.oam.raw[address & 0xFF] = value;
384				gb->video.renderer->writeOAM(gb->video.renderer, address & 0xFF);
385			}
386		} else if (address < GB_BASE_IO) {
387			mLOG(GB_MEM, GAME_ERROR, "Attempt to write to unusable memory: %04X:%02X", address, value);
388		} else if (address < GB_BASE_HRAM) {
389			GBIOWrite(gb, address & (GB_SIZE_IO - 1), value);
390		} else if (address < GB_BASE_IE) {
391			memory->hram[address & GB_SIZE_HRAM] = value;
392		} else {
393			GBIOWrite(gb, REG_IE, value);
394		}
395	}
396}
397
398int GBCurrentSegment(struct SM83Core* cpu, uint16_t address) {
399	struct GB* gb = (struct GB*) cpu->master;
400	struct GBMemory* memory = &gb->memory;
401	switch (address >> 12) {
402	case GB_REGION_CART_BANK0:
403	case GB_REGION_CART_BANK0 + 1:
404	case GB_REGION_CART_BANK0 + 2:
405	case GB_REGION_CART_BANK0 + 3:
406		return 0;
407	case GB_REGION_CART_BANK1:
408	case GB_REGION_CART_BANK1 + 1:
409	case GB_REGION_CART_BANK1 + 2:
410	case GB_REGION_CART_BANK1 + 3:
411		return memory->currentBank;
412	case GB_REGION_VRAM:
413	case GB_REGION_VRAM + 1:
414		return gb->video.vramCurrentBank;
415	case GB_REGION_EXTERNAL_RAM:
416	case GB_REGION_EXTERNAL_RAM + 1:
417		return memory->sramCurrentBank;
418	case GB_REGION_WORKING_RAM_BANK0:
419	case GB_REGION_WORKING_RAM_BANK0 + 2:
420		return 0;
421	case GB_REGION_WORKING_RAM_BANK1:
422		return memory->wramCurrentBank;
423	default:
424		return 0;
425	}
426}
427
428uint8_t GBView8(struct SM83Core* cpu, uint16_t address, int segment) {
429	struct GB* gb = (struct GB*) cpu->master;
430	struct GBMemory* memory = &gb->memory;
431	switch (address >> 12) {
432	case GB_REGION_CART_BANK0:
433	case GB_REGION_CART_BANK0 + 1:
434	case GB_REGION_CART_BANK0 + 2:
435	case GB_REGION_CART_BANK0 + 3:
436		return memory->romBase[address & (GB_SIZE_CART_BANK0 - 1)];
437	case GB_REGION_CART_BANK1:
438	case GB_REGION_CART_BANK1 + 1:
439	case GB_REGION_CART_BANK1 + 2:
440	case GB_REGION_CART_BANK1 + 3:
441		if (segment < 0) {
442			return memory->romBank[address & (GB_SIZE_CART_BANK0 - 1)];
443		} else if ((size_t) segment * GB_SIZE_CART_BANK0 < memory->romSize) {
444			return memory->rom[(address & (GB_SIZE_CART_BANK0 - 1)) + segment * GB_SIZE_CART_BANK0];
445		} else {
446			return 0xFF;
447		}
448	case GB_REGION_VRAM:
449	case GB_REGION_VRAM + 1:
450		if (segment < 0) {
451			return gb->video.vramBank[address & (GB_SIZE_VRAM_BANK0 - 1)];
452		} else if (segment < 2) {
453			return gb->video.vram[(address & (GB_SIZE_VRAM_BANK0 - 1)) + segment *GB_SIZE_VRAM_BANK0];
454		} else {
455			return 0xFF;
456		}
457	case GB_REGION_EXTERNAL_RAM:
458	case GB_REGION_EXTERNAL_RAM + 1:
459		if (memory->rtcAccess) {
460			return memory->rtcRegs[memory->activeRtcReg];
461		} else if (memory->sramAccess) {
462			if (segment < 0 && memory->sram) {
463				return memory->sramBank[address & (GB_SIZE_EXTERNAL_RAM - 1)];
464			} else if ((size_t) segment * GB_SIZE_EXTERNAL_RAM < gb->sramSize) {
465				return memory->sram[(address & (GB_SIZE_EXTERNAL_RAM - 1)) + segment *GB_SIZE_EXTERNAL_RAM];
466			} else {
467				return 0xFF;
468			}
469		} else if (memory->mbcRead) {
470			return memory->mbcRead(memory, address);
471		} else if (memory->mbcType == GB_HuC3) {
472			return 0x01; // TODO: Is this supposed to be the current SRAM bank?
