all repos — mgba @ 825805a2c09c9c39c9afb572d6fb73614085ffa2

mGBA Game Boy Advance Emulator

src/gb/io.c (view raw)

  1/* Copyright (c) 2013-2016 Jeffrey Pfau
  2 *
  3 * This Source Code Form is subject to the terms of the Mozilla Public
  4 * License, v. 2.0. If a copy of the MPL was not distributed with this
  5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  6#include <mgba/internal/gb/io.h>
  7
  8#include <mgba/internal/gb/gb.h>
  9#include <mgba/internal/gb/sio.h>
 10#include <mgba/internal/gb/serialize.h>
 11
 12mLOG_DEFINE_CATEGORY(GB_IO, "GB I/O", "gb.io");
 13
 14const char* const GBIORegisterNames[] = {
 15	[REG_JOYP] = "JOYP",
 16	[REG_SB] = "SB",
 17	[REG_SC] = "SC",
 18	[REG_DIV] = "DIV",
 19	[REG_TIMA] = "TIMA",
 20	[REG_TMA] = "TMA",
 21	[REG_TAC] = "TAC",
 22	[REG_IF] = "IF",
 23	[REG_NR10] = "NR10",
 24	[REG_NR11] = "NR11",
 25	[REG_NR12] = "NR12",
 26	[REG_NR13] = "NR13",
 27	[REG_NR14] = "NR14",
 28	[REG_NR21] = "NR21",
 29	[REG_NR22] = "NR22",
 30	[REG_NR23] = "NR23",
 31	[REG_NR24] = "NR24",
 32	[REG_NR30] = "NR30",
 33	[REG_NR31] = "NR31",
 34	[REG_NR32] = "NR32",
 35	[REG_NR33] = "NR33",
 36	[REG_NR34] = "NR34",
 37	[REG_NR41] = "NR41",
 38	[REG_NR42] = "NR42",
 39	[REG_NR43] = "NR43",
 40	[REG_NR44] = "NR44",
 41	[REG_NR50] = "NR50",
 42	[REG_NR51] = "NR51",
 43	[REG_NR52] = "NR52",
 44	[REG_LCDC] = "LCDC",
 45	[REG_STAT] = "STAT",
 46	[REG_SCY] = "SCY",
 47	[REG_SCX] = "SCX",
 48	[REG_LY] = "LY",
 49	[REG_LYC] = "LYC",
 50	[REG_DMA] = "DMA",
 51	[REG_BGP] = "BGP",
 52	[REG_OBP0] = "OBP0",
 53	[REG_OBP1] = "OBP1",
 54	[REG_WY] = "WY",
 55	[REG_WX] = "WX",
 56	[REG_KEY1] = "KEY1",
 57	[REG_VBK] = "VBK",
 58	[REG_HDMA1] = "HDMA1",
 59	[REG_HDMA2] = "HDMA2",
 60	[REG_HDMA3] = "HDMA3",
 61	[REG_HDMA4] = "HDMA4",
 62	[REG_HDMA5] = "HDMA5",
 63	[REG_RP] = "RP",
 64	[REG_BCPS] = "BCPS",
 65	[REG_BCPD] = "BCPD",
 66	[REG_OCPS] = "OCPS",
 67	[REG_OCPD] = "OCPD",
 68	[REG_SVBK] = "SVBK",
 69	[REG_IE] = "IE",
 70};
 71
 72static const uint8_t _registerMask[] = {
 73	[REG_SC]   = 0x7E, // TODO: GBC differences
 74	[REG_IF]   = 0xE0,
 75	[REG_TAC]  = 0xF8,
 76	[REG_NR10] = 0x80,
 77	[REG_NR11] = 0x3F,
 78	[REG_NR12] = 0x00,
 79	[REG_NR13] = 0xFF,
 80	[REG_NR14] = 0xBF,
 81	[REG_NR21] = 0x3F,
 82	[REG_NR22] = 0x00,
 83	[REG_NR23] = 0xFF,
 84	[REG_NR24] = 0xBF,
 85	[REG_NR30] = 0x7F,
 86	[REG_NR31] = 0xFF,
 87	[REG_NR32] = 0x9F,
 88	[REG_NR33] = 0xFF,
 89	[REG_NR34] = 0xBF,
 90	[REG_NR41] = 0xFF,
 91	[REG_NR42] = 0x00,
 92	[REG_NR43] = 0x00,
 93	[REG_NR44] = 0xBF,
 94	[REG_NR50] = 0x00,
 95	[REG_NR51] = 0x00,
 96	[REG_NR52] = 0x70,
 97	[REG_STAT] = 0x80,
 98	[REG_KEY1] = 0x7E,
 99	[REG_VBK] = 0xFE,
100	[REG_OCPS] = 0x40,
101	[REG_BCPS] = 0x40,
102	[REG_UNK6C] = 0xFE,
103	[REG_SVBK] = 0xF8,
104	[REG_UNK75] = 0x8F,
105	[REG_IE]   = 0xE0,
106};
107
108void GBIOInit(struct GB* gb) {
109	memset(gb->memory.io, 0, sizeof(gb->memory.io));
110}
111
112void GBIOReset(struct GB* gb) {
113	memset(gb->memory.io, 0, sizeof(gb->memory.io));
114
