all repos — mgba @ 8c940089f6ac78ca514350c016b073dc49ed6425

mGBA Game Boy Advance Emulator

src/gb/mbc.c (view raw)

   1/* Copyright (c) 2013-2016 Jeffrey Pfau
   2 *
   3 * This Source Code Form is subject to the terms of the Mozilla Public
   4 * License, v. 2.0. If a copy of the MPL was not distributed with this
   5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
   6#include <mgba/internal/gb/mbc.h>
   7
   8#include <mgba/core/interface.h>
   9#include <mgba/internal/lr35902/lr35902.h>
  10#include <mgba/internal/gb/gb.h>
  11#include <mgba/internal/gb/memory.h>
  12#include <mgba-util/vfs.h>
  13
  14mLOG_DEFINE_CATEGORY(GB_MBC, "GB MBC", "gb.mbc");
  15
  16static void _GBMBCNone(struct GB* gb, uint16_t address, uint8_t value) {
  17	UNUSED(gb);
  18	UNUSED(address);
  19	UNUSED(value);
  20
  21	mLOG(GB_MBC, GAME_ERROR, "Wrote to invalid MBC");
  22}
  23
  24static void _GBMBC1(struct GB*, uint16_t address, uint8_t value);
  25static void _GBMBC2(struct GB*, uint16_t address, uint8_t value);
  26static void _GBMBC3(struct GB*, uint16_t address, uint8_t value);
  27static void _GBMBC5(struct GB*, uint16_t address, uint8_t value);
  28static void _GBMBC6(struct GB*, uint16_t address, uint8_t value);
  29static void _GBMBC7(struct GB*, uint16_t address, uint8_t value);
  30static void _GBHuC3(struct GB*, uint16_t address, uint8_t value);
  31static void _GBPocketCam(struct GB* gb, uint16_t address, uint8_t value);
  32static void _GBTAMA5(struct GB* gb, uint16_t address, uint8_t value);
  33
  34static uint8_t _GBMBC7Read(struct GBMemory*, uint16_t address);
  35static void _GBMBC7Write(struct GBMemory* memory, uint16_t address, uint8_t value);
  36
  37static uint8_t _GBTAMA5Read(struct GBMemory*, uint16_t address);
  38
  39static uint8_t _GBPocketCamRead(struct GBMemory*, uint16_t address);
  40static void _GBPocketCamCapture(struct GBMemory*);
  41
  42void GBMBCSwitchBank(struct GB* gb, int bank) {
  43	size_t bankStart = bank * GB_SIZE_CART_BANK0;
  44	if (bankStart + GB_SIZE_CART_BANK0 > gb->memory.romSize) {
  45		mLOG(GB_MBC, GAME_ERROR, "Attempting to switch to an invalid ROM bank: %0X", bank);
  46		bankStart &= (gb->memory.romSize - 1);
  47		bank = bankStart / GB_SIZE_CART_BANK0;
  48	}
  49	gb->memory.romBank = &gb->memory.rom[bankStart];
  50	gb->memory.currentBank = bank;
  51	if (gb->cpu->pc < GB_BASE_VRAM) {
  52		gb->cpu->memory.setActiveRegion(gb->cpu, gb->cpu->pc);
  53	}
  54}
  55
  56void GBMBCSwitchBank0(struct GB* gb, int bank) {
  57	size_t bankStart = bank * GB_SIZE_CART_BANK0 << gb->memory.mbcState.mbc1.multicartStride;
  58	if (bankStart + GB_SIZE_CART_BANK0 > gb->memory.romSize) {
  59		mLOG(GB_MBC, GAME_ERROR, "Attempting to switch to an invalid ROM bank: %0X", bank);
  60		bankStart &= (gb->memory.romSize - 1);
  61	}
  62	gb->memory.romBase = &gb->memory.rom[bankStart];
  63	if (gb->cpu->pc < GB_SIZE_CART_BANK0) {
  64		gb->cpu->memory.setActiveRegion(gb->cpu, gb->cpu->pc);
  65	}
  66}
  67
  68void GBMBCSwitchHalfBank(struct GB* gb, int half, int bank) {
  69	size_t bankStart = bank * GB_SIZE_CART_HALFBANK;
  70	if (bankStart + GB_SIZE_CART_HALFBANK > gb->memory.romSize) {
  71		mLOG(GB_MBC, GAME_ERROR, "Attempting to switch to an invalid ROM bank: %0X", bank);
  72		bankStart &= (gb->memory.romSize - 1);
  73		bank = bankStart / GB_SIZE_CART_HALFBANK;
  74		if (!bank) {
  75			++bank;
  76		}
  77	}
  78	if (!half) {
  79		gb->memory.romBank = &gb->memory.rom[bankStart];
  80		gb->memory.currentBank = bank;
  81	} else {
  82		gb->memory.mbcState.mbc6.romBank1 = &gb->memory.rom[bankStart];
  83		gb->memory.mbcState.mbc6.currentBank1 = bank;
  84	}
  85	if (gb->cpu->pc < GB_BASE_VRAM) {
  86		gb->cpu->memory.setActiveRegion(gb->cpu, gb->cpu->pc);
  87	}
  88}
  89
  90static bool _isMulticart(const uint8_t* mem) {
  91	bool success = true;
  92	struct VFile* vf;
  93
  94	vf = VFileFromConstMemory(&mem[GB_SIZE_CART_BANK0 * 0x10], 1024);