473		}
474		return 0xFF;
475	case GB_REGION_WORKING_RAM_BANK0:
476	case GB_REGION_WORKING_RAM_BANK0 + 2:
477		return memory->wram[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
478	case GB_REGION_WORKING_RAM_BANK1:
479		if (segment < 0) {
480			return memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
481		} else if (segment < 8) {
482			return memory->wram[(address & (GB_SIZE_WORKING_RAM_BANK0 - 1)) + segment *GB_SIZE_WORKING_RAM_BANK0];
483		} else {
484			return 0xFF;
485		}
486	default:
487		if (address < GB_BASE_OAM) {
488			return memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
489		}
490		if (address < GB_BASE_UNUSABLE) {
491			if (gb->video.mode < 2) {
492				return gb->video.oam.raw[address & 0xFF];
493			}
494			return 0xFF;
495		}
496		if (address < GB_BASE_IO) {
497			mLOG(GB_MEM, GAME_ERROR, "Attempt to read from unusable memory: %04X", address);
498			if (gb->video.mode < 2) {
499				switch (gb->model) {
500				case GB_MODEL_AGB:
501					return (address & 0xF0) | ((address >> 4) & 0xF);
502				case GB_MODEL_CGB:
503					// TODO: R/W behavior
504					return 0x00;
505				default:
506					return 0x00;
507				}
508			}
509			return 0xFF;
510		}
511		if (address < GB_BASE_HRAM) {
512			return GBIORead(gb, address & (GB_SIZE_IO - 1));
513		}
514		if (address < GB_BASE_IE) {
515			return memory->hram[address & GB_SIZE_HRAM];
516		}
517		return GBIORead(gb, REG_IE);
518	}
519}
520
521void GBMemoryDMA(struct GB* gb, uint16_t base) {
522	if (base > 0xF100) {
523		return;
524	}
525	mTimingDeschedule(&gb->timing, &gb->memory.dmaEvent);
526	mTimingSchedule(&gb->timing, &gb->memory.dmaEvent, 8);
527	if (gb->cpu->cycles + 8 < gb->cpu->nextEvent) {
528		gb->cpu->nextEvent = gb->cpu->cycles + 8;
529	}
530	gb->memory.dmaSource = base;
531	gb->memory.dmaDest = 0;
532	gb->memory.dmaRemaining = 0xA0;
533}
534
535uint8_t GBMemoryWriteHDMA5(struct GB* gb, uint8_t value) {
536	gb->memory.hdmaSource = gb->memory.io[REG_HDMA1] << 8;
537	gb->memory.hdmaSource |= gb->memory.io[REG_HDMA2];
538	gb->memory.hdmaDest = gb->memory.io[REG_HDMA3] << 8;
539	gb->memory.hdmaDest |= gb->memory.io[REG_HDMA4];
540	gb->memory.hdmaSource &= 0xFFF0;
541	if (gb->memory.hdmaSource >= 0x8000 && gb->memory.hdmaSource < 0xA000) {
542		mLOG(GB_MEM, GAME_ERROR, "Invalid HDMA source: %04X", gb->memory.hdmaSource);
543		return value | 0x80;
544	}
545	gb->memory.hdmaDest &= 0x1FF0;
546	gb->memory.hdmaDest |= 0x8000;
547	bool wasHdma = gb->memory.isHdma;
548	gb->memory.isHdma = value & 0x80;
549	if ((!wasHdma && !gb->memory.isHdma) || (GBRegisterLCDCIsEnable(gb->memory.io[REG_LCDC]) && gb->video.mode == 0)) {
550		if (gb->memory.isHdma) {
551			gb->memory.hdmaRemaining = 0x10;
552		} else {
553			gb->memory.hdmaRemaining = ((value & 0x7F) + 1) * 0x10;
554		}
555		gb->cpuBlocked = true;
556		mTimingSchedule(&gb->timing, &gb->memory.hdmaEvent, 0);
557	} else if (gb->memory.isHdma && !GBRegisterLCDCIsEnable(gb->memory.io[REG_LCDC])) {
558		return 0x80 | ((value + 1) & 0x7F);
559	}
560	return value & 0x7F;
561}
562
563void _GBMemoryDMAService(struct mTiming* timing, void* context, uint32_t cyclesLate) {
564	struct GB* gb = context;
565	int dmaRemaining = gb->memory.dmaRemaining;
566	gb->memory.dmaRemaining = 0;
567	uint8_t b = GBLoad8(gb->cpu, gb->memory.dmaSource);
568	// TODO: Can DMA write OAM during modes 2-3?