115	GBIOWrite(gb, REG_TIMA, 0);
116	GBIOWrite(gb, REG_TMA, 0);
117	GBIOWrite(gb, REG_TAC, 0);
118	GBIOWrite(gb, REG_IF, 1);
119	GBIOWrite(gb, REG_NR52, 0xF1);
120	GBIOWrite(gb, REG_NR14, 0xBF);
121	GBIOWrite(gb, REG_NR10, 0x80);
122	GBIOWrite(gb, REG_NR11, 0xBF);
123	GBIOWrite(gb, REG_NR12, 0xF3);
124	GBIOWrite(gb, REG_NR13, 0xF3);
125	GBIOWrite(gb, REG_NR24, 0xBF);
126	GBIOWrite(gb, REG_NR21, 0x3F);
127	GBIOWrite(gb, REG_NR22, 0x00);
128	GBIOWrite(gb, REG_NR34, 0xBF);
129	GBIOWrite(gb, REG_NR30, 0x7F);
130	GBIOWrite(gb, REG_NR31, 0xFF);
131	GBIOWrite(gb, REG_NR32, 0x9F);
132	GBIOWrite(gb, REG_NR44, 0xBF);
133	GBIOWrite(gb, REG_NR41, 0xFF);
134	GBIOWrite(gb, REG_NR42, 0x00);
135	GBIOWrite(gb, REG_NR43, 0x00);
136	GBIOWrite(gb, REG_NR50, 0x77);
137	GBIOWrite(gb, REG_NR51, 0xF3);
138	GBIOWrite(gb, REG_LCDC, 0x91);
139	GBIOWrite(gb, REG_SCY, 0x00);
140	GBIOWrite(gb, REG_SCX, 0x00);
141	GBIOWrite(gb, REG_LYC, 0x00);
142	GBIOWrite(gb, REG_BGP, 0xFC);
143	GBIOWrite(gb, REG_OBP0, 0xFF);
144	GBIOWrite(gb, REG_OBP1, 0xFF);
145	GBIOWrite(gb, REG_WY, 0x00);
146	GBIOWrite(gb, REG_WX, 0x00);
147	GBIOWrite(gb, REG_VBK, 0);
148	GBIOWrite(gb, REG_BCPS, 0);
149	GBIOWrite(gb, REG_OCPS, 0);
150	GBIOWrite(gb, REG_SVBK, 1);
151	GBIOWrite(gb, REG_HDMA1, 0xFF);
152	GBIOWrite(gb, REG_HDMA2, 0xFF);
153	GBIOWrite(gb, REG_HDMA3, 0xFF);
154	GBIOWrite(gb, REG_HDMA4, 0xFF);
155	gb->memory.io[REG_HDMA5] = 0xFF;
156	GBIOWrite(gb, REG_IE, 0x00);
157}
158
159void GBIOWrite(struct GB* gb, unsigned address, uint8_t value) {
160	switch (address) {
161	case REG_SB:
162		GBSIOWriteSB(&gb->sio, value);
163		break;
164	case REG_SC:
165		GBSIOWriteSC(&gb->sio, value);
166		break;
167	case REG_DIV:
168		GBTimerDivReset(&gb->timer);
169		return;
170	case REG_NR10:
171		if (gb->audio.enable) {
172			GBAudioWriteNR10(&gb->audio, value);
173		} else {
174			value = 0;
175		}
176		break;
177	case REG_NR11:
178		if (gb->audio.enable) {
179			GBAudioWriteNR11(&gb->audio, value);
180		} else {
181			if (gb->audio.style == GB_AUDIO_DMG) {
182				GBAudioWriteNR11(&gb->audio, value & _registerMask[REG_NR11]);
183			}
184			value = 0;
185		}
186		break;
187	case REG_NR12:
188		if (gb->audio.enable) {
189			GBAudioWriteNR12(&gb->audio, value);
190		} else {
191			value = 0;
192		}
193		break;
194	case REG_NR13:
195		if (gb->audio.enable) {
196			GBAudioWriteNR13(&gb->audio, value);
197		} else {
198			value = 0;
199		}
200		break;
201	case REG_NR14:
202		if (gb->audio.enable) {
203			GBAudioWriteNR14(&gb->audio, value);
204		} else {
205			value = 0;
206		}
207		break;
208	case REG_NR21:
209		if (gb->audio.enable) {
210			GBAudioWriteNR21(&gb->audio, value);
211		} else {
212			if (gb->audio.style == GB_AUDIO_DMG) {
213				GBAudioWriteNR21(&gb->audio, value & _registerMask[REG_NR21]);
214			}
215			value = 0;
216		}
217		break;
218	case REG_NR22:
219		if (gb->audio.enable) {
220			GBAudioWriteNR22(&gb->audio, value);
221		} else {
222			value = 0;
223		}
224		break;
225	case REG_NR23:
226		if (gb->audio.enable) {