  95	success = success && GBIsROM(vf);
  96	vf->close(vf);
  97
  98	vf = VFileFromConstMemory(&mem[GB_SIZE_CART_BANK0 * 0x20], 1024);
  99	success = success && GBIsROM(vf);
 100	vf->close(vf);
 101
 102	return success;
 103}
 104
 105void GBMBCSwitchSramBank(struct GB* gb, int bank) {
 106	size_t bankStart = bank * GB_SIZE_EXTERNAL_RAM;
 107	if (bankStart + GB_SIZE_EXTERNAL_RAM > gb->sramSize) {
 108		mLOG(GB_MBC, GAME_ERROR, "Attempting to switch to an invalid RAM bank: %0X", bank);
 109		bankStart &= (gb->sramSize - 1);
 110		bank = bankStart / GB_SIZE_EXTERNAL_RAM;
 111	}
 112	gb->memory.sramBank = &gb->memory.sram[bankStart];
 113	gb->memory.sramCurrentBank = bank;
 114}
 115
 116void GBMBCInit(struct GB* gb) {
 117	const struct GBCartridge* cart = (const struct GBCartridge*) &gb->memory.rom[0x100];
 118	if (gb->memory.rom) {
 119		switch (cart->ramSize) {
 120		case 0:
 121			gb->sramSize = 0;
 122			break;
 123		case 1:
 124			gb->sramSize = 0x800;
 125			break;
 126		default:
 127		case 2:
 128			gb->sramSize = 0x2000;
 129			break;
 130		case 3:
 131			gb->sramSize = 0x8000;
 132			break;
 133		case 4:
 134			gb->sramSize = 0x20000;
 135			break;
 136		case 5:
 137			gb->sramSize = 0x10000;
 138			break;
 139		}
 140
 141		if (gb->memory.mbcType == GB_MBC_AUTODETECT) {
 142			switch (cart->type) {
 143			case 0:
 144			case 8:
 145			case 9:
 146				gb->memory.mbcType = GB_MBC_NONE;
 147				break;
 148			case 1:
 149			case 2:
 150			case 3:
 151				gb->memory.mbcType = GB_MBC1;
 152				if (gb->memory.romSize >= GB_SIZE_CART_BANK0 * 0x31 && _isMulticart(gb->memory.rom)) {
 153					gb->memory.mbcState.mbc1.multicartStride = 4;
 154				} else {
 155					gb->memory.mbcState.mbc1.multicartStride = 5;
 156				}
 157				break;
 158			case 5:
 159			case 6:
 160				gb->memory.mbcType = GB_MBC2;
 161				break;
 162			case 0x0F:
 163			case 0x10:
 164				gb->memory.mbcType = GB_MBC3_RTC;
 165				break;
 166			case 0x11:
 167			case 0x12:
 168			case 0x13:
 169				gb->memory.mbcType = GB_MBC3;
 170				break;
 171			default:
 172				mLOG(GB_MBC, WARN, "Unknown MBC type: %02X", cart->type);
 173				// Fall through
 174			case 0x19:
 175			case 0x1A:
 176			case 0x1B:
 177				gb->memory.mbcType = GB_MBC5;
 178				break;
 179			case 0x1C:
 180			case 0x1D:
 181			case 0x1E:
 182				gb->memory.mbcType = GB_MBC5_RUMBLE;
 183				break;
 184			case 0x20:
 185				gb->memory.mbcType = GB_MBC6;
 186				break;
 187			case 0x22:
 188				gb->memory.mbcType = GB_MBC7;
 189				break;
 190			case 0xFC:
 191				gb->memory.mbcType = GB_POCKETCAM;
 192				break;
 193			case 0xFD:
 194				gb->memory.mbcType = GB_TAMA5;
 195				break;
 196			case 0xFE:
 197				gb->memory.mbcType = GB_HuC3;
 198				break;
 199			case 0xFF:
 200				gb->memory.mbcType = GB_HuC1;
 201				break;
 202			}
 203		}
 204	} else {
 205		gb->memory.mbcType = GB_MBC_NONE;
 206	}
 207	gb->memory.mbcRead = NULL;
 208	switch (gb->memory.mbcType) {
 209	case GB_MBC_NONE:
 210		gb->memory.mbcWrite = _GBMBCNone;
 211		break;
 212	case GB_MBC1:
 213		gb->memory.mbcWrite = _GBMBC1;
 214		break;
 215	case GB_MBC2:
 216		gb->memory.mbcWrite = _GBMBC2;
 217		gb->sramSize = 0x200;
 218		break;
 219	case GB_MBC3:
 220		gb->memory.mbcWrite = _GBMBC3;
 221		break;
 222	default:
 223		mLOG(GB_MBC, WARN, "Unknown MBC type: %02X", cart->type);
 224		// Fall through
 225	case GB_MBC5:
 226		gb->memory.mbcWrite = _GBMBC5;
 227		break;
 228	case GB_MBC6:
 229		mLOG(GB_MBC, WARN, "unimplemented MBC: MBC6");
 230		gb->memory.mbcWrite = _GBMBC6;
 231		break;
 232	case GB_MBC7:
 233		gb->memory.mbcWrite = _GBMBC7;
 234		gb->memory.mbcRead = _GBMBC7Read;
 235		gb->sramSize = 0x100;
 236		break;
 237	case GB_MMM01:
 238		mLOG(GB_MBC, WARN, "unimplemented MBC: MMM01");
 239		gb->memory.mbcWrite = _GBMBC1;
 240		break;
 241	case GB_HuC1:
 242		mLOG(GB_MBC, WARN, "unimplemented MBC: HuC-1");
 243		gb->memory.mbcWrite = _GBMBC1;
 244		break;
 245	case GB_HuC3:
 246		gb->memory.mbcWrite = _GBHuC3;
 247		break;
 248	case GB_TAMA5:
 249		mLOG(GB_MBC, WARN, "unimplemented MBC: TAMA5");
 250		memset(gb->memory.rtcRegs, 0, sizeof(gb->memory.rtcRegs));
 251		gb->memory.mbcWrite = _GBTAMA5;
 252		gb->memory.mbcRead = _GBTAMA5Read;
 253		gb->sramSize = 0x20;
 254		break;
 255	case GB_MBC3_RTC:
 256		memset(gb->memory.rtcRegs, 0, sizeof(gb->memory.rtcRegs));
 257		gb->memory.mbcWrite = _GBMBC3;
 258		break;
 259	case GB_MBC5_RUMBLE:
 260		gb->memory.mbcWrite = _GBMBC5;
 261		break;
 262	case GB_POCKETCAM:
 263		gb->memory.mbcWrite = _GBPocketCam;
 264		gb->memory.mbcRead = _GBPocketCamRead;
 265		if (gb->memory.cam && gb->memory.cam->startRequestImage) {
 266			gb->memory.cam->startRequestImage(gb->memory.cam, GBCAM_WIDTH, GBCAM_HEIGHT, mCOLOR_ANY);
 267		}
 268		break;
 269	}
 270
 271	gb->memory.currentBank = 1;
 272	gb->memory.sramCurrentBank = 0;
 273	gb->memory.sramAccess = false;
 274	gb->memory.rtcAccess = false;
 275	gb->memory.activeRtcReg = 0;
 276	gb->memory.rtcLatched = false;
 277	gb->memory.rtcLastLatch = 0;
 278	if (gb->memory.rtc) {
 279		if (gb->memory.rtc->sample) {
 280			gb->memory.rtc->sample(gb->memory.rtc);
 281		}
 282		gb->memory.rtcLastLatch = gb->memory.rtc->unixTime(gb->memory.rtc);
 283	} else {
 284		gb->memory.rtcLastLatch = time(0);
 285	}
 286	memset(&gb->memory.rtcRegs, 0, sizeof(gb->memory.rtcRegs));
 287
 288	GBResizeSram(gb, gb->sramSize);
 289
 290	if (gb->memory.mbcType == GB_MBC3_RTC) {
 291		GBMBCRTCRead(gb);
 292	}
 293}
 294
 295static void _latchRtc(struct mRTCSource* rtc, uint8_t* rtcRegs, time_t* rtcLastLatch) {
 296	time_t t;
 297	if (rtc) {
 298		if (rtc->sample) {
 299			rtc->sample(rtc);
 300		}
 301		t = rtc->unixTime(rtc);
 302	} else {
 303		t = time(0);
 304	}
 305	time_t currentLatch = t;
 306	t -= *rtcLastLatch;
 307	*rtcLastLatch = currentLatch;
 308
 309	int64_t diff;
 310	diff = rtcRegs[0] + t % 60;
 311	if (diff < 0) {
 312		diff += 60;
 313		t -= 60;
 314	}
 315	rtcRegs[0] = diff % 60;
 316	t /= 60;
 317	t += diff / 60;
 318
 319	diff = rtcRegs[1] + t % 60;
 320	if (diff < 0) {
 321		diff += 60;
 322		t -= 60;
 323	}
 324	rtcRegs[1] = diff % 60;
 325	t /= 60;
 326	t += diff / 60;
 327
 328	diff = rtcRegs[2] + t % 24;
 329	if (diff < 0) {
 330		diff += 24;
 331		t -= 24;
 332	}
 333	rtcRegs[2] = diff % 24;
 334	t /= 24;
 335	t += diff / 24;
 336
 337	diff = rtcRegs[3] + ((rtcRegs[4] & 1) << 8) + (t & 0x1FF);
 338	rtcRegs[3] = diff;
 339	rtcRegs[4] &= 0xFE;
 340	rtcRegs[4] |= (diff >> 8) & 1;
 341	if (diff & 0x200) {
 342		rtcRegs[4] |= 0x80;
 343	}
 344}
 345
 346void _GBMBC1(struct GB* gb, uint16_t address, uint8_t value) {
 347	struct GBMemory* memory = &gb->memory;
 348	int bank = value & 0x1F;
 349	int stride = 1 << memory->mbcState.mbc1.multicartStride;
 350	switch (address >> 13) {
 351	case 0x0:
 352		switch (value) {
 353		case 0:
 354			memory->sramAccess = false;
 355			break;
 356		case 0xA:
 357			memory->sramAccess = true;
 358			GBMBCSwitchSramBank(gb, memory->sramCurrentBank);
 359			break;
 360		default:
 361			// TODO
 362			mLOG(GB_MBC, STUB, "MBC1 unknown value %02X", value);
 363			break;
 364		}
 365		break;
 366	case 0x1:
 367		if (!bank) {
 368			++bank;
 369		}
 370		bank &= stride - 1;
 371		GBMBCSwitchBank(gb, bank | (memory->currentBank & (3 * stride)));
 372		break;
 373	case 0x2:
 374		bank &= 3;
 375		if (memory->mbcState.mbc1.mode) {
 376			GBMBCSwitchBank0(gb, bank);
 377			GBMBCSwitchSramBank(gb, bank);
 378		}
 379		GBMBCSwitchBank(gb, (bank << memory->mbcState.mbc1.multicartStride) | (memory->currentBank & (stride - 1)));
 380		break;
 381	case 0x3:
 382		memory->mbcState.mbc1.mode = value & 1;
 383		if (memory->mbcState.mbc1.mode) {
 384			GBMBCSwitchBank0(gb, memory->currentBank >> memory->mbcState.mbc1.multicartStride);
 385		} else {
 386			GBMBCSwitchBank0(gb, 0);
 387			GBMBCSwitchSramBank(gb, 0);
 388		}
 389		break;
 390	default:
 391		// TODO