569	gb->video.oam.raw[gb->memory.dmaDest] = b;
570	gb->video.renderer->writeOAM(gb->video.renderer, gb->memory.dmaDest);
571	++gb->memory.dmaSource;
572	++gb->memory.dmaDest;
573	gb->memory.dmaRemaining = dmaRemaining - 1;
574	if (gb->memory.dmaRemaining) {
575		mTimingSchedule(timing, &gb->memory.dmaEvent, 4 - cyclesLate);
576	}
577}
578
579void _GBMemoryHDMAService(struct mTiming* timing, void* context, uint32_t cyclesLate) {
580	struct GB* gb = context;
581	gb->cpuBlocked = true;
582	uint8_t b = gb->cpu->memory.load8(gb->cpu, gb->memory.hdmaSource);
583	gb->cpu->memory.store8(gb->cpu, gb->memory.hdmaDest, b);
584	++gb->memory.hdmaSource;
585	++gb->memory.hdmaDest;
586	--gb->memory.hdmaRemaining;
587	if (gb->memory.hdmaRemaining) {
588		mTimingDeschedule(timing, &gb->memory.hdmaEvent);
589		mTimingSchedule(timing, &gb->memory.hdmaEvent, 2 - cyclesLate);
590	} else {
591		gb->cpuBlocked = false;
592		gb->memory.io[REG_HDMA1] = gb->memory.hdmaSource >> 8;
593		gb->memory.io[REG_HDMA2] = gb->memory.hdmaSource;
594		gb->memory.io[REG_HDMA3] = gb->memory.hdmaDest >> 8;
595		gb->memory.io[REG_HDMA4] = gb->memory.hdmaDest;
596		if (gb->memory.isHdma) {
597			--gb->memory.io[REG_HDMA5];
598			if (gb->memory.io[REG_HDMA5] == 0xFF) {
599				gb->memory.isHdma = false;
600			}
601		} else {
602			gb->memory.io[REG_HDMA5] = 0xFF;
603		}
604	}
605}
606
607void GBPatch8(struct SM83Core* cpu, uint16_t address, int8_t value, int8_t* old, int segment) {
608	struct GB* gb = (struct GB*) cpu->master;
609	struct GBMemory* memory = &gb->memory;
610	int8_t oldValue = -1;
611
612	switch (address >> 12) {
613	case GB_REGION_CART_BANK0:
614	case GB_REGION_CART_BANK0 + 1:
615	case GB_REGION_CART_BANK0 + 2:
616	case GB_REGION_CART_BANK0 + 3:
617		_pristineCow(gb);
618		oldValue = memory->romBase[address & (GB_SIZE_CART_BANK0 - 1)];
619		memory->romBase[address & (GB_SIZE_CART_BANK0 - 1)] =  value;
620		break;
621	case GB_REGION_CART_BANK1:
622	case GB_REGION_CART_BANK1 + 1:
623	case GB_REGION_CART_BANK1 + 2:
624	case GB_REGION_CART_BANK1 + 3:
625		_pristineCow(gb);
626		if (segment < 0) {
627			oldValue = memory->romBank[address & (GB_SIZE_CART_BANK0 - 1)];
628			memory->romBank[address & (GB_SIZE_CART_BANK0 - 1)] = value;
629		} else if ((size_t) segment * GB_SIZE_CART_BANK0 < memory->romSize) {
630			oldValue = memory->rom[(address & (GB_SIZE_CART_BANK0 - 1)) + segment * GB_SIZE_CART_BANK0];
631			memory->rom[(address & (GB_SIZE_CART_BANK0 - 1)) + segment * GB_SIZE_CART_BANK0] = value;
632		} else {
633			return;
634		}
635		break;
636	case GB_REGION_VRAM:
637	case GB_REGION_VRAM + 1:
638		if (segment < 0) {
639			oldValue = gb->video.vramBank[address & (GB_SIZE_VRAM_BANK0 - 1)];
640			gb->video.vramBank[address & (GB_SIZE_VRAM_BANK0 - 1)] = value;
641			gb->video.renderer->writeVRAM(gb->video.renderer, (address & (GB_SIZE_VRAM_BANK0 - 1)) + GB_SIZE_VRAM_BANK0 * gb->video.vramCurrentBank);
642		} else if (segment < 2) {
643			oldValue = gb->video.vram[(address & (GB_SIZE_VRAM_BANK0 - 1)) + segment * GB_SIZE_VRAM_BANK0];
644			gb->video.vramBank[(address & (GB_SIZE_VRAM_BANK0 - 1)) + segment * GB_SIZE_VRAM_BANK0] = value;
