all repos — mgba @ 8fcf9bee070251b6f2cefc9339e2e87842d00895

mGBA Game Boy Advance Emulator

src/ds/gx.c (view raw)

   1/* Copyright (c) 2013-2017 Jeffrey Pfau
   2 *
   3 * This Source Code Form is subject to the terms of the Mozilla Public
   4 * License, v. 2.0. If a copy of the MPL was not distributed with this
   5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
   6#include <mgba/internal/ds/gx.h>
   7
   8#include <mgba/internal/ds/ds.h>
   9#include <mgba/internal/ds/io.h>
  10
  11mLOG_DEFINE_CATEGORY(DS_GX, "DS GX", "ds.gx");
  12
  13#define DS_GX_FIFO_SIZE 256
  14#define DS_GX_PIPE_SIZE 4
  15
  16static void DSGXDummyRendererInit(struct DSGXRenderer* renderer);
  17static void DSGXDummyRendererReset(struct DSGXRenderer* renderer);
  18static void DSGXDummyRendererDeinit(struct DSGXRenderer* renderer);
  19static void DSGXDummyRendererInvalidateTex(struct DSGXRenderer* renderer, int slot);
  20static void DSGXDummyRendererSetRAM(struct DSGXRenderer* renderer, struct DSGXVertex* verts, struct DSGXPolygon* polys, unsigned polyCount, bool wSort);
  21static void DSGXDummyRendererDrawScanline(struct DSGXRenderer* renderer, int y);
  22static void DSGXDummyRendererGetScanline(struct DSGXRenderer* renderer, int y, const color_t** output);
  23static void DSGXDummyRendererWriteRegister(struct DSGXRenderer* renderer, uint32_t address, uint16_t value);
  24
  25static void DSGXWriteFIFO(struct DSGX* gx, struct DSGXEntry entry);
  26
  27static const int32_t _gxCommandCycleBase[DS_GX_CMD_MAX] = {
  28	[DS_GX_CMD_NOP] = 0,
  29	[DS_GX_CMD_MTX_MODE] = 2,
  30	[DS_GX_CMD_MTX_PUSH] = 34,
  31	[DS_GX_CMD_MTX_POP] = 72,
  32	[DS_GX_CMD_MTX_STORE] = 34,
  33	[DS_GX_CMD_MTX_RESTORE] = 72,
  34	[DS_GX_CMD_MTX_IDENTITY] = 38,
  35	[DS_GX_CMD_MTX_LOAD_4x4] = 68,
  36	[DS_GX_CMD_MTX_LOAD_4x3] = 60,
  37	[DS_GX_CMD_MTX_MULT_4x4] = 70,
  38	[DS_GX_CMD_MTX_MULT_4x3] = 62,
  39	[DS_GX_CMD_MTX_MULT_3x3] = 56,
  40	[DS_GX_CMD_MTX_SCALE] = 44,
  41	[DS_GX_CMD_MTX_TRANS] = 44,
  42	[DS_GX_CMD_COLOR] = 2,
  43	[DS_GX_CMD_NORMAL] = 18,
  44	[DS_GX_CMD_TEXCOORD] = 2,
  45	[DS_GX_CMD_VTX_16] = 18,
  46	[DS_GX_CMD_VTX_10] = 16,
  47	[DS_GX_CMD_VTX_XY] = 16,
  48	[DS_GX_CMD_VTX_XZ] = 16,
  49	[DS_GX_CMD_VTX_YZ] = 16,
  50	[DS_GX_CMD_VTX_DIFF] = 16,
  51	[DS_GX_CMD_POLYGON_ATTR] = 2,
  52	[DS_GX_CMD_TEXIMAGE_PARAM] = 2,
  53	[DS_GX_CMD_PLTT_BASE] = 2,
  54	[DS_GX_CMD_DIF_AMB] = 8,
  55	[DS_GX_CMD_SPE_EMI] = 8,
  56	[DS_GX_CMD_LIGHT_VECTOR] = 12,
  57	[DS_GX_CMD_LIGHT_COLOR] = 2,
  58	[DS_GX_CMD_SHININESS] = 64,
  59	[DS_GX_CMD_BEGIN_VTXS] = 2,
  60	[DS_GX_CMD_END_VTXS] = 2,
  61	[DS_GX_CMD_SWAP_BUFFERS] = 784,
  62	[DS_GX_CMD_VIEWPORT] = 2,
  63	[DS_GX_CMD_BOX_TEST] = 206,
  64	[DS_GX_CMD_POS_TEST] = 18,
  65	[DS_GX_CMD_VEC_TEST] = 10,
  66};
  67
  68static const int32_t _gxCommandParams[DS_GX_CMD_MAX] = {
  69	[DS_GX_CMD_MTX_MODE] = 1,
  70	[DS_GX_CMD_MTX_POP] = 1,
  71	[DS_GX_CMD_MTX_STORE] = 1,
  72	[DS_GX_CMD_MTX_RESTORE] = 1,
  73	[DS_GX_CMD_MTX_LOAD_4x4] = 16,
  74	[DS_GX_CMD_MTX_LOAD_4x3] = 12,
  75	[DS_GX_CMD_MTX_MULT_4x4] = 16,
  76	[DS_GX_CMD_MTX_MULT_4x3] = 12,
  77	[DS_GX_CMD_MTX_MULT_3x3] = 9,
  78	[DS_GX_CMD_MTX_SCALE] = 3,
  79	[DS_GX_CMD_MTX_TRANS] = 3,
  80	[DS_GX_CMD_COLOR] = 1,
  81	[DS_GX_CMD_NORMAL] = 1,
  82	[DS_GX_CMD_TEXCOORD] = 1,
  83	[DS_GX_CMD_VTX_16] = 2,
  84	[DS_GX_CMD_VTX_10] = 1,
  85	[DS_GX_CMD_VTX_XY] = 1,
  86	[DS_GX_CMD_VTX_XZ] = 1,
  87	[DS_GX_CMD_VTX_YZ] = 1,
  88	[DS_GX_CMD_VTX_DIFF] = 1,
  89	[DS_GX_CMD_POLYGON_ATTR] = 1,
  90	[DS_GX_CMD_TEXIMAGE_PARAM] = 1,
  91	[DS_GX_CMD_PLTT_BASE] = 1,
  92	[DS_GX_CMD_DIF_AMB] = 1,
  93	[DS_GX_CMD_SPE_EMI] = 1,
  94	[DS_GX_CMD_LIGHT_VECTOR] = 1,
  95	[DS_GX_CMD_LIGHT_COLOR] = 1,
  96	[DS_GX_CMD_SHININESS] = 32,
  97	[DS_GX_CMD_BEGIN_VTXS] = 1,
  98	[DS_GX_CMD_SWAP_BUFFERS] = 1,
  99	[DS_GX_CMD_VIEWPORT] = 1,
 100	[DS_GX_CMD_BOX_TEST] = 3,
 101	[DS_GX_CMD_POS_TEST] = 2,
 102	[DS_GX_CMD_VEC_TEST] = 1,
 103};
 104
 105static struct DSGXRenderer dummyRenderer = {
 106	.init = DSGXDummyRendererInit,
 107	.reset = DSGXDummyRendererReset,
 108	.deinit = DSGXDummyRendererDeinit,
 109	.invalidateTex = DSGXDummyRendererInvalidateTex,
 110	.setRAM = DSGXDummyRendererSetRAM,
 111	.drawScanline = DSGXDummyRendererDrawScanline,
 112	.getScanline = DSGXDummyRendererGetScanline,