 392		mLOG(GB_MBC, STUB, "MBC1 unknown address: %04X:%02X", address, value);
 393		break;
 394	}
 395}
 396
 397void _GBMBC2(struct GB* gb, uint16_t address, uint8_t value) {
 398	struct GBMemory* memory = &gb->memory;
 399	int bank = value & 0xF;
 400	switch (address >> 13) {
 401	case 0x0:
 402		switch (value) {
 403		case 0:
 404			memory->sramAccess = false;
 405			break;
 406		case 0xA:
 407			memory->sramAccess = true;
 408			GBMBCSwitchSramBank(gb, memory->sramCurrentBank);
 409			break;
 410		default:
 411			// TODO
 412			mLOG(GB_MBC, STUB, "MBC1 unknown value %02X", value);
 413			break;
 414		}
 415		break;
 416	case 0x1:
 417		if (!bank) {
 418			++bank;
 419		}
 420		GBMBCSwitchBank(gb, bank);
 421		break;
 422	default:
 423		// TODO
 424		mLOG(GB_MBC, STUB, "MBC2 unknown address: %04X:%02X", address, value);
 425		break;
 426	}
 427}
 428
 429void _GBMBC3(struct GB* gb, uint16_t address, uint8_t value) {
 430	struct GBMemory* memory = &gb->memory;
 431	int bank = value & 0x7F;
 432	switch (address >> 13) {
 433	case 0x0:
 434		switch (value) {
 435		case 0:
 436			memory->sramAccess = false;
 437			break;
 438		case 0xA:
 439			memory->sramAccess = true;
 440			GBMBCSwitchSramBank(gb, memory->sramCurrentBank);
 441			break;
 442		default:
 443			// TODO
 444			mLOG(GB_MBC, STUB, "MBC3 unknown value %02X", value);
 445			break;
 446		}
 447		break;
 448	case 0x1:
 449		if (!bank) {
 450			++bank;
 451		}
 452		GBMBCSwitchBank(gb, bank);
 453		break;
 454	case 0x2:
 455		if (value < 4) {
 456			GBMBCSwitchSramBank(gb, value);
 457			memory->rtcAccess = false;
 458		} else if (value >= 8 && value <= 0xC) {
 459			memory->activeRtcReg = value - 8;
 460			memory->rtcAccess = true;
 461		}
 462		break;
 463	case 0x3:
 464		if (memory->rtcLatched && value == 0) {
 465			memory->rtcLatched = false;
 466		} else if (!memory->rtcLatched && value == 1) {
 467			_latchRtc(gb->memory.rtc, gb->memory.rtcRegs, &gb->memory.rtcLastLatch);
 468			memory->rtcLatched = true;
 469		}
 470		break;
 471	}
 472}
 473
 474void _GBMBC5(struct GB* gb, uint16_t address, uint8_t value) {
 475	struct GBMemory* memory = &gb->memory;
 476	int bank;
 477	switch (address >> 12) {
 478	case 0x0:
 479	case 0x1:
 480		switch (value) {
 481		case 0:
 482			memory->sramAccess = false;
 483			break;
 484		case 0xA:
 485			memory->sramAccess = true;
 486			GBMBCSwitchSramBank(gb, memory->sramCurrentBank);
 487			break;
 488		default:
 489			// TODO
 490			mLOG(GB_MBC, STUB, "MBC5 unknown value %02X", value);
 491			break;
 492		}
 493		break;
 494	case 0x2:
 495		bank = (memory->currentBank & 0x100) | value;
 496		GBMBCSwitchBank(gb, bank);
 497		break;
 498	case 0x3:
 499		bank = (memory->currentBank & 0xFF) | ((value & 1) << 8);
 500		GBMBCSwitchBank(gb, bank);
 501		break;
 502	case 0x4:
 503	case 0x5:
 504		if (memory->mbcType == GB_MBC5_RUMBLE && memory->rumble) {
 505			memory->rumble->setRumble(memory->rumble, (value >> 3) & 1);
 506			value &= ~8;
 507		}
 508		GBMBCSwitchSramBank(gb, value & 0xF);
 509		break;
 510	default:
 511		// TODO
 512		mLOG(GB_MBC, STUB, "MBC5 unknown address: %04X:%02X", address, value);
 513		break;
 514	}
 515}
 516
 517void _GBMBC6(struct GB* gb, uint16_t address, uint8_t value) {
 518	struct GBMemory* memory = &gb->memory;
 519	int bank = value & 0x7F;
 520	switch (address >> 10) {
 521	case 0:
 522		switch (value) {
 523		case 0:
 524			memory->sramAccess = false;
 525			break;
 526		case 0xA:
 527			memory->sramAccess = true;
 528			GBMBCSwitchSramBank(gb, memory->sramCurrentBank);
 529			break;
 530		default:
 531			// TODO
 532			mLOG(GB_MBC, STUB, "MBC6 unknown value %02X", value);
 533			break;
 534		}
 535		break;
 536	case 0x9:
 537		GBMBCSwitchHalfBank(gb, 0, bank);
 538		break;
 539	case 0xD:
 540		GBMBCSwitchHalfBank(gb, 1, bank);
 541		break;
 542	default:
 543		mLOG(GB_MBC, STUB, "MBC6 unknown address: %04X:%02X", address, value);
 544		break;
 545	}
 546}
 547