645			gb->video.renderer->writeVRAM(gb->video.renderer, (address & (GB_SIZE_VRAM_BANK0 - 1)) + segment * GB_SIZE_VRAM_BANK0);
646		} else {
647			return;
648		}
649		break;
650	case GB_REGION_EXTERNAL_RAM:
651	case GB_REGION_EXTERNAL_RAM + 1:
652		if (memory->rtcAccess) {
653			memory->rtcRegs[memory->activeRtcReg] = value;
654		} else if (memory->sramAccess && memory->sram && memory->mbcType != GB_MBC2) {
655			// TODO: Remove sramAccess check?
656			memory->sramBank[address & (GB_SIZE_EXTERNAL_RAM - 1)] = value;
657		} else {
658			memory->mbcWrite(gb, address, value);
659		}
660		gb->sramDirty |= GB_SRAM_DIRT_NEW;
661		return;
662	case GB_REGION_WORKING_RAM_BANK0:
663	case GB_REGION_WORKING_RAM_BANK0 + 2:
664		oldValue = memory->wram[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
665		memory->wram[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)] = value;
666		break;
667	case GB_REGION_WORKING_RAM_BANK1:
668		if (segment < 0) {
669			oldValue = memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
670			memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)] = value;
671		} else if (segment < 8) {
672			oldValue = memory->wram[(address & (GB_SIZE_WORKING_RAM_BANK0 - 1)) + segment * GB_SIZE_WORKING_RAM_BANK0];
673			memory->wram[(address & (GB_SIZE_WORKING_RAM_BANK0 - 1)) + segment * GB_SIZE_WORKING_RAM_BANK0] = value;
674		} else {
675			return;
676		}
677		break;
678	default:
679		if (address < GB_BASE_OAM) {
680			oldValue = memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
681			memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)] = value;
682		} else if (address < GB_BASE_UNUSABLE) {
683			oldValue = gb->video.oam.raw[address & 0xFF];
684			gb->video.oam.raw[address & 0xFF] = value;
685			gb->video.renderer->writeOAM(gb->video.renderer, address & 0xFF);
686		} else if (address < GB_BASE_HRAM) {
687			mLOG(GB_MEM, STUB, "Unimplemented memory Patch8: 0x%08X", address);
688			return;
689		} else if (address < GB_BASE_IE) {
690			oldValue = memory->hram[address & GB_SIZE_HRAM];
691			memory->hram[address & GB_SIZE_HRAM] = value;
692		} else {
693			mLOG(GB_MEM, STUB, "Unimplemented memory Patch8: 0x%08X", address);
694			return;
695		}
696	}
697	if (old) {
698		*old = oldValue;
699	}
700}
701
702void GBMemorySerialize(const struct GB* gb, struct GBSerializedState* state) {
703	const struct GBMemory* memory = &gb->memory;
704	memcpy(state->wram, memory->wram, GB_SIZE_WORKING_RAM);
705	memcpy(state->hram, memory->hram, GB_SIZE_HRAM);
706	STORE_16LE(memory->currentBank, 0, &state->memory.currentBank);
707	state->memory.wramCurrentBank = memory->wramCurrentBank;
708	state->memory.sramCurrentBank = memory->sramCurrentBank;
709
710	STORE_16LE(memory->dmaSource, 0, &state->memory.dmaSource);
711	STORE_16LE(memory->dmaDest, 0, &state->memory.dmaDest);
712
713	STORE_16LE(memory->hdmaSource, 0, &state->memory.hdmaSource);
714	STORE_16LE(memory->hdmaDest, 0, &state->memory.hdmaDest);
715
716	STORE_16LE(memory->hdmaRemaining, 0, &state->memory.hdmaRemaining);
717	state->memory.dmaRemaining = memory->dmaRemaining;