 113	.writeRegister = DSGXDummyRendererWriteRegister,
 114};
 115
 116static void _pullPipe(struct DSGX* gx) {
 117	if (CircleBufferSize(&gx->fifo) >= sizeof(struct DSGXEntry)) {
 118		struct DSGXEntry entry = { 0 };
 119		CircleBufferRead(&gx->fifo, &entry, sizeof(entry));
 120		CircleBufferWrite(&gx->pipe, &entry, sizeof(entry));
 121	}
 122	if (CircleBufferSize(&gx->fifo) >= sizeof(struct DSGXEntry)) {
 123		struct DSGXEntry entry = { 0 };
 124		CircleBufferRead(&gx->fifo, &entry, sizeof(entry));
 125		CircleBufferWrite(&gx->pipe, &entry, sizeof(entry));
 126	}
 127}
 128
 129static void _updateClipMatrix(struct DSGX* gx) {
 130	DSGXMtxMultiply(&gx->clipMatrix, &gx->posMatrix, &gx->projMatrix);
 131	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_00 >> 1] = gx->clipMatrix.m[0];
 132	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_01 >> 1] = gx->clipMatrix.m[0] >> 16;
 133	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_02 >> 1] = gx->clipMatrix.m[1];
 134	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_03 >> 1] = gx->clipMatrix.m[1] >> 16;
 135	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_04 >> 1] = gx->clipMatrix.m[2];
 136	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_05 >> 1] = gx->clipMatrix.m[2] >> 16;
 137	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_06 >> 1] = gx->clipMatrix.m[3];
 138	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_07 >> 1] = gx->clipMatrix.m[3] >> 16;
 139	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_08 >> 1] = gx->clipMatrix.m[4];
 140	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_09 >> 1] = gx->clipMatrix.m[4] >> 16;
 141	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_0A >> 1] = gx->clipMatrix.m[5];
 142	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_0B >> 1] = gx->clipMatrix.m[5] >> 16;
 143	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_0C >> 1] = gx->clipMatrix.m[6];
 144	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_0D >> 1] = gx->clipMatrix.m[6] >> 16;
 145	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_0E >> 1] = gx->clipMatrix.m[7];
 146	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_0F >> 1] = gx->clipMatrix.m[7] >> 16;
 147	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_10 >> 1] = gx->clipMatrix.m[8];
 148	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_11 >> 1] = gx->clipMatrix.m[8] >> 16;
 149	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_12 >> 1] = gx->clipMatrix.m[9];
 150	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_13 >> 1] = gx->clipMatrix.m[9] >> 16;
 151	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_14 >> 1] = gx->clipMatrix.m[10];
 152	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_15 >> 1] = gx->clipMatrix.m[10] >> 16;
 153	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_16 >> 1] = gx->clipMatrix.m[11];
 154	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_17 >> 1] = gx->clipMatrix.m[11] >> 16;
 155	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_18 >> 1] = gx->clipMatrix.m[12];
 156	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_19 >> 1] = gx->clipMatrix.m[12] >> 16;
 157	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_1A >> 1] = gx->clipMatrix.m[13];
 158	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_1B >> 1] = gx->clipMatrix.m[13] >> 16;
 159	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_1C >> 1] = gx->clipMatrix.m[14];
 160	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_1D >> 1] = gx->clipMatrix.m[14] >> 16;
 161	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_1E >> 1] = gx->clipMatrix.m[15];
 162	gx->p->memory.io9[DS9_REG_CLIPMTX_RESULT_1F >> 1] = gx->clipMatrix.m[15] >> 16;
 163}
 164
 165static inline int32_t _lerp(int32_t x0, int32_t x1, int32_t q, int64_t r) {
 166	int64_t x = x1 - x0;
 167	x *= q;
 168	x /= r;
 169	x += x0;
 170	return x;
 171}
 172
 173static int _cohenSutherlandCode(const struct DSGXVertex* v) {
 174	int code = 0;
 175	if (v->viewCoord[0] < -v->viewCoord[3]) {
 176		code |= 1 << 0;
 177	} else if (v->viewCoord[0] > v->viewCoord[3]) {
 178		code |= 2 << 0;
 179	}
 180	if (v->viewCoord[1] < -v->viewCoord[3]) {
 181		code |= 1 << 2;
 182	} else if (v->viewCoord[1] > v->viewCoord[3]) {
 183		code |= 2 << 2;
 184	}
 185	if (v->viewCoord[2] < -v->viewCoord[3]) {
 186		code |= 1 << 4;