 548void _GBMBC7(struct GB* gb, uint16_t address, uint8_t value) {
 549	int bank = value & 0x7F;
 550	switch (address >> 13) {
 551	case 0x0:
 552		switch (value) {
 553		default:
 554		case 0:
 555			gb->memory.mbcState.mbc7.access = 0;
 556			break;
 557		case 0xA:
 558			gb->memory.mbcState.mbc7.access |= 1;
 559			break;
 560		}
 561		break;
 562	case 0x1:
 563		GBMBCSwitchBank(gb, bank);
 564		break;
 565	case 0x2:
 566		if (value == 0x40) {
 567			gb->memory.mbcState.mbc7.access |= 2;
 568		} else {
 569			gb->memory.mbcState.mbc7.access &= ~2;
 570		}
 571		break;
 572	case 0x5:
 573		_GBMBC7Write(&gb->memory, address, value);
 574	default:
 575		// TODO
 576		mLOG(GB_MBC, STUB, "MBC7 unknown address: %04X:%02X", address, value);
 577		break;
 578	}
 579}
 580
 581uint8_t _GBMBC7Read(struct GBMemory* memory, uint16_t address) {
 582	struct GBMBC7State* mbc7 = &memory->mbcState.mbc7;
 583	if (mbc7->access != 3) {
 584		return 0xFF;
 585	}
 586	switch (address & 0xF0) {
 587	case 0x20:
 588		if (memory->rotation && memory->rotation->readTiltX) {
 589			int32_t x = -memory->rotation->readTiltX(memory->rotation);
 590			x >>= 21;
 591			x += 0x81D0;
 592			return x;
 593		}
 594		return 0xFF;
 595	case 0x30:
 596		if (memory->rotation && memory->rotation->readTiltX) {
 597			int32_t x = -memory->rotation->readTiltX(memory->rotation);
 598			x >>= 21;
 599			x += 0x81D0;
 600			return x >> 8;
 601		}
 602		return 7;
 603	case 0x40:
 604		if (memory->rotation && memory->rotation->readTiltY) {
 605			int32_t y = -memory->rotation->readTiltY(memory->rotation);
 606			y >>= 21;
 607			y += 0x81D0;
 608			return y;
 609		}
 610		return 0xFF;
 611	case 0x50:
 612		if (memory->rotation && memory->rotation->readTiltY) {
 613			int32_t y = -memory->rotation->readTiltY(memory->rotation);
 614			y >>= 21;
 615			y += 0x81D0;
 616			return y >> 8;
 617		}
 618		return 7;
 619	case 0x60:
 620		return 0;
 621	case 0x80:
 622		return mbc7->eeprom;
 623	default:
 624		return 0xFF;
 625	}
 626}
 627
 628static void _GBMBC7Write(struct GBMemory* memory, uint16_t address, uint8_t value) {
 629	struct GBMBC7State* mbc7 = &memory->mbcState.mbc7;
 630	if (mbc7->access != 3) {
 631		return;
 632	}
 633	switch (address & 0xF0) {
 634	case 0x00:
 635		mbc7->latch = (value & 0x55) == 0x55;
 636		return;
 637	case 0x10:
 638		mbc7->latch |= (value & 0xAA);
 639		if (mbc7->latch == 0xAB && memory->rotation && memory->rotation->sample) {
 640			memory->rotation->sample(memory->rotation);
 641		}
 642		mbc7->latch = 0;
 643		return;
 644	default:
 645		mLOG(GB_MBC, STUB, "MBC7 unknown register: %04X:%02X", address, value);
 646		return;
 647	case 0x80:
 648		break;
 649	}
 650	GBMBC7Field old = memory->mbcState.mbc7.eeprom;
 651	value = GBMBC7FieldFillDO(value); // Hi-Z
 652	if (!GBMBC7FieldIsCS(old) && GBMBC7FieldIsCS(value)) {
 653		mbc7->state = GBMBC7_STATE_IDLE;
 654	}
 655	if (!GBMBC7FieldIsCLK(old) && GBMBC7FieldIsCLK(value)) {
 656		if (mbc7->state == GBMBC7_STATE_READ_COMMAND || mbc7->state == GBMBC7_STATE_EEPROM_WRITE || mbc7->state == GBMBC7_STATE_EEPROM_WRAL) {
 657			mbc7->sr <<= 1;
 658			mbc7->sr |= GBMBC7FieldGetDI(value);
 659			++mbc7->srBits;
 660		}
 661		switch (mbc7->state) {
 662		case GBMBC7_STATE_IDLE:
 663			if (GBMBC7FieldIsDI(value)) {
 664				mbc7->state = GBMBC7_STATE_READ_COMMAND;
 665				mbc7->srBits = 0;
 666				mbc7->sr = 0;
 667			}
 668			break;
 669		case GBMBC7_STATE_READ_COMMAND:
 670			if (mbc7->srBits == 10) {
 671				mbc7->state = 0x10 | (mbc7->sr >> 6);
 672				if (mbc7->state & 0xC) {
 673					mbc7->state &= ~0x3;
 674				}
 675				mbc7->srBits = 0;
 676				mbc7->address = mbc7->sr & 0x7F;
 677			}
 678			break;
 679		case GBMBC7_STATE_DO:
 680			value = GBMBC7FieldSetDO(value, mbc7->sr >> 15);
 681			mbc7->sr <<= 1;
 682			--mbc7->srBits;
 683			if (!mbc7->srBits) {
 684				mbc7->state = GBMBC7_STATE_IDLE;
 685			}
 686			break;
 687		default:
 688			break;
 689		}
 690		switch (mbc7->state) {
