#include "gba-memory.h" #include "gba-io.h" #include "hle-bios.h" #include #include #include static const char* GBA_CANNOT_MMAP = "Could not map memory"; static void GBASetActiveRegion(struct ARMMemory* memory, uint32_t region); static const char GBA_BASE_WAITSTATES[16] = { 0, 0, 2, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4 }; static const char GBA_BASE_WAITSTATES_SEQ[16] = { 0, 0, 2, 0, 0, 0, 0, 0, 2, 2, 4, 4, 8, 8, 4 }; static const char GBA_ROM_WAITSTATES[] = { 4, 3, 2, 8 }; static const char GBA_ROM_WAITSTATES_SEQ[] = { 2, 1, 4, 1, 8, 1 }; static const int DMA_OFFSET[] = { 1, -1, 0, 1 }; void GBAMemoryInit(struct GBAMemory* memory) { memory->d.load32 = GBALoad32; memory->d.load16 = GBALoad16; memory->d.loadU16 = GBALoadU16; memory->d.load8 = GBALoad8; memory->d.loadU8 = GBALoadU8; memory->d.store32 = GBAStore32; memory->d.store16 = GBAStore16; memory->d.store8 = GBAStore8; memory->bios = hleBios; memory->wram = mmap(0, SIZE_WORKING_RAM, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); memory->iwram = mmap(0, SIZE_WORKING_IRAM, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); memory->rom = 0; memset(memory->io, 0, sizeof(memory->io)); memset(memory->dma, 0, sizeof(memory->dma)); if (!memory->wram || !memory->iwram) { GBAMemoryDeinit(memory); memory->p->errno = GBA_OUT_OF_MEMORY; memory->p->errstr = GBA_CANNOT_MMAP; } int i; for (i = 0; i < 16; ++i) { memory->waitstates16[i] = GBA_BASE_WAITSTATES[i]; memory->waitstatesSeq16[i] = GBA_BASE_WAITSTATES_SEQ[i]; memory->waitstates32[i] = GBA_BASE_WAITSTATES[i] + GBA_BASE_WAITSTATES_SEQ[i] + 1; memory->waitstatesSeq32[i] = GBA_BASE_WAITSTATES_SEQ[i] + GBA_BASE_WAITSTATES_SEQ[i] + 1; } for (; i < 256; ++i) { memory->waitstates16[i] = 0; memory->waitstatesSeq16[i] = 0; memory->waitstates32[i] = 0; memory->waitstatesSeq32[i] = 0; } memory->activeRegion = 0; memory->d.activeRegion = 0; memory->d.activeMask = 0; memory->d.setActiveRegion = GBASetActiveRegion; memory->d.activePrefetchCycles32 = 0; memory->d.activePrefetchCycles16 = 0; } void GBAMemoryDeinit(struct GBAMemory* memory) { munmap(memory->wram, SIZE_WORKING_RAM); munmap(memory->iwram, SIZE_WORKING_IRAM); } static void GBASetActiveRegion(struct ARMMemory* memory, uint32_t address) { struct GBAMemory* gbaMemory = (struct GBAMemory*) memory; memory->activePrefetchCycles32 = gbaMemory->waitstates32[address >> BASE_OFFSET]; memory->activePrefetchCycles16 = gbaMemory->waitstates16[address >> BASE_OFFSET]; gbaMemory->activeRegion = address >> BASE_OFFSET; switch (address & ~OFFSET_MASK) { case BASE_BIOS: memory->activeRegion = gbaMemory->bios; memory->activeMask = SIZE_BIOS - 1; break; case BASE_WORKING_RAM: memory->activeRegion = gbaMemory->wram; memory->activeMask = SIZE_WORKING_RAM - 1; break; case BASE_WORKING_IRAM: memory->activeRegion = gbaMemory->iwram; memory->activeMask = SIZE_WORKING_IRAM - 1; break; case BASE_CART0: case BASE_CART0_EX: case BASE_CART1: case BASE_CART1_EX: case BASE_CART2: case BASE_CART2_EX: memory->activeRegion = gbaMemory->rom; memory->activeMask = SIZE_CART0 - 1; break; default: memory->activeRegion = 0; memory->activeMask = 0; break; } } int32_t GBALoad32(struct ARMMemory* memory, uint32_t address) { struct