 187	} else if (v->viewCoord[2] > v->viewCoord[3]) {
 188		code |= 2 << 4;
 189	}
 190	return code;
 191}
 192
 193static bool _lerpVertex(const struct DSGXVertex* v0, const struct DSGXVertex* v1, struct DSGXVertex* out, int32_t q, int64_t r) {
 194	if (!r) {
 195		return false;
 196	}
 197	int cr0 = (v0->color) & 0x1F;
 198	int cg0 = (v0->color >> 5) & 0x1F;
 199	int cb0 = (v0->color >> 10) & 0x1F;
 200	int cr1 = (v1->color) & 0x1F;
 201	int cg1 = (v1->color >> 5) & 0x1F;
 202	int cb1 = (v1->color >> 10) & 0x1F;
 203	cr0 = _lerp(cr0, cr1, q, r) & 0x1F;
 204	cg0 = _lerp(cg0, cg1, q, r) & 0x1F;
 205	cb0 = _lerp(cb0, cb1, q, r) & 0x1F;
 206	out->color = cr0 | (cg0 << 5) | (cb0 << 10);
 207
 208	out->viewCoord[0] = _lerp(v0->viewCoord[0], v1->viewCoord[0], q, r);
 209	out->viewCoord[1] = _lerp(v0->viewCoord[1], v1->viewCoord[1], q, r);
 210	out->viewCoord[2] = _lerp(v0->viewCoord[2], v1->viewCoord[2], q, r);
 211	out->viewCoord[3] = _lerp(v0->viewCoord[3], v1->viewCoord[3], q, r);
 212	out->viewportX = v0->viewportX;
 213	out->viewportY = v0->viewportY;
 214	out->viewportWidth = v0->viewportWidth;
 215	out->viewportHeight = v0->viewportHeight;
 216
 217	out->vs = _lerp(v0->vs, v1->vs, q, r);
 218	out->vt = _lerp(v0->vt, v1->vt, q, r);
 219	return true;
 220}
 221
 222static bool _lerpVertexP(const struct DSGXVertex* v0, const struct DSGXVertex* v1, struct DSGXVertex* out, int plane, int sign) {
 223	int32_t q = v0->viewCoord[3] - sign * v0->viewCoord[plane];
 224	int64_t r = q - (v1->viewCoord[3] - sign * v1->viewCoord[plane]);
 225	return _lerpVertex(v0, v1, out, q, r);
 226}
 227
 228static bool _clipPolygon(struct DSGX* gx, struct DSGXPolygon* poly) {
 229	int nOffscreen = 0;
 230	int offscreenVerts[10] = { 0, 0, 0, 0 };
 231	unsigned oldVerts[4];
 232	int v;
 233
 234	if (!DSGXPolygonAttrsIsBackFace(poly->polyParams) || !DSGXPolygonAttrsIsFrontFace(poly->polyParams)) {
 235		// Calculate normal direction and camera dot product average
 236		int64_t nx = 0;
 237		int64_t ny = 0;
 238		int64_t nz = 0;
 239		int64_t dot = 0;
 240		for (v = 0; v < poly->verts; ++v) {
 241			struct DSGXVertex* v0 = &gx->pendingVertices[poly->vertIds[v]];
 242			struct DSGXVertex* v1;
 243			struct DSGXVertex* v2;
 244			if (v < poly->verts - 2) {
 245				v1 = &gx->pendingVertices[poly->vertIds[v + 1]];
 246				v2 = &gx->pendingVertices[poly->vertIds[v + 2]];
 247			} else if (v < poly->verts - 1) {
 248				v1 = &gx->pendingVertices[poly->vertIds[v + 1]];
 249				v2 = &gx->pendingVertices[poly->vertIds[v + 2 - poly->verts]];
 250			} else {
 251				v1 = &gx->pendingVertices[poly->vertIds[v + 1 - poly->verts]];
 252				v2 = &gx->pendingVertices[poly->vertIds[v + 2 - poly->verts]];
 253			}
 254			nx = ((int64_t) v0->viewCoord[1] * v2->viewCoord[3] - (int64_t) v0->viewCoord[3] * v2->viewCoord[1]) >> 24;
 255			ny = ((int64_t) v0->viewCoord[3] * v2->viewCoord[0] - (int64_t) v0->viewCoord[0] * v2->viewCoord[3]) >> 24;
 256			nz = ((int64_t) v0->viewCoord[0] * v2->viewCoord[1] - (int64_t) v0->viewCoord[1] * v2->viewCoord[0]) >> 24;
 257			dot += nx * v1->viewCoord[0] + ny * v1->viewCoord[1] + nz * v1->viewCoord[3];
 258		}
 259		if (!DSGXPolygonAttrsIsBackFace(poly->polyParams) && dot < 0) {
 260			return false;
 261		}
 262		if (!DSGXPolygonAttrsIsFrontFace(poly->polyParams) && dot > 0) {
 263			return false;
 264		}
 265	}
 266
 267	// Collect offscreen vertices
 268	for (v = 0; v < poly->verts; ++v) {
 269		offscreenVerts[v] = _cohenSutherlandCode(&gx->pendingVertices[poly->vertIds[v]]);
 270		oldVerts[v] = poly->vertIds[v];
 271		if (offscreenVerts[v]) {
 272			++nOffscreen;
 273		}
 274	}
 275
 276	struct DSGXVertex* vbuf = gx->vertexBuffer[gx->bufferIndex];
 277
 278	if (!nOffscreen) {
 279		for (v = 0; v < poly->verts; ++v) {
 280			if (gx->vertexIndex == DS_GX_VERTEX_BUFFER_SIZE) {
 281				return false;
 282			}
 283			int vertexId = oldVerts[v];
 284			if (gx->pendingVertexIds[vertexId] >= 0) {
 285				poly->vertIds[v] = gx->pendingVertexIds[vertexId];
 286			} else {
 287				vbuf[gx->vertexIndex] = gx->pendingVertices[vertexId];
 288				gx->pendingVertexIds[vertexId] = gx->vertexIndex;
 289				poly->vertIds[v] = gx->vertexIndex;
 290				++gx->vertexIndex;
 291			}
 292		}
 293		return true;
 294	}
 295
 296	struct DSGXVertex inList[10];