227			GBAudioWriteNR23(&gb->audio, value);
228		} else {
229			value = 0;
230		}
231		break;
232	case REG_NR24:
233		if (gb->audio.enable) {
234			GBAudioWriteNR24(&gb->audio, value);
235		} else {
236			value = 0;
237		}
238		break;
239	case REG_NR30:
240		if (gb->audio.enable) {
241			GBAudioWriteNR30(&gb->audio, value);
242		} else {
243			value = 0;
244		}
245		break;
246	case REG_NR31:
247		if (gb->audio.enable || gb->audio.style == GB_AUDIO_DMG) {
248			GBAudioWriteNR31(&gb->audio, value);
249		} else {
250			value = 0;
251		}
252		break;
253	case REG_NR32:
254		if (gb->audio.enable) {
255			GBAudioWriteNR32(&gb->audio, value);
256		} else {
257			value = 0;
258		}
259		break;
260	case REG_NR33:
261		if (gb->audio.enable) {
262			GBAudioWriteNR33(&gb->audio, value);
263		} else {
264			value = 0;
265		}
266		break;
267	case REG_NR34:
268		if (gb->audio.enable) {
269			GBAudioWriteNR34(&gb->audio, value);
270		} else {
271			value = 0;
272		}
273		break;
274	case REG_NR41:
275		if (gb->audio.enable || gb->audio.style == GB_AUDIO_DMG) {
276			GBAudioWriteNR41(&gb->audio, value);
277		} else {
278			value = 0;
279		}
280		break;
281	case REG_NR42:
282		if (gb->audio.enable) {
283			GBAudioWriteNR42(&gb->audio, value);
284		} else {
285			value = 0;
286		}
287		break;
288	case REG_NR43:
289		if (gb->audio.enable) {
290			GBAudioWriteNR43(&gb->audio, value);
291		} else {
292			value = 0;
293		}
294		break;
295	case REG_NR44:
296		if (gb->audio.enable) {
297			GBAudioWriteNR44(&gb->audio, value);
298		} else {
299			value = 0;
300		}
301		break;
302	case REG_NR50:
303		if (gb->audio.enable) {
304			GBAudioWriteNR50(&gb->audio, value);
305		} else {
306			value = 0;
307		}
308		break;
309	case REG_NR51:
310		if (gb->audio.enable) {
311			GBAudioWriteNR51(&gb->audio, value);
312		} else {
313			value = 0;
314		}
315		break;
316	case REG_NR52:
317		GBAudioWriteNR52(&gb->audio, value);
318		value &= 0x80;
319		value |= gb->memory.io[REG_NR52] & 0x0F;
320		break;
321	case REG_WAVE_0:
322	case REG_WAVE_1:
323	case REG_WAVE_2:
324	case REG_WAVE_3:
325	case REG_WAVE_4:
326	case REG_WAVE_5:
327	case REG_WAVE_6:
328	case REG_WAVE_7:
329	case REG_WAVE_8:
330	case REG_WAVE_9:
331	case REG_WAVE_A:
332	case REG_WAVE_B:
333	case REG_WAVE_C:
334	case REG_WAVE_D:
335	case REG_WAVE_E:
336	case REG_WAVE_F:
337		if (!gb->audio.playingCh3 || gb->audio.style != GB_AUDIO_DMG) {
338			gb->audio.ch3.wavedata8[address - REG_WAVE_0] = value;
339		} else if(gb->audio.ch3.readable) {
340			gb->audio.ch3.wavedata8[gb->audio.ch3.window >> 1] = value;
341		}
342		break;
343	case REG_JOYP:
344	case REG_TIMA:
345	case REG_TMA:
346		// Handled transparently by the registers
347		break;
348	case REG_TAC:
349		value = GBTimerUpdateTAC(&gb->timer, value);
350		break;
351	case REG_IF:
352		gb->memory.io[REG_IF] = value | 0xE0;
353		GBUpdateIRQs(gb);
354		return;
355	case REG_LCDC:
356		// TODO: handle GBC differences
357		GBVideoProcessDots(&gb->video);