718	memcpy(state->memory.rtcRegs, memory->rtcRegs, sizeof(state->memory.rtcRegs));
719
720	STORE_32LE(memory->dmaEvent.when - mTimingCurrentTime(&gb->timing), 0, &state->memory.dmaNext);
721	STORE_32LE(memory->hdmaEvent.when - mTimingCurrentTime(&gb->timing), 0, &state->memory.hdmaNext);
722
723	GBSerializedMemoryFlags flags = 0;
724	flags = GBSerializedMemoryFlagsSetSramAccess(flags, memory->sramAccess);
725	flags = GBSerializedMemoryFlagsSetRtcAccess(flags, memory->rtcAccess);
726	flags = GBSerializedMemoryFlagsSetRtcLatched(flags, memory->rtcLatched);
727	flags = GBSerializedMemoryFlagsSetIme(flags, memory->ime);
728	flags = GBSerializedMemoryFlagsSetIsHdma(flags, memory->isHdma);
729	flags = GBSerializedMemoryFlagsSetActiveRtcReg(flags, memory->activeRtcReg);
730	STORE_16LE(flags, 0, &state->memory.flags);
731
732	switch (memory->mbcType) {
733	case GB_MBC1:
734		state->memory.mbc1.mode = memory->mbcState.mbc1.mode;
735		state->memory.mbc1.multicartStride = memory->mbcState.mbc1.multicartStride;
736		state->memory.mbc1.bankLo = memory->mbcState.mbc1.bankLo;
737		state->memory.mbc1.bankHi = memory->mbcState.mbc1.bankHi;
738		break;
739	case GB_MBC3_RTC:
740		STORE_64LE(gb->memory.rtcLastLatch, 0, &state->memory.rtc.lastLatch);
741		break;
742	case GB_MBC7:
743		state->memory.mbc7.state = memory->mbcState.mbc7.state;
744		state->memory.mbc7.eeprom = memory->mbcState.mbc7.eeprom;
745		state->memory.mbc7.address = memory->mbcState.mbc7.address;
746		state->memory.mbc7.access = memory->mbcState.mbc7.access;
747		state->memory.mbc7.latch = memory->mbcState.mbc7.latch;
748		state->memory.mbc7.srBits = memory->mbcState.mbc7.srBits;
749		STORE_16LE(memory->mbcState.mbc7.sr, 0, &state->memory.mbc7.sr);
750		STORE_32LE(memory->mbcState.mbc7.writable, 0, &state->memory.mbc7.writable);
751		break;
752	case GB_MMM01:
753		state->memory.mmm01.locked = memory->mbcState.mmm01.locked;
754		state->memory.mmm01.bank0 = memory->mbcState.mmm01.currentBank0;
755		break;
756	default:
757		break;
758	}
759}
760
761void GBMemoryDeserialize(struct GB* gb, const struct GBSerializedState* state) {
762	struct GBMemory* memory = &gb->memory;
763	memcpy(memory->wram, state->wram, GB_SIZE_WORKING_RAM);
764	memcpy(memory->hram, state->hram, GB_SIZE_HRAM);
765	LOAD_16LE(memory->currentBank, 0, &state->memory.currentBank);
766	memory->wramCurrentBank = state->memory.wramCurrentBank;
767	memory->sramCurrentBank = state->memory.sramCurrentBank;
768
769	GBMBCSwitchBank(gb, memory->currentBank);
770	GBMemorySwitchWramBank(memory, memory->wramCurrentBank);
771	GBMBCSwitchSramBank(gb, memory->sramCurrentBank);
772
773	LOAD_16LE(memory->dmaSource, 0, &state->memory.dmaSource);
774	LOAD_16LE(memory->dmaDest, 0, &state->memory.dmaDest);
775
776	LOAD_16LE(memory->hdmaSource, 0, &state->memory.hdmaSource);
777	LOAD_16LE(memory->hdmaDest, 0, &state->memory.hdmaDest);
778
779	LOAD_16LE(memory->hdmaRemaining, 0, &state->memory.hdmaRemaining);
780	memory->dmaRemaining = state->memory.dmaRemaining;
781	memcpy(memory->rtcRegs, state->memory.rtcRegs, sizeof(state->memory.rtcRegs));
782