 297	struct DSGXVertex outList[10];
 298	int outOffscreenVerts[10] = { 0, 0, 0, 0 };
 299	for (v = 0; v < poly->verts; ++v) {
 300		inList[v] = gx->pendingVertices[oldVerts[v]];
 301	}
 302
 303	int newV;
 304
 305	int plane;
 306	for (plane = 5; plane >= 0; --plane) {
 307		newV = 0;
 308		for (v = 0; v < poly->verts; ++v) {
 309			if (!(offscreenVerts[v] & (1 << plane))) {
 310				outList[newV] = inList[v];
 311				outOffscreenVerts[newV] = offscreenVerts[v];
 312				++newV;
 313			} else {
 314				struct DSGXVertex* in = &inList[v];
 315				struct DSGXVertex* in2;
 316				struct DSGXVertex* out;
 317				int iv;
 318
 319				if (v > 0) {
 320					iv = v - 1;
 321				} else {
 322					iv = poly->verts - 1;
 323				}
 324				if (!(offscreenVerts[iv] & (1 << plane))) {
 325					in2 = &inList[iv];
 326					out = &outList[newV];
 327					if (_lerpVertexP(in, in2, out, plane >> 1, -1 + (plane & 1) * 2)) {
 328						outOffscreenVerts[newV] = _cohenSutherlandCode(out);
 329						++newV;
 330					}
 331				}
 332
 333				if (v < poly->verts - 1) {
 334					iv = v + 1;
 335				} else {
 336					iv = 0;
 337				}
 338				if (!(offscreenVerts[iv] & (1 << plane))) {
 339					in2 = &inList[iv];
 340					out = &outList[newV];
 341					if (_lerpVertexP(in, in2, out, plane >> 1, -1 + (plane & 1) * 2)) {
 342						outOffscreenVerts[newV] = _cohenSutherlandCode(out);
 343						++newV;
 344					}
 345				}
 346			}
 347		}
 348		poly->verts = newV;
 349		memcpy(inList, outList, newV * sizeof(*inList));
 350		memcpy(offscreenVerts, outOffscreenVerts, newV * sizeof(*offscreenVerts));
 351	}
 352
 353	for (v = 0; v < poly->verts; ++v) {
 354		if (gx->vertexIndex == DS_GX_VERTEX_BUFFER_SIZE) {
 355			return false;
 356		}
 357		// TODO: merge strips
 358		vbuf[gx->vertexIndex] = inList[v];
 359		poly->vertIds[v] = gx->vertexIndex;
 360		++gx->vertexIndex;
 361	}
 362
 363	return newV > 2;
 364}
 365
 366static int32_t _dotViewport(struct DSGXVertex* vertex, int32_t* col) {
 367	int64_t a;
 368	int64_t b;
 369	int64_t sum;
 370	a = col[0];
 371	b = vertex->coord[0];
 372	sum = a * b;
 373	a = col[4];
 374	b = vertex->coord[1];
 375	sum += a * b;
 376	a = col[8];
 377	b = vertex->coord[2];
 378	sum += a * b;
 379	a = col[12];
 380	b = MTX_ONE;
 381	sum += a * b;
 382	return sum >> 8LL;
 383}
 384
 385static int16_t _dotTexture(struct DSGXVertex* vertex, int mode, int32_t* col) {
 386	int64_t a;
 387	int64_t b;
 388	int64_t sum;
 389	switch (mode) {
 390	case 1:
 391		a = col[0];
 392		b = vertex->s << 8;
 393		sum = a * b;
 394		a = col[4];
 395		b = vertex->t << 8;
 396		sum += a * b;
 397		a = col[8];
 398		b = MTX_ONE >> 4;
 399		sum += a * b;
 400		a = col[12];
 401		b = MTX_ONE >> 4;
 402		sum += a * b;
 403		break;
 404	case 2:
 405		return 0;
 406	case 3:
 407		a = col[0];
 408		b = vertex->viewCoord[0] << 8;
 409		sum = a * b;
 410		a = col[4];
 411		b = vertex->viewCoord[1] << 8;
 412		sum += a * b;
 413		a = col[8];
 414		b = vertex->viewCoord[2] << 8;
 415		sum += a * b;
 416		a = col[12];
 417		b = MTX_ONE;
 418		sum += a * b;
 419	}
 420	return sum >> 20;
 421}
 422
 423static int32_t _dotFrac(int16_t x, int16_t y, int16_t z, int32_t* col) {
 424	int64_t a;
 425	int64_t b;
 426	int64_t sum;
 427	a = col[0];
 428	b = x;
 429	sum = a * b;
 430	a = col[4];
 431	b = y;
 432	sum += a * b;
 433	a = col[8];
 434	b = z;
 435	sum += a * b;
 436	return sum >> 12;
 437}
 438
 439static int16_t _dot3(int32_t x0, int32_t y0, int32_t z0, int32_t x1, int32_t y1, int32_t z1) {
 440	int32_t a = x0 * x1;
 441	a += y0 * y1;
 442	a += z0 * z1;
 443	a >>= 12;
 444	return a;
 445}
 446
 447static void _emitVertex(struct DSGX* gx, uint16_t x, uint16_t y, uint16_t z) {
 448	if (gx->vertexMode < 0 || gx->vertexIndex == DS_GX_VERTEX_BUFFER_SIZE || gx->polygonIndex == DS_GX_POLYGON_BUFFER_SIZE) {
 449		return;
 450	}
 451	gx->currentVertex.coord[0] = x;
 452	gx->currentVertex.coord[1] = y;
 453	gx->currentVertex.coord[2] = z;
 454	gx->currentVertex.viewCoord[0] = _dotViewport(&gx->currentVertex, &gx->clipMatrix.m[0]);
 455	gx->currentVertex.viewCoord[1] = _dotViewport(&gx->currentVertex, &gx->clipMatrix.m[1]);
 456	gx->currentVertex.viewCoord[2] = _dotViewport(&gx->currentVertex, &gx->clipMatrix.m[2]);
 457	gx->currentVertex.viewCoord[3] = _dotViewport(&gx->currentVertex, &gx->clipMatrix.m[3]);
 458