358		value = gb->video.renderer->writeVideoRegister(gb->video.renderer, address, value);
359		GBVideoWriteLCDC(&gb->video, value);
360		break;
361	case REG_LYC:
362		GBVideoWriteLYC(&gb->video, value);
363		break;
364	case REG_DMA:
365		GBMemoryDMA(gb, value << 8);
366		break;
367	case REG_SCY:
368	case REG_SCX:
369	case REG_WY:
370	case REG_WX:
371		GBVideoProcessDots(&gb->video);
372		value = gb->video.renderer->writeVideoRegister(gb->video.renderer, address, value);
373		break;
374	case REG_BGP:
375	case REG_OBP0:
376	case REG_OBP1:
377		GBVideoProcessDots(&gb->video);
378		GBVideoWritePalette(&gb->video, address, value);
379		break;
380	case REG_STAT:
381		GBVideoWriteSTAT(&gb->video, value);
382		value = gb->video.stat;
383		break;
384	case 0x50:
385		if (gb->memory.romBase < gb->memory.rom && gb->memory.romBase > &gb->memory.rom[gb->memory.romSize - 1]) {
386			free(gb->memory.romBase);
387			gb->memory.romBase = gb->memory.rom;
388		}
389		break;
390	case REG_IE:
391		gb->memory.ie = value;
392		GBUpdateIRQs(gb);
393		return;
394	default:
395		if (gb->model >= GB_MODEL_CGB) {
396			switch (address) {
397			case REG_KEY1:
398				value &= 0x1;
399				value |= gb->memory.io[address] & 0x80;
400				break;
401			case REG_VBK:
402				GBVideoSwitchBank(&gb->video, value);
403				break;
404			case REG_HDMA1:
405			case REG_HDMA2:
406			case REG_HDMA3:
407			case REG_HDMA4:
408				// Handled transparently by the registers
409				break;
410			case REG_HDMA5:
411				GBMemoryWriteHDMA5(gb, value);
412				value &= 0x7F;
413				break;
414			case REG_BCPS:
415				gb->video.bcpIndex = value & 0x3F;
416				gb->video.bcpIncrement = value & 0x80;
417				gb->memory.io[REG_BCPD] = gb->video.palette[gb->video.bcpIndex >> 1] >> (8 * (gb->video.bcpIndex & 1));
418				break;
419			case REG_BCPD:
420				GBVideoProcessDots(&gb->video);
421				GBVideoWritePalette(&gb->video, address, value);
422				return;
423			case REG_OCPS:
424				gb->video.ocpIndex = value & 0x3F;
425				gb->video.ocpIncrement = value & 0x80;
426				gb->memory.io[REG_OCPD] = gb->video.palette[8 * 4 + (gb->video.ocpIndex >> 1)] >> (8 * (gb->video.ocpIndex & 1));
427				break;
428			case REG_OCPD:
429				GBVideoProcessDots(&gb->video);
430				GBVideoWritePalette(&gb->video, address, value);
431				return;
432			case REG_SVBK:
433				GBMemorySwitchWramBank(&gb->memory, value);
434				value = gb->memory.wramCurrentBank;
435				break;
436			default:
437				goto failed;
438			}
439			goto success;
440		}
441		failed:
442		mLOG(GB_IO, STUB, "Writing to unknown register FF%02X:%02X", address, value);
443		if (address >= GB_SIZE_IO) {
444			return;
445		}
446		break;
447	}
448	success:
449	gb->memory.io[address] = value;
450}
451
452static uint8_t _readKeys(struct GB* gb) {
453	uint8_t keys = *gb->keySource;
454	switch (gb->memory.io[REG_JOYP] & 0x30) {
455	case 0x30:
456		keys = 0;
457		break;
458	case 0x20:
459		keys >>= 4;
460		break;
461	case 0x10:
462		break;
463	case 0x00:
464		keys |= keys >> 4;
465		break;
466	}