783	uint32_t when;
784	LOAD_32LE(when, 0, &state->memory.dmaNext);
785	if (memory->dmaRemaining) {
786		mTimingSchedule(&gb->timing, &memory->dmaEvent, when);
787	}
788	LOAD_32LE(when, 0, &state->memory.hdmaNext);
789	if (memory->hdmaRemaining) {
790		mTimingSchedule(&gb->timing, &memory->hdmaEvent, when);
791	}
792
793	GBSerializedMemoryFlags flags;
794	LOAD_16LE(flags, 0, &state->memory.flags);
795	memory->sramAccess = GBSerializedMemoryFlagsGetSramAccess(flags);
796	memory->rtcAccess = GBSerializedMemoryFlagsGetRtcAccess(flags);
797	memory->rtcLatched = GBSerializedMemoryFlagsGetRtcLatched(flags);
798	memory->ime = GBSerializedMemoryFlagsGetIme(flags);
799	memory->isHdma = GBSerializedMemoryFlagsGetIsHdma(flags);
800	memory->activeRtcReg = GBSerializedMemoryFlagsGetActiveRtcReg(flags);
801
802	switch (memory->mbcType) {
803	case GB_MBC1:
804		memory->mbcState.mbc1.mode = state->memory.mbc1.mode;
805		memory->mbcState.mbc1.multicartStride = state->memory.mbc1.multicartStride;
806		memory->mbcState.mbc1.bankLo = state->memory.mbc1.bankLo;
807		memory->mbcState.mbc1.bankHi = state->memory.mbc1.bankHi;
808		if (!(memory->mbcState.mbc1.bankLo || memory->mbcState.mbc1.bankHi)) {
809			// Backwards compat
810			memory->mbcState.mbc1.bankLo = memory->currentBank & ((1 << memory->mbcState.mbc1.multicartStride) - 1);
811			memory->mbcState.mbc1.bankHi = memory->currentBank >> memory->mbcState.mbc1.multicartStride;
812		}
813		if (memory->mbcState.mbc1.mode) {
814			GBMBCSwitchBank0(gb, memory->mbcState.mbc1.bankHi);
815		}
816		break;
817	case GB_MBC3_RTC:
818		LOAD_64LE(gb->memory.rtcLastLatch, 0, &state->memory.rtc.lastLatch);
819		break;
820	case GB_MBC7:
821		memory->mbcState.mbc7.state = state->memory.mbc7.state;
822		memory->mbcState.mbc7.eeprom = state->memory.mbc7.eeprom;
823		memory->mbcState.mbc7.address = state->memory.mbc7.address & 0x7F;
824		memory->mbcState.mbc7.access = state->memory.mbc7.access;
825		memory->mbcState.mbc7.latch = state->memory.mbc7.latch;
826		memory->mbcState.mbc7.srBits = state->memory.mbc7.srBits;
827		LOAD_16LE(memory->mbcState.mbc7.sr, 0, &state->memory.mbc7.sr);
828		LOAD_32LE(memory->mbcState.mbc7.writable, 0, &state->memory.mbc7.writable);
829		break;
830	case GB_MMM01:
831		memory->mbcState.mmm01.locked = state->memory.mmm01.locked;
832		memory->mbcState.mmm01.currentBank0 = state->memory.mmm01.bank0;
833		if (memory->mbcState.mmm01.locked) {
834			GBMBCSwitchBank0(gb, memory->mbcState.mmm01.currentBank0);
835		} else {
836			GBMBCSwitchBank0(gb, gb->memory.romSize / GB_SIZE_CART_BANK0 - 2);
837		}
838		break;
839	default:
840		break;
841	}
842}
843
844void _pristineCow(struct GB* gb) {
845	if (!gb->isPristine) {
846		return;
847	}
848	void* newRom = anonymousMemoryMap(GB_SIZE_CART_MAX);
849	memcpy(newRom, gb->memory.rom, gb->memory.romSize);
850	memset(((uint8_t*) newRom) + gb->memory.romSize, 0xFF, GB_SIZE_CART_MAX - gb->memory.romSize);
851	if (gb->memory.rom == gb->memory.romBase) {
852		gb->memory.romBase = newRom;
853	}
854	gb->memory.rom = newRom;
855	GBMBCSwitchBank(gb, gb->memory.currentBank);
856	gb->isPristine = false;
857}