 459	if (DSGXTexParamsGetCoordTfMode(gx->currentPoly.texParams) == 0) {
 460		gx->currentVertex.vs = gx->currentVertex.s;
 461		gx->currentVertex.vt = gx->currentVertex.t;
 462	} else if (DSGXTexParamsGetCoordTfMode(gx->currentPoly.texParams) == 3) {
 463		int32_t m12 = gx->texMatrix.m[12];
 464		int32_t m13 = gx->texMatrix.m[13];
 465		gx->texMatrix.m[12] = gx->currentVertex.s;
 466		gx->texMatrix.m[13] = gx->currentVertex.t;
 467		gx->currentVertex.vs = _dotTexture(&gx->currentVertex, 3, &gx->texMatrix.m[0]);
 468		gx->currentVertex.vt = _dotTexture(&gx->currentVertex, 3, &gx->texMatrix.m[1]);
 469		gx->texMatrix.m[12] = m12;
 470		gx->texMatrix.m[13] = m13;
 471	}
 472
 473	gx->pendingVertices[gx->pendingVertexIndex] = gx->currentVertex;
 474	gx->currentPoly.vertIds[gx->currentPoly.verts] = gx->pendingVertexIndex;
 475	gx->pendingVertexIndex = (gx->pendingVertexIndex + 1) & 3;
 476
 477	++gx->currentPoly.verts;
 478	int totalVertices;
 479	switch (gx->vertexMode) {
 480	case 0:
 481	case 2:
 482		totalVertices = 3;
 483		break;
 484	case 1:
 485	case 3:
 486		totalVertices = 4;
 487		break;
 488	}
 489	if (gx->currentPoly.verts == totalVertices) {
 490		struct DSGXPolygon* pbuf = gx->polygonBuffer[gx->bufferIndex];
 491
 492		pbuf[gx->polygonIndex] = gx->currentPoly;
 493		switch (gx->vertexMode) {
 494		case 0:
 495		case 1:
 496			gx->currentPoly.verts = 0;
 497			break;
 498		case 2:
 499			// Reverse winding if needed
 500			if (gx->reverseWinding) {
 501				pbuf[gx->polygonIndex].vertIds[1] = gx->currentPoly.vertIds[2];
 502				pbuf[gx->polygonIndex].vertIds[2] = gx->currentPoly.vertIds[1];
 503			}
 504			gx->reverseWinding = !gx->reverseWinding;
 505			gx->currentPoly.vertIds[0] = gx->currentPoly.vertIds[1];
 506			gx->currentPoly.vertIds[1] = gx->currentPoly.vertIds[2];
 507			gx->currentPoly.verts = 2;
 508			break;
 509		case 3:
 510			gx->currentPoly.vertIds[0] = gx->currentPoly.vertIds[2];
 511			gx->currentPoly.vertIds[1] = gx->currentPoly.vertIds[3];
 512			// Ensure quads don't cross over
 513			pbuf[gx->polygonIndex].vertIds[2] = gx->currentPoly.vertIds[3];
 514			pbuf[gx->polygonIndex].vertIds[3] = gx->currentPoly.vertIds[2];
 515			gx->currentPoly.verts = 2;
 516			break;
 517		}
 518
 519		if (_clipPolygon(gx, &pbuf[gx->polygonIndex])) {
 520			++gx->polygonIndex;
 521		}
 522		if (gx->vertexMode < 2) {
 523			memset(gx->pendingVertexIds, -1, sizeof(gx->pendingVertexIds));
 524		} else {
 525			gx->pendingVertexIds[gx->pendingVertexIndex] = -1;
 526			gx->pendingVertexIds[(gx->pendingVertexIndex + 1) & 3] = -1;
 527		}
 528	}
 529}
 530
 531static void _flushOutstanding(struct DSGX* gx) {
 532	if (gx->p->cpuBlocked & DS_CPU_BLOCK_GX) {
 533		gx->p->cpuBlocked &= ~DS_CPU_BLOCK_GX;
 534		struct DSGXEntry entry = gx->outstandingEntry;
 535		gx->outstandingEntry.command = 0;
 536		DSGXWriteFIFO(gx, entry);
 537	}
 538	while (gx->outstandingCommand[0] && !gx->outstandingParams[0]) {
 539		if (gx->p->cpuBlocked & DS_CPU_BLOCK_GX) {
 540			return;
 541		}
 542		DSGXWriteFIFO(gx, (struct DSGXEntry) { gx->outstandingCommand[0] });
 543	}
 544}
 545
 546static bool _boxTest(struct DSGX* gx) {
 547	int16_t x = gx->activeEntries[0].params[0];
 548	x |= gx->activeEntries[0].params[1] << 8;
 549	int16_t y = gx->activeEntries[0].params[2];
 550	y |= gx->activeEntries[0].params[3] << 8;
 551	int16_t z = gx->activeEntries[1].params[0];
 552	z |= gx->activeEntries[1].params[1] << 8;
 553	int16_t w = gx->activeEntries[1].params[2];
 554	w |= gx->activeEntries[1].params[3] << 8;
 555	int16_t h = gx->activeEntries[2].params[0];
 556	h |= gx->activeEntries[2].params[1] << 8;
 557	int16_t d = gx->activeEntries[2].params[2];
 558	d |= gx->activeEntries[2].params[3] << 8;
 559
 560	struct DSGXVertex vertex[8] = {
 561		{ .coord = { x    , y    , z     } },
 562		{ .coord = { x    , y    , z + d } },
 563		{ .coord = { x    , y + h, z     } },
 564		{ .coord = { x    , y + h, z + d } },
 565		{ .coord = { x + w, y    , z     } },
 566		{ .coord = { x + w, y    , z + d } },
 567		{ .coord = { x + w, y + h, z     } },
 568		{ .coord = { x + w, y + h, z + d } },
 569	};
 570	int code[8];
 571	int i;
 572	for (i = 0; i < 8; ++i) {
 573		vertex[i].viewCoord[0] = _dotViewport(&vertex[i], &gx->clipMatrix.m[0]);
 574		vertex[i].viewCoord[1] = _dotViewport(&vertex[i], &gx->clipMatrix.m[1]);