467	return (0xC0 | (gb->memory.io[REG_JOYP] | 0xF)) ^ (keys & 0xF);
468}
469
470uint8_t GBIORead(struct GB* gb, unsigned address) {
471	switch (address) {
472	case REG_JOYP:
473		return _readKeys(gb);
474	case REG_IE:
475		return gb->memory.ie;
476	case REG_WAVE_0:
477	case REG_WAVE_1:
478	case REG_WAVE_2:
479	case REG_WAVE_3:
480	case REG_WAVE_4:
481	case REG_WAVE_5:
482	case REG_WAVE_6:
483	case REG_WAVE_7:
484	case REG_WAVE_8:
485	case REG_WAVE_9:
486	case REG_WAVE_A:
487	case REG_WAVE_B:
488	case REG_WAVE_C:
489	case REG_WAVE_D:
490	case REG_WAVE_E:
491	case REG_WAVE_F:
492		if (gb->audio.playingCh3) {
493			if (gb->audio.ch3.readable || gb->audio.style != GB_AUDIO_DMG) {
494				return gb->audio.ch3.wavedata8[gb->audio.ch3.window >> 1];
495			} else {
496				return 0xFF;
497			}
498		} else {
499			return gb->audio.ch3.wavedata8[address - REG_WAVE_0];
500		}
501		break;
502	case REG_SB:
503	case REG_SC:
504	case REG_IF:
505	case REG_NR10:
506	case REG_NR11:
507	case REG_NR12:
508	case REG_NR14:
509	case REG_NR21:
510	case REG_NR22:
511	case REG_NR24:
512	case REG_NR30:
513	case REG_NR32:
514	case REG_NR34:
515	case REG_NR41:
516	case REG_NR42:
517	case REG_NR43:
518	case REG_NR44:
519	case REG_NR50:
520	case REG_NR51:
521	case REG_NR52:
522	case REG_DIV:
523	case REG_TIMA:
524	case REG_TMA:
525	case REG_TAC:
526	case REG_STAT:
527	case REG_LCDC:
528	case REG_SCY:
529	case REG_SCX:
530	case REG_LY:
531	case REG_LYC:
532	case REG_BGP:
533	case REG_OBP0:
534	case REG_OBP1:
535	case REG_WY:
536	case REG_WX:
537		// Handled transparently by the registers
538		break;
539	default:
540		if (gb->model >= GB_MODEL_CGB) {
541			switch (address) {
542			case REG_KEY1:
543			case REG_VBK:
544			case REG_HDMA1:
545			case REG_HDMA2:
546			case REG_HDMA3:
547			case REG_HDMA4:
548			case REG_HDMA5:
549			case REG_BCPS:
550			case REG_BCPD:
551			case REG_OCPS:
552			case REG_OCPD:
553			case REG_SVBK:
554				// Handled transparently by the registers
555				goto success;
556			default:
557				break;
558			}
559		}
560		mLOG(GB_IO, STUB, "Reading from unknown register FF%02X", address);
561		return 0xFF;
562	}
563	success:
564	return gb->memory.io[address] | _registerMask[address];
565}
566
567struct GBSerializedState;
568void GBIOSerialize(const struct GB* gb, struct GBSerializedState* state) {
569	memcpy(state->io, gb->memory.io, GB_SIZE_IO);
570	state->ie = gb->memory.ie;
571}
572
573void GBIODeserialize(struct GB* gb, const struct GBSerializedState* state) {
574	memcpy(gb->memory.io, state->io, GB_SIZE_IO);
575	gb->memory.ie = state->ie;
576	gb->video.renderer->writeVideoRegister(gb->video.renderer, REG_LCDC, state->io[REG_LCDC]);
577	gb->video.renderer->writeVideoRegister(gb->video.renderer, REG_SCY, state->io[REG_SCY]);
578	gb->video.renderer->writeVideoRegister(gb->video.renderer, REG_SCX, state->io[REG_SCX]);
579	gb->video.renderer->writeVideoRegister(gb->video.renderer, REG_WY, state->io[REG_WY]);
580	gb->video.renderer->writeVideoRegister(gb->video.renderer, REG_WX, state->io[REG_WX]);
581}