GBAMemory* gbaMemory = (struct GBAMemory*) memory; switch (address & ~OFFSET_MASK) { case BASE_BIOS: break; case BASE_WORKING_RAM: return gbaMemory->wram[(address & (SIZE_WORKING_RAM - 1)) >> 2]; case BASE_WORKING_IRAM: return gbaMemory->iwram[(address & (SIZE_WORKING_IRAM - 1)) >> 2]; case BASE_IO: return GBAIORead(gbaMemory->p, address & (SIZE_IO - 1)) | (GBAIORead(gbaMemory->p, (address & (SIZE_IO - 1)) | 2) << 16); case BASE_PALETTE_RAM: break; case BASE_VRAM: break; case BASE_OAM: break; case BASE_CART0: case BASE_CART0_EX: case BASE_CART1: case BASE_CART1_EX: case BASE_CART2: case BASE_CART2_EX: return gbaMemory->rom[(address & (SIZE_CART0 - 1)) >> 2]; case BASE_CART_SRAM: break; default: break; } return 0; } int16_t GBALoad16(struct ARMMemory* memory, uint32_t address) { struct GBAMemory* gbaMemory = (struct GBAMemory*) memory; switch (address & ~OFFSET_MASK) { case BASE_BIOS: break; case BASE_WORKING_RAM: return ((int16_t*) gbaMemory->wram)[(address & (SIZE_WORKING_RAM - 1)) >> 1]; case BASE_WORKING_IRAM: return ((int16_t*) gbaMemory->iwram)[(address & (SIZE_WORKING_IRAM - 1)) >> 1]; case BASE_IO: return GBAIORead(gbaMemory->p, address & (SIZE_IO - 1)); case BASE_PALETTE_RAM: break; case BASE_VRAM: break; case BASE_OAM: break; case BASE_CART0: case BASE_CART0_EX: case BASE_CART1: case BASE_CART1_EX: case BASE_CART2: case BASE_CART2_EX: return ((int16_t*) gbaMemory->rom)[(address & (SIZE_CART0 - 1)) >> 1]; case BASE_CART_SRAM: break; default: break; } return 0; } uint16_t GBALoadU16(struct ARMMemory* memory, uint32_t address) { struct GBAMemory* gbaMemory = (struct GBAMemory*) memory; switch (address & ~OFFSET_MASK) { case BASE_BIOS: break; case BASE_WORKING_RAM: return ((uint16_t*) gbaMemory->wram)[(address & (SIZE_WORKING_RAM - 1)) >> 1]; case BASE_WORKING_IRAM: return ((uint16_t*) gbaMemory->iwram)[(address & (SIZE_WORKING_IRAM - 1)) >> 1]; case BASE_IO: return GBAIORead(gbaMemory->p, address & (SIZE_IO - 1)); case BASE_PALETTE_RAM: break; case BASE_VRAM: break; case BASE_OAM: break; case BASE_CART0: case BASE_CART0_EX: case BASE_CART1: case BASE_CART1_EX: case BASE_CART2: case BASE_CART2_EX: return ((uint16_t*) gbaMemory->rom)[(address & (SIZE_CART0 - 1)) >> 1]; case BASE_CART_SRAM: break; default: break; } return 0; } int8_t GBALoad8(struct ARMMemory* memory, uint32_t address) { struct GBAMemory* gbaMemory = (struct GBAMemory*) memory; switch (address & ~OFFSET_MASK) { case BASE_BIOS: break; case BASE_WORKING_RAM: return ((int8_t*) gbaMemory->wram)[address & (SIZE_WORKING_RAM - 1)]; case BASE_WORKING_IRAM: return ((int8_t*) gbaMemory->iwram)[address & (SIZE_WORKING_IRAM - 1)]; case BASE_IO: break; case BASE_PALETTE_RAM: break; case BASE_VRAM: break; case BASE_OAM: break; case BASE_CART0: case BASE_CART0_EX: case BASE_CART1: case BASE_CART1_EX: case BASE_CART2: case BASE_CART2_EX: return ((int8_t*) gbaMemory->rom)[address & (SIZE_CART0 - 1)]; case BASE_CART_SRAM: break; default: break; } return 0; } uint8_t GBALoadU8(struct ARMMemory* memory, uint32_t address) { struct GBAMemory* gbaMemory = (struct GBAMemory*) memory; switch (address & ~OFFSET_MASK) { case BASE_BIOS: break; case BASE_WORKING_RAM: return ((uint8_t*) gbaMemory->wram)[address & (SIZE_WORKING_RAM - 1)]; break; case BASE_WORKING_IRAM: return ((uint8_t*) gbaMemory->iwram)[address & (SIZE_WORKING_IRAM - 1)]; break; case BASE_IO: return (GBAIORead(gbaMemory->p, address & 0xFFFE) >> ((address & 0x0001) << 3)) & 0xFF; case BASE_PALETTE_RAM: break; case BASE_VRAM: break; case BASE_OAM: break; case BASE_CART0: case BASE_CART0_EX: case BASE_CART1: case BASE_CART1_EX: case BASE_CART2: case BASE_CART2_EX: return ((uint8_t*) gbaMemory->rom)[address & (SIZE_CART0 - 1)]; case BASE_CART_SRAM: break; default: break; } return 0; } void GBAStore32(struct ARMMemory* memory, uint32_t address, int32_t value) { struct GBAMemory* gbaMemory = (struct GBAMemory*) memory; switch (address & ~OFFSET_MASK) { case BASE_WORKING_RAM: gbaMemory->wram[(address & (SIZE_WORKING_RAM - 1)) >> 2] = value; break; case BASE_WORKING_IRAM: gbaMemory->iwram[(address & (SIZE_WORKING_IRAM - 1)) >> 2] = value; break; case BASE_IO: GBAIOWrite32(gbaMemory->p, address & (SIZE_IO - 1), value); break; case BASE_PALETTE_RAM: break; case BASE_VRAM: break; case BASE_OAM: break; case BASE_CART0: break; case BASE_CART2_EX: break; case BASE_CART_SRAM: break; default: break; } } void GBAStore16(struct ARMMemory* memory, uint32_t address, int16_t value) { struct GBAMemory* gbaMemory = (struct GBAMemory*) memory; switch (address & ~OFFSET_MASK) { case BASE_WORKING_RAM: ((int16_t*) gbaMemory->wram)[(address & (SIZE_WORKING_RAM - 1)) >> 1] = value; break; case BASE_WORKING_IRAM: ((int16_t*) gbaMemory->iwram)[(address & (SIZE_WORKING_IRAM - 1)) >> 1] = value; break; case BASE_IO: GBAIOWrite(gbaMemory->p, address & (SIZE_IO - 1), value); break; case BASE_PALETTE_RAM: break; case BASE_VRAM: break; case BASE_OAM: break; case BASE_CART0: break; case BASE_CART2_EX: break; case BASE_CART_SRAM: break; default: break; } } void GBAStore8(struct ARMMemory* memory, uint32_t address, int8_t value) { struct GBAMemory* gbaMemory = (struct GBAMemory*) memory; switch (address & ~OFFSET_MASK) { case BASE_WORKING_RAM: ((int8_t*) gbaMemory->wram)[address & (SIZE_WORKING_RAM - 1)] = value; break; case BASE_WORKING_IRAM: ((int8_t*) gbaMemory->iwram)[address & (SIZE_WORKING_IRAM - 1)] = value; break; case BASE_IO: break; case BASE_PALETTE_RAM: break; case BASE_VRAM: break; case BASE_OAM: break; case BASE_CART0: break; case BASE_CART2_EX: break; case BASE_CART_SRAM: break; default: break; } } void GBAAdjustWaitstates(struct GBAMemory* memory, uint16_t parameters) { int sram = parameters & 0x0003; int ws0 = (parameters & 0x000C) >> 2; int ws0seq = (parameters & 0x0010) >> 4; int ws1 = (parameters & 0x0060) >> 5; int ws1seq = (parameters & 0x0080) >> 7; int ws2 = (parameters & 0x0300) >> 8; int ws2seq = (parameters & 0x0400) >> 10; int prefetch = parameters & 0x4000; memory->waitstates16[REGION_CART_SRAM] = GBA_ROM_WAITSTATES[sram]; memory->waitstatesSeq16[REGION_CART_SRAM] = GBA_ROM_WAITSTATES[sram]; memory->waitstates32[REGION_CART_SRAM] = 2 * GBA_ROM_WAITSTATES[sram] + 1; memory->waitstatesSeq32[REGION_CART_SRAM] = 2 * GBA_ROM_WAITSTATES[sram] + 