 575		vertex[i].viewCoord[2] = _dotViewport(&vertex[i], &gx->clipMatrix.m[2]);
 576		vertex[i].viewCoord[3] = _dotViewport(&vertex[i], &gx->clipMatrix.m[3]);
 577		code[i] = _cohenSutherlandCode(&vertex[i]);
 578	}
 579
 580	if (!(code[0] & code[2] & code[4] & code[6])) {
 581		return true;
 582	}
 583
 584	if (!(code[1] & code[3] & code[5] & code[7])) {
 585		return true;
 586	}
 587
 588	if (!(code[0] & code[1] & code[4] & code[5])) {
 589		return true;
 590	}
 591
 592	if (!(code[2] & code[3] & code[6] & code[7])) {
 593		return true;
 594	}
 595
 596	if (!(code[0] & code[1] & code[2] & code[3])) {
 597		return true;
 598	}
 599
 600	if (!(code[4] & code[5] & code[6] & code[7])) {
 601		return true;
 602	}
 603
 604	return false;
 605}
 606
 607static void _fifoRun(struct mTiming* timing, void* context, uint32_t cyclesLate) {
 608	struct DSGX* gx = context;
 609	uint32_t cycles;
 610	bool first = true;
 611	while (!gx->swapBuffers) {
 612		if (CircleBufferSize(&gx->pipe) <= 2 * sizeof(struct DSGXEntry)) {
 613			_pullPipe(gx);
 614		}
 615
 616		if (!CircleBufferSize(&gx->pipe)) {
 617			cycles = 0;
 618			break;
 619		}
 620
 621		DSRegGXSTAT gxstat = gx->p->memory.io9[DS9_REG_GXSTAT_LO >> 1];
 622		int projMatrixPointer = DSRegGXSTATGetProjMatrixStackLevel(gxstat);
 623
 624		struct DSGXEntry entry = { 0 };
 625		CircleBufferDump(&gx->pipe, (int8_t*) &entry.command, 1);
 626		cycles = _gxCommandCycleBase[entry.command];
 627
 628		if (first) {
 629			first = false;
 630		} else if (!gx->activeParams && cycles > cyclesLate) {
 631			break;
 632		}
 633		CircleBufferRead(&gx->pipe, &entry, sizeof(entry));
 634
 635		if (gx->activeParams) {
 636			int index = _gxCommandParams[entry.command] - gx->activeParams;
 637			gx->activeEntries[index] = entry;
 638			--gx->activeParams;
 639		} else {
 640			gx->activeParams = _gxCommandParams[entry.command];
 641			if (gx->activeParams) {
 642				--gx->activeParams;
 643			}
 644			if (gx->activeParams) {
 645				gx->activeEntries[0] = entry;
 646			}
 647		}
 648
 649		if (gx->activeParams) {
 650			continue;
 651		}
 652
 653		switch (entry.command) {
 654		case DS_GX_CMD_MTX_MODE:
 655			if (entry.params[0] < 4) {
 656				gx->mtxMode = entry.params[0];
 657			} else {
 658				mLOG(DS_GX, GAME_ERROR, "Invalid GX MTX_MODE %02X", entry.params[0]);
 659			}
 660			break;
 661		case DS_GX_CMD_MTX_PUSH:
 662			switch (gx->mtxMode) {
 663			case 0:
 664				memcpy(&gx->projMatrixStack, &gx->projMatrix, sizeof(gx->projMatrix));
 665				++projMatrixPointer;
 666				break;
 667			case 1:
 668			case 2:
 669				memcpy(&gx->vecMatrixStack[gx->pvMatrixPointer & 0x1F], &gx->vecMatrix, sizeof(gx->vecMatrix));
 670				memcpy(&gx->posMatrixStack[gx->pvMatrixPointer & 0x1F], &gx->posMatrix, sizeof(gx->posMatrix));
 671				++gx->pvMatrixPointer;
 672				break;
 673			case 3:
 674				mLOG(DS_GX, STUB, "Unimplemented GX MTX_PUSH mode");
 675				break;
 676			}
 677			break;
 678		case DS_GX_CMD_MTX_POP: {
 679			int8_t offset = entry.params[0];
 680			offset <<= 2;
 681			offset >>= 2;
 682			switch (gx->mtxMode) {
 683			case 0:
 684				projMatrixPointer -= offset;
 685				memcpy(&gx->projMatrix, &gx->projMatrixStack, sizeof(gx->projMatrix));
 686				break;
 687			case 1:
 688			case 2:
 689				gx->pvMatrixPointer -= offset;
 690				memcpy(&gx->vecMatrix, &gx->vecMatrixStack[gx->pvMatrixPointer & 0x1F], sizeof(gx->vecMatrix));
 691				memcpy(&gx->posMatrix, &gx->posMatrixStack[gx->pvMatrixPointer & 0x1F], sizeof(gx->posMatrix));
 692				break;
 693			case 3:
 694				mLOG(DS_GX, STUB, "Unimplemented GX MTX_POP mode");
 695				break;
 696			}
 697			_updateClipMatrix(gx);
 698			break;
 699		}
 700		case DS_GX_CMD_MTX_STORE: {
 701			int8_t offset = entry.params[0] & 0x1F;
 702			// TODO: overflow
 703			switch (gx->mtxMode) {
 704			case 0:
 705				memcpy(&gx->projMatrixStack, &gx->projMatrix, sizeof(gx->projMatrixStack));
 706				break;
 707			case 1:
 708			case 2:
 709				memcpy(&gx->vecMatrixStack[offset], &gx->vecMatrix, sizeof(gx->vecMatrix));
 710				memcpy(&gx->posMatrixStack[offset], &gx->posMatrix, sizeof(gx->posMatrix));
 711				break;
 712			case 3:
 713				mLOG(DS_GX, STUB, "Unimplemented GX MTX_STORE mode");
 714				break;
 715			}
 716			break;
 717		}