 691		case GBMBC7_STATE_EEPROM_EWEN:
 692			mbc7->writable = true;
 693			mbc7->state = GBMBC7_STATE_IDLE;
 694			break;
 695		case GBMBC7_STATE_EEPROM_EWDS:
 696			mbc7->writable = false;
 697			mbc7->state = GBMBC7_STATE_IDLE;
 698			break;
 699		case GBMBC7_STATE_EEPROM_WRITE:
 700			if (mbc7->srBits == 16) {
 701				if (mbc7->writable) {
 702					memory->sram[mbc7->address * 2] = mbc7->sr >> 8;
 703					memory->sram[mbc7->address * 2 + 1] = mbc7->sr;
 704				}
 705				mbc7->state = GBMBC7_STATE_IDLE;
 706			}
 707			break;
 708		case GBMBC7_STATE_EEPROM_ERASE:
 709			if (mbc7->writable) {
 710				memory->sram[mbc7->address * 2] = 0xFF;
 711				memory->sram[mbc7->address * 2 + 1] = 0xFF;
 712			}
 713			mbc7->state = GBMBC7_STATE_IDLE;
 714			break;
 715		case GBMBC7_STATE_EEPROM_READ:
 716			mbc7->srBits = 16;
 717			mbc7->sr = memory->sram[mbc7->address * 2] << 8;
 718			mbc7->sr |= memory->sram[mbc7->address * 2 + 1];
 719			mbc7->state = GBMBC7_STATE_DO;
 720			value = GBMBC7FieldClearDO(value);
 721			break;
 722		case GBMBC7_STATE_EEPROM_WRAL:
 723			if (mbc7->srBits == 16) {
 724				if (mbc7->writable) {
 725					int i;
 726					for (i = 0; i < 128; ++i) {
 727						memory->sram[i * 2] = mbc7->sr >> 8;
 728						memory->sram[i * 2 + 1] = mbc7->sr;
 729					}
 730				}
 731				mbc7->state = GBMBC7_STATE_IDLE;
 732			}
 733			break;
 734		case GBMBC7_STATE_EEPROM_ERAL:
 735			if (mbc7->writable) {
 736				int i;
 737				for (i = 0; i < 128; ++i) {
 738					memory->sram[i * 2] = 0xFF;
 739					memory->sram[i * 2 + 1] = 0xFF;
 740				}
 741			}
 742			mbc7->state = GBMBC7_STATE_IDLE;
 743			break;
 744		default:
 745			break;
 746		}
 747	} else if (GBMBC7FieldIsCS(value) && GBMBC7FieldIsCLK(old) && !GBMBC7FieldIsCLK(value)) {
 748		value = GBMBC7FieldSetDO(value, GBMBC7FieldGetDO(old));
 749	}
 750	mbc7->eeprom = value;
 751}
 752
 753void _GBHuC3(struct GB* gb, uint16_t address, uint8_t value) {
 754	struct GBMemory* memory = &gb->memory;
 755	int bank = value & 0x3F;
 756	if (address & 0x1FFF) {
 757		mLOG(GB_MBC, STUB, "HuC-3 unknown value %04X:%02X", address, value);
 758	}
 759
 760	switch (address >> 13) {
 761	case 0x0:
 762		switch (value) {
 763		case 0xA:
 764			memory->sramAccess = true;
 765			GBMBCSwitchSramBank(gb, memory->sramCurrentBank);
 766			break;
 767		default:
 768			memory->sramAccess = false;
 769			break;
 770		}
 771		break;
 772	case 0x1:
 773		GBMBCSwitchBank(gb, bank);
 774		break;
 775	case 0x2:
 776		GBMBCSwitchSramBank(gb, bank);
 777		break;
 778	default:
 779		// TODO
 780		mLOG(GB_MBC, STUB, "HuC-3 unknown address: %04X:%02X", address, value);
 781		break;
 782	}
 783}
 784
 785void _GBPocketCam(struct GB* gb, uint16_t address, uint8_t value) {
 786	struct GBMemory* memory = &gb->memory;
 787	int bank = value & 0x3F;
 788	switch (address >> 13) {
 789	case 0x0:
 790		switch (value) {
 791		case 0:
 792			memory->sramAccess = false;
 793			break;
 794		case 0xA:
 795			memory->sramAccess = true;
 796			GBMBCSwitchSramBank(gb, memory->sramCurrentBank);
 797			break;
 798		default:
 799			// TODO
 800			mLOG(GB_MBC, STUB, "Pocket Cam unknown value %02X", value);
 801			break;
 802		}
 803		break;
 804	case 0x1:
 805		GBMBCSwitchBank(gb, bank);
 806		break;
 807	case 0x2:
 808		if (value < 0x10) {
 809			GBMBCSwitchSramBank(gb, value);
 810			memory->mbcState.pocketCam.registersActive = false;
 811		} else {
 812			memory->mbcState.pocketCam.registersActive = true;
 813		}
 814		break;
 815	case 0x5:
 816		address &= 0x7F;
 817		if (address == 0 && value & 1) {
 818			value &= 6; // TODO: Timing
 819			_GBPocketCamCapture(memory);
 820		}
 821		if (address < sizeof(memory->mbcState.pocketCam.registers)) {
 822			memory->mbcState.pocketCam.registers[address] = value;
 823		}
 824		break;
 825	default:
 826		mLOG(GB_MBC, STUB, "Pocket Cam unknown address: %04X:%02X", address, value);
 827		break;
 828	}
 829}
 830
 831uint8_t _GBPocketCamRead(struct GBMemory* memory, uint16_t address) {