1; memory->waitstates16[REGION_CART0] = memory->waitstates16[REGION_CART0_EX] = GBA_ROM_WAITSTATES[ws0]; memory->waitstates16[REGION_CART1] = memory->waitstates16[REGION_CART1_EX] = GBA_ROM_WAITSTATES[ws1]; memory->waitstates16[REGION_CART2] = memory->waitstates16[REGION_CART2_EX] = GBA_ROM_WAITSTATES[ws2]; memory->waitstatesSeq16[REGION_CART0] = memory->waitstatesSeq16[REGION_CART0_EX] = GBA_ROM_WAITSTATES_SEQ[ws0seq]; memory->waitstatesSeq16[REGION_CART1] = memory->waitstatesSeq16[REGION_CART1_EX] = GBA_ROM_WAITSTATES_SEQ[ws1seq + 2]; memory->waitstatesSeq16[REGION_CART2] = memory->waitstatesSeq16[REGION_CART2_EX] = GBA_ROM_WAITSTATES_SEQ[ws2seq + 4]; memory->waitstates32[REGION_CART0] = memory->waitstates32[REGION_CART0_EX] = memory->waitstates16[REGION_CART0] + 1 + memory->waitstatesSeq16[REGION_CART0]; memory->waitstates32[REGION_CART1] = memory->waitstates32[REGION_CART1_EX] = memory->waitstates16[REGION_CART1] + 1 + memory->waitstatesSeq16[REGION_CART1]; memory->waitstates32[REGION_CART2] = memory->waitstates32[REGION_CART2_EX] = memory->waitstates16[REGION_CART2] + 1 + memory->waitstatesSeq16[REGION_CART2]; memory->waitstatesSeq32[REGION_CART0] = memory->waitstatesSeq32[REGION_CART0 + 1] = 2 * memory->waitstatesSeq16[REGION_CART0] + 1; memory->waitstatesSeq32[REGION_CART1] = memory->waitstatesSeq32[REGION_CART1 + 1] = 2 * memory->waitstatesSeq16[REGION_CART1] + 1; memory->waitstatesSeq32[REGION_CART2] = memory->waitstatesSeq32[REGION_CART2 + 1] = 2 * memory->waitstatesSeq16[REGION_CART2] + 1; memory->d.activePrefetchCycles32 = memory->waitstates32[memory->activeRegion]; memory->d.activePrefetchCycles16 = memory->waitstates16[memory->activeRegion]; } int32_t GBAMemoryProcessEvents(struct GBAMemory* memory, int32_t cycles) { struct GBADMA* dma; int32_t test = INT_MAX; dma = &memory->dma[0]; dma->nextIRQ -= cycles; if (dma->enable && dma->doIrq && dma->nextIRQ) { if (dma->nextIRQ <= 0) { dma->nextIRQ = INT_MAX; GBARaiseIRQ(memory->p, IRQ_DMA0); } else if (dma->nextIRQ < test) { test = dma->nextIRQ; } } dma = &memory->dma[1]; dma->nextIRQ -= cycles; if (dma->enable && dma->doIrq && dma->nextIRQ) { if (dma->nextIRQ <= 0) { dma->nextIRQ = INT_MAX; GBARaiseIRQ(memory->p, IRQ_DMA1); } else if (dma->nextIRQ < test) { test = dma->nextIRQ; } } dma = &memory->dma[2]; dma->nextIRQ -= cycles; if (dma->enable && dma->doIrq && dma->nextIRQ) { if (dma->nextIRQ <= 0) { dma->nextIRQ = INT_MAX; GBARaiseIRQ(memory->p, IRQ_DMA2); } else if (dma->nextIRQ < test) { test = dma->nextIRQ; } } dma = &memory->dma[3]; dma->nextIRQ -= cycles; if (dma->enable && dma->doIrq && dma->nextIRQ) { if (dma->nextIRQ <= 0) { dma->nextIRQ = INT_MAX; GBARaiseIRQ(memory->p, IRQ_DMA3); } else if (dma->nextIRQ < test) { test = dma->nextIRQ; } } return test; } void GBAMemoryWriteDMASAD(struct GBAMemory* memory, int dma, uint32_t address) { memory->dma[dma].source = address & 0xFFFFFFFE; } void GBAMemoryWriteDMADAD(struct GBAMemory* memory, int dma, uint32_t address) { memory->dma[dma].dest = address & 0xFFFFFFFE; } void GBAMemoryWriteDMACNT_LO(struct GBAMemory* memory, int dma, uint16_t count) { memory->dma[dma].count = count ? count : (dma == 3 ? 0x10000 : 0x4000); } uint16_t GBAMemoryWriteDMACNT_HI(struct GBAMemory* memory, int dma, uint16_t control) { struct GBADMA* currentDma = &memory->dma[dma]; int wasEnabled = currentDma->enable; currentDma->packed = control; currentDma->nextIRQ = 0; if (currentDma->drq) { GBALog(GBA_LOG_STUB, "DRQ not implemented"); } if (!wasEnabled && currentDma->enable) { currentDma->nextSource = currentDma->source; currentDma->nextDest = currentDma->dest; currentDma->nextCount = currentDma->count; GBAMemoryScheduleDMA(memory, dma, currentDma); } // If the DMA has already occurred, this value might have changed since the function started return currentDma->packed; }; void GBAMemoryScheduleDMA(struct GBAMemory* memory, int number, struct GBADMA* info) { switch (info->timing) { case DMA_TIMING_NOW: GBAMemoryServiceDMA(memory, number, info); break; case DMA_TIMING_HBLANK: // Handled implicitly break; case DMA_TIMING_VBLANK: // Handled implicitly break; case DMA_TIMING_CUSTOM: switch (number) { case 0: GBALog(GBA_LOG_WARN, "Discarding invalid DMA0 scheduling"); break; case 1: case 2: //this.cpu.irq.audio.scheduleFIFODma(number, info); break; case 3: //this.cpu.irq.video.scheduleVCaptureDma(dma, info); break; } } } void GBAMemoryRunHblankDMAs(struct GBAMemory* memory) { struct GBADMA* dma; int i; for (i = 0; i < 4; ++i) { dma = &memory->dma[i]; if (dma->enable && dma->timing == DMA_TIMING_HBLANK) { GBAMemoryServiceDMA(memory, i, dma); } } } void GBAMemoryRunVblankDMAs(struct GBAMemory* memory) { struct GBADMA* dma; int i; for (i = 0; i < 4; ++i) { dma = &memory->dma[i]; if (dma->enable && dma->timing == DMA_TIMING_VBLANK) { GBAMemoryServiceDMA(memory, i, dma); } } } void GBAMemoryServiceDMA(struct GBAMemory* memory, int number, struct GBADMA* info) { if (!info->enable) { // There was a DMA scheduled that got canceled return; } uint32_t width = info->width ? 4 : 2; int sourceOffset = DMA_OFFSET[info->srcControl] * width; int destOffset = DMA_OFFSET[info->dstControl] * width; int32_t wordsRemaining = info->nextCount; uint32_t source = info->nextSource; uint32_t dest = info->nextDest; uint32_t sourceRegion = source >> BASE_OFFSET; uint32_t destRegion = dest >> BASE_OFFSET; if (width == 4) { int32_t word; source &= 0xFFFFFFFC; dest &= 0xFFFFFFFC; while (wordsRemaining--) { word = GBALoad32(&memory->d, source); GBAStore32(&memory->d, dest, word); source += sourceOffset; dest += destOffset; } } else { uint16_t word; while (wordsRemaining--) { word = GBALoadU16(&memory->d, source); GBAStore16(&memory->d, dest, word); source += sourceOffset; dest += destOffset; } } if (info->doIrq) { info->nextIRQ = memory->p->cpu.cycles + 2; info->nextIRQ += (width == 4 ? memory->waitstates32[sourceRegion] + memory->waitstates32[destRegion] : memory->waitstates16[sourceRegion] + memory->waitstates16[destRegion]); info->nextIRQ += (info->count - 1) * (width == 4 ? memory->waitstatesSeq32[sourceRegion] + memory->waitstatesSeq32[destRegion] : memory->waitstatesSeq16[sourceRegion] + memory->waitstatesSeq16[destRegion]); } info->nextSource = source; info->nextDest = dest; info->nextCount = wordsRemaining; if (!info->repeat) { info->enable = 0; // Clear the enable bit in memory memory->io[(REG_DMA0CNT_HI + number * (REG_DMA1CNT_HI - REG_DMA0CNT_HI)) >> 1] &= 0x7FE0; } else { info->nextCount = info->count; if (info->dstControl == DMA_INCREMENT_RELOAD) { info->nextDest = info->dest; } GBAMemoryScheduleDMA(memory, number, info); } }