 718		case DS_GX_CMD_MTX_RESTORE: {
 719			int8_t offset = entry.params[0] & 0x1F;
 720			// TODO: overflow
 721			switch (gx->mtxMode) {
 722			case 0:
 723				memcpy(&gx->projMatrix, &gx->projMatrixStack, sizeof(gx->projMatrix));
 724				break;
 725			case 1:
 726			case 2:
 727				memcpy(&gx->vecMatrix, &gx->vecMatrixStack[offset], sizeof(gx->vecMatrix));
 728				memcpy(&gx->posMatrix, &gx->posMatrixStack[offset], sizeof(gx->posMatrix));
 729				break;
 730			case 3:
 731				mLOG(DS_GX, STUB, "Unimplemented GX MTX_RESTORE mode");
 732				break;
 733			}
 734			_updateClipMatrix(gx);
 735			break;
 736		}
 737		case DS_GX_CMD_MTX_IDENTITY:
 738			switch (gx->mtxMode) {
 739			case 0:
 740				DSGXMtxIdentity(&gx->projMatrix);
 741				break;
 742			case 2:
 743				DSGXMtxIdentity(&gx->vecMatrix);
 744				// Fall through
 745			case 1:
 746				DSGXMtxIdentity(&gx->posMatrix);
 747				break;
 748			case 3:
 749				DSGXMtxIdentity(&gx->texMatrix);
 750				break;
 751			}
 752			_updateClipMatrix(gx);
 753			break;
 754		case DS_GX_CMD_MTX_LOAD_4x4: {
 755			struct DSGXMatrix m;
 756			int i;
 757			for (i = 0; i < 16; ++i) {
 758				m.m[i] = gx->activeEntries[i].params[0];
 759				m.m[i] |= gx->activeEntries[i].params[1] << 8;
 760				m.m[i] |= gx->activeEntries[i].params[2] << 16;
 761				m.m[i] |= gx->activeEntries[i].params[3] << 24;
 762			}
 763			switch (gx->mtxMode) {
 764			case 0:
 765				memcpy(&gx->projMatrix, &m, sizeof(gx->projMatrix));
 766				break;
 767			case 2:
 768				memcpy(&gx->vecMatrix, &m, sizeof(gx->vecMatrix));
 769				// Fall through
 770			case 1:
 771				memcpy(&gx->posMatrix, &m, sizeof(gx->posMatrix));
 772				break;
 773			case 3:
 774				memcpy(&gx->texMatrix, &m, sizeof(gx->texMatrix));
 775				break;
 776			}
 777			_updateClipMatrix(gx);
 778			break;
 779		}
 780		case DS_GX_CMD_MTX_LOAD_4x3: {
 781			struct DSGXMatrix m;
 782			int i, j;
 783			for (j = 0; j < 4; ++j) {
 784				for (i = 0; i < 3; ++i) {
 785					m.m[i + j * 4] = gx->activeEntries[i + j * 3].params[0];
 786					m.m[i + j * 4] |= gx->activeEntries[i + j * 3].params[1] << 8;
 787					m.m[i + j * 4] |= gx->activeEntries[i + j * 3].params[2] << 16;
 788					m.m[i + j * 4] |= gx->activeEntries[i + j * 3].params[3] << 24;
 789				}
 790				m.m[j * 4 + 3] = 0;
 791			}
 792			m.m[15] = MTX_ONE;
 793			switch (gx->mtxMode) {
 794			case 0:
 795				memcpy(&gx->projMatrix, &m, sizeof(gx->projMatrix));
 796				break;
 797			case 2:
 798				memcpy(&gx->vecMatrix, &m, sizeof(gx->vecMatrix));
 799				// Fall through
 800			case 1:
 801				memcpy(&gx->posMatrix, &m, sizeof(gx->posMatrix));
 802				break;
 803			case 3:
 804				memcpy(&gx->texMatrix, &m, sizeof(gx->texMatrix));
 805				break;
 806			}
 807			_updateClipMatrix(gx);
 808			break;
 809		}
 810		case DS_GX_CMD_MTX_MULT_4x4: {
 811			struct DSGXMatrix m;
 812			int i;
 813			for (i = 0; i < 16; ++i) {
 814				m.m[i] = gx->activeEntries[i].params[0];
 815				m.m[i] |= gx->activeEntries[i].params[1] << 8;
 816				m.m[i] |= gx->activeEntries[i].params[2] << 16;
 817				m.m[i] |= gx->activeEntries[i].params[3] << 24;
 818			}
 819			switch (gx->mtxMode) {
 820			case 0:
 821				DSGXMtxMultiply(&gx->projMatrix, &m, &gx->projMatrix);
 822				break;
 823			case 2:
 824				DSGXMtxMultiply(&gx->vecMatrix, &m, &gx->vecMatrix);
 825				// Fall through
 826			case 1:
 827				DSGXMtxMultiply(&gx->posMatrix, &m, &gx->posMatrix);
 828				break;
 829			case 3:
 830				DSGXMtxMultiply(&gx->texMatrix, &m, &gx->texMatrix);
 831				break;
 832			}
 833			_updateClipMatrix(gx);
 834			break;
 835		}
 836		case DS_GX_CMD_MTX_MULT_4x3: {
 837			struct DSGXMatrix m;
 838			int i, j;
 839			for (j = 0; j < 4; ++j) {
 840				for (i = 0; i < 3; ++i) {
 841					m.m[i + j * 4] = gx->activeEntries[i + j * 3].params[0];
 842					m.m[i + j * 4] |= gx->activeEntries[i + j * 3].params[1] << 8;
 843					m.m[i + j * 4] |= gx->activeEntries[i + j * 3].params[2] << 16;
 844					m.m[i + j * 4] |= gx->activeEntries[i + j * 3].params[3] << 24;
 845				}
 846				m.m[j * 4 + 3] = 0;
 847			}
 848			m.m[15] = MTX_ONE;
 849			switch (gx->mtxMode) {
 850			case 0:
 851				DSGXMtxMultiply(&gx->projMatrix, &m, &gx->projMatrix);
 852				break;
 853			case 2:
 854				DSGXMtxMultiply(&gx->vecMatrix, &m, &gx->vecMatrix);
 855				// Fall through
 856			case 1:
 857				DSGXMtxMultiply(&gx->posMatrix, &m, &gx->posMatrix);
 858				break;
 859			case 3:
 860				DSGXMtxMultiply(&gx->texMatrix, &m, &gx->texMatrix);
 861				break;
 862			}
 863			_updateClipMatrix(gx);
 864			break;
 865		}
 866		case DS_GX_CMD_MTX_MULT_3x3: {
 867			struct DSGXMatrix m;
 868			int i, j;
 869			for (j = 0; j < 3; ++j) {
 870				for (i = 0; i < 3; ++i) {
 871					m.m[i + j * 4] = gx->activeEntries[i + j * 3].params[0];
 872					m.m[i + j * 4] |= gx->activeEntries[i + j * 3].params[1] << 8;
 873					m.m[i + j * 4] |= gx->activeEntries[i + j * 3].params[2] << 16;
 874					m.m[i + j * 4] |= gx->activeEntries[i + j * 3].params[3] << 24;
 875				}
 876				m.m[j * 4 + 3] = 0;
 877			}
 878			m.m[12] = 0;
 879			m.m[13] = 0;
 880			m.m[14] = 0;
 881			m.m[15] = MTX_ONE;
 882			switch (gx->mtxMode) {
 883			case 0:
 884				DSGXMtxMultiply(&gx->projMatrix, &m, &gx->projMatrix);
 885				break;
 886			case 2:
 887				DSGXMtxMultiply(&gx->vecMatrix, &m, &gx->vecMatrix);
 888				// Fall through
 889			case 1:
 890				DSGXMtxMultiply(&gx->posMatrix, &m, &gx->posMatrix);
 891				break;
 892			case 3:
 893				DSGXMtxMultiply(&gx->texMatrix, &m, &gx->texMatrix);
 894				break;
 895			}
 896			_updateClipMatrix(gx);
 897			break;
 898		}
 899		case DS_GX_CMD_MTX_TRANS: {
 900			int32_t m[3];
 901			m[0] = gx->activeEntries[0].params[0];
 902			m[0] |= gx->activeEntries[0].params[1] << 8;
 903			m[0] |= gx->activeEntries[0].params[2] << 16;
 904			m[0] |= gx->activeEntries[0].params[3] << 24;
 905			m[1] = gx->activeEntries[1].params[0];
 906			m[1] |= gx->activeEntries[1].params[1] << 8;
 907			m[1] |= gx->activeEntries[1].params[2] << 16;
 908			m[1] |= gx->activeEntries[1].params[3] << 24;
 909			m[2] = gx->activeEntries[2].params[0];
 910			m[2] |= gx->activeEntries[2].params[1] << 8;
 911			m[2] |= gx->activeEntries[2].params[2] << 16;
 912			m[2] |= gx->activeEntries[2].params[3] << 24;
 913			switch (gx->mtxMode) {
 914			case 0:
 915				DSGXMtxTranslate(&gx->projMatrix, m);
 916				break;
 917			case 2:
 918				DSGXMtxTranslate(&gx->vecMatrix, m);
 919				// Fall through
 920			case 1:
 921				DSGXMtxTranslate(&gx->posMatrix, m);
 922				break;
 923			case 3:
 924				DSGXMtxTranslate(&gx->texMatrix, m);
 925				break;
 926			}
 927			_updateClipMatrix(gx);
 928			break;
 929		}
 930		case DS_GX_CMD_MTX_SCALE: {
 931			int32_t m[3];
 932			m[0] = gx->activeEntries[0].params[0];
 933			m[0] |= gx->activeEntries[0].params[1] << 8;
 934			m[0] |= gx->activeEntries[0].params[2] << 16;
 935			m[0] |= gx->activeEntries[0].params[3] << 24;
 936			m[1] = gx->activeEntries[1].params[0];
 937			m[1] |= gx->activeEntries[1].params[1] << 8;
 938			m[1] |= gx->activeEntries[1].params[2] << 16;
 939			m[1] |= gx->activeEntries[1].params[3] << 24;
 940			m[2] = gx->activeEntries[2].params[0];
 941			m[2] |= gx->activeEntries[2].params[1] << 8;
 942			m[2] |= gx->activeEntries[2].params[2] << 16;
 943			m[2] |= gx->activeEntries[2].params[3] << 24;
 944			switch (gx->mtxMode) {
 945			case 0:
 946				DSGXMtxScale(&gx->projMatrix, m);
 947				break;
 948			case 1:
 949			case 2:
 950				DSGXMtxScale(&gx->posMatrix, m);
 951				break;
 952			case 3:
 953				DSGXMtxScale(&gx->texMatrix, m);
 954				break;
 955			}
 956			_updateClipMatrix(gx);
 957			break;
 958		}
 959		case DS_GX_CMD_COLOR:
 960			gx->currentVertex.color = entry.params[0];
 961			gx->currentVertex.color |= entry.params[1] << 8;
 962			break;
 963		case DS_GX_CMD_NORMAL: {
 964			int32_t xyz = entry.params[0];
 965			xyz |= entry.params[1] << 8;
 966			xyz |= entry.params[2] << 16;
 967			xyz |= entry.params[3] << 24;
 968			int16_t x = (xyz << 6) & 0xFFC0;
 969			int16_t y = (xyz >> 4) & 0xFFC0;
 970			int16_t z = (xyz >> 14) & 0xFFC0;
 971			x >>= 3;
 972			y >>= 3;
 973			z >>= 3;
 974			if (DSGXTexParamsGetCoordTfMode(gx->currentPoly.texParams) == 2) {
 975				gx->currentVertex.vs = (_dotFrac(x, y, z, &gx->texMatrix.m[0]) + gx->currentVertex.s) >> 11;
 976				gx->currentVertex.vt = (_dotFrac(x, y, z, &gx->texMatrix.m[1]) + gx->currentVertex.t) >> 11;
 977			}
 978			int16_t nx = _dotFrac(x, y, z, &gx->vecMatrix.m[0]);
 979			int16_t ny = _dotFrac(x, y, z, &gx->vecMatrix.m[1]);
 980			int16_t nz = _dotFrac(x, y, z, &gx->vecMatrix.m[2]);
 981			int r = gx->emit & 0x1F;
 982			int g = (gx->emit