 832	if (memory->mbcState.pocketCam.registersActive) {
 833		if ((address & 0x7F) == 0) {
 834			return memory->mbcState.pocketCam.registers[0];
 835		}
 836		return 0;
 837	}
 838	return memory->sramBank[address & (GB_SIZE_EXTERNAL_RAM - 1)];
 839}
 840
 841void _GBPocketCamCapture(struct GBMemory* memory) {
 842	if (!memory->cam) {
 843		return;
 844	}
 845	const void* image = NULL;
 846	size_t stride;
 847	enum mColorFormat format;
 848	memory->cam->requestImage(memory->cam, &image, &stride, &format);
 849	if (!image) {
 850		return;
 851	}
 852	memset(&memory->sram[0x100], 0, GBCAM_HEIGHT * GBCAM_WIDTH / 4);
 853	struct GBPocketCamState* pocketCam = &memory->mbcState.pocketCam;
 854	size_t x, y;
 855	for (y = 0; y < GBCAM_HEIGHT; ++y) {
 856		for (x = 0; x < GBCAM_WIDTH; ++x) {
 857			uint32_t gray;
 858			uint32_t color;
 859			switch (format) {
 860			case mCOLOR_XBGR8:
 861			case mCOLOR_XRGB8:
 862			case mCOLOR_ARGB8:
 863			case mCOLOR_ABGR8:
 864				color = ((const uint32_t*) image)[y * stride + x];
 865				gray = (color & 0xFF) + ((color >> 8) & 0xFF) + ((color >> 16) & 0xFF);
 866				break;
 867			case mCOLOR_BGRX8:
 868			case mCOLOR_RGBX8:
 869			case mCOLOR_RGBA8:
 870			case mCOLOR_BGRA8:
 871				color = ((const uint32_t*) image)[y * stride + x];
 872				gray = ((color >> 8) & 0xFF) + ((color >> 16) & 0xFF) + ((color >> 24) & 0xFF);
 873				break;
 874			case mCOLOR_BGR5:
 875			case mCOLOR_RGB5:
 876			case mCOLOR_ARGB5:
 877			case mCOLOR_ABGR5:
 878				color = ((const uint16_t*) image)[y * stride + x];
 879				gray = ((color << 3) & 0xF8) + ((color >> 2) & 0xF8) + ((color >> 7) & 0xF8);
 880				break;
 881			case mCOLOR_BGR565:
 882			case mCOLOR_RGB565:
 883				color = ((const uint16_t*) image)[y * stride + x];
 884				gray = ((color << 3) & 0xF8) + ((color >> 3) & 0xFC) + ((color >> 8) & 0xF8);
 885				break;
 886			case mCOLOR_BGRA5:
 887			case mCOLOR_RGBA5:
 888				color = ((const uint16_t*) image)[y * stride + x];
 889				gray = ((color << 2) & 0xF8) + ((color >> 3) & 0xF8) + ((color >> 8) & 0xF8);
 890				break;
 891			default:
 892				mLOG(GB_MBC, WARN, "Unsupported pixel format: %X", format);
 893				return;
 894			}
 895			uint16_t exposure = (pocketCam->registers[2] << 8) | (pocketCam->registers[3]);
 896			gray = (gray + 1) * exposure / 0x300;
 897			// TODO: Additional processing
 898			int matrixEntry = 3 * ((x & 3) + 4 * (y & 3));
 899			if (gray < pocketCam->registers[matrixEntry + 6]) {
 900				gray = 0x101;
 901			} else if (gray < pocketCam->registers[matrixEntry + 7]) {
 902				gray = 0x100;
 903			} else if (gray < pocketCam->registers[matrixEntry + 8]) {
 904				gray = 0x001;
 905			} else {
 906				gray = 0;
 907			}
 908			int coord = (((x >> 3) & 0xF) * 8 + (y & 0x7)) * 2 + (y & ~0x7) * 0x20;
 909			uint16_t existing;
 910			LOAD_16LE(existing, coord + 0x100, memory->sram);
 911			existing |= gray << (7 - (x & 7));
 912			STORE_16LE(existing, coord + 0x100, memory->sram);
 913		}
 914	}
 915}
 916
 917void _GBTAMA5(struct GB* gb, uint16_t address, uint8_t value) {
 918	struct GBMemory* memory = &gb->memory;
 919	struct GBTAMA5State* tama5 = &memory->mbcState.tama5;
 920	switch (address >> 13) {
 921	case 0x5:
 922		if (address & 1) {
 923			tama5->reg = value;
 924		} else {
 925			value &= 0xF;
 926			if (tama5->reg < GBTAMA5_MAX) {
 927				tama5->registers[tama5->reg] = value;
 928				uint8_t address = ((tama5->registers[GBTAMA5_CS] << 4) & 0x10) | tama5->registers[GBTAMA5_ADDR_LO];
 929				uint8_t out = (tama5->registers[GBTAMA5_WRITE_HI] << 4) | tama5->registers[GBTAMA5_WRITE_LO];
 930				switch (tama5->reg) {
 931				case GBTAMA5_BANK_LO:
 932				case GBTAMA5_BANK_HI:
 933					GBMBCSwitchBank(gb, tama5->registers[GBTAMA5_BANK_LO] | (tama5->registers[GBTAMA5_BANK_HI] << 4));
 934					break;
 935				case GBTAMA5_WRITE_LO:
 936				case GBTAMA5_WRITE_HI:
 937				case GBTAMA5_CS:
 938					break;
 939				case GBTAMA5_ADDR_LO:
 940					switch (tama5->registers[GBTAMA5_CS] >> 1) {
 941					case 0x0: // RAM write
 942						memory->sram[address] = out;
 943						break;
 944					case 0x1: // RAM read
 945						break;
 946					default:
 947						mLOG(GB_MBC, STUB, "TAMA5 unknown address: %X-%02X:%02X", tama5->registers[GBTAMA5_CS] >> 1, address, out);
 948					}
 949					break;
 950				default:
 951					mLOG(GB_MBC, STUB, "TAMA5 unknown write: %02X:%X", tama5->reg, value);
 952					break;
 953				}
 954			} else {
 955				mLOG(GB_MBC, STUB, "TAMA5 unknown write: %02X", tama5->reg);
 956			}
 957		}
 958		break;
 959	default:
 960		mLOG(GB_MBC, STUB, "TAMA5 unknown address: %04X:%02X", address, value);
 961	}
 962}
 963
 964uint8_t _GBTAMA5Read(struct GBMemory* memory, uint16_t address) {
 965	struct GBTAMA5State* tama5 = &memory->mbcState.tama5;
 966	if ((address & 0x1FFF) > 1) {
 967		mLOG(GB_MBC, STUB, "TAMA5 unknown address: %04X", address);
 968	}
 969	if (address & 1) {
 970		return 0xFF;
 971	} else {
 972		uint8_t value = 0xF0;
 973		uint8_t address = ((tama5->registers[GBTAMA5_CS] << 4) & 0x10) | tama5->registers[GBTAMA5_ADDR_LO];
 974		switch (tama5->reg) {
 975		case GBTAMA5_ACTIVE:
 976			return 0xF1;
 977		case GBTAMA5_READ_LO:
 978		case GBTAMA5_READ_HI:
 979			switch (tama5->registers[GBTAMA5_CS] >> 1) {
 980			case 1:
 981				value = memory->sram[address];
 982				break;
 983			default:
 984				mLOG(GB_MBC, STUB, "TAMA5 unknown read: %02X", tama5->reg);
 985				break;
 986			}
 987			if (tama5->reg == GBTAMA5_READ_HI) {
 988				value >>= 4;
 989			}
 990			value |= 0xF0;
 991			return value;
 992		default:
 993			mLOG(GB_MBC, STUB, "TAMA5 unknown read: %02X", tama5->reg);
 994			return 0xF1;
 995		}
 996	}
 997}
 998
 999void GBMBCRTCRead(struct GB* gb) {
1000	struct GBMBCRTCSaveBuffer rtcBuffer;
1001	struct VFile* vf = gb->sramVf;
1002	if (!vf) {
1003		return;
1004	}
1005	vf->seek(vf, gb->sramSize, SEEK_SET);
1006	if (vf->read(vf, &rtcBuffer, sizeof(rtcBuffer)) < (ssize_t) sizeof(rtcBuffer) - 4) {
1007		return;
1008	}
1009
1010	LOAD_32LE(gb->memory.rtcRegs[0], 0, &rtcBuffer.latchedSec);
1011	LOAD_32LE(gb->memory.rtcRegs[1], 0, &rtcBuffer.latchedMin);
1012	LOAD_32LE(gb->memory.rtcRegs[2], 0, &rtcBuffer.latchedHour);
1013	LOAD_32LE(gb->memory.rtcRegs[3], 0, &rtcBuffer.latchedDays);
1014	LOAD_32LE(gb->memory.rtcRegs[4], 0, &rtcBuffer.latchedDaysHi);
1015	LOAD_64LE(gb->memory.rtcLastLatch, 0, &rtcBuffer.unixTime);
1016}
1017
1018void GBMBCRTCWrite(struct GB* gb) {
1019	struct VFile* vf = gb->sramVf;
1020	if (!vf) {
1021		return;
1022	}
1023
1024	uint8_t rtcRegs[5];
1025	memcpy(rtcRegs, gb->memory.rtcRegs, sizeof(rtcRegs));
1026	time_t rtcLastLatch = gb->memory.rtcLastLatch;
1027	_latchRtc(gb->memory.rtc, rtcRegs, &rtcLastLatch);
1028
1029	struct GBMBCRTCSaveBuffer rtcBuffer;
1030	STORE_32LE(rtcRegs[0], 0, &rtcBuffer.sec);
1031	STORE_32LE(rtcRegs[1], 0, &rtcBuffer.min);
1032	STORE_32LE(rtcRegs[2], 0, &rtcBuffer.hour);
1033	STORE_32LE(rtcRegs[3], 0, &rtcBuffer.days);
1034	STORE_32LE(rtcRegs[4], 0, &rtcBuffer.daysHi);
1035	STORE_32LE(gb->memory.rtcRegs[0], 0, &rtcBuffer.latchedSec);
1036	STORE_32LE(gb->memory.rtcRegs[1], 0, &rtcBuffer.latchedMin);
1037	STORE_32LE(gb->memory.rtcRegs[2], 0, &rtcBuffer.latchedHour);
1038	STORE_32LE(gb->memory.rtcRegs[3], 0, &rtcBuffer.latchedDays);
1039	STORE_32LE(gb->memory.rtcRegs[4], 0, &rtcBuffer.latchedDaysHi);
1040	STORE_64LE(gb->memory.rtcLastLatch, 0, &rtcBuffer.unixTime);
1041
1042	if ((size_t) vf->size(vf) < gb->sramSize + sizeof(rtcBuffer)) {
1043		// Writing past the end of the file can invalidate the file mapping
1044		vf->unmap(vf, gb->memory.sram, gb->sramSize);
1045		gb->memory.sram = NULL;
1046	}
1047	vf->seek(vf, gb->sramSize, SEEK_SET);
1048	vf->write(vf, &rtcBuffer, sizeof(rtcBuffer));
1049	if (!gb->memory.sram) {
1050		gb->memory.sram = vf->map(vf, gb->sramSize, MAP_WRITE);
1051		GBMBCSwitchSramBank(gb, gb->memory.sramCurrentBank);
1052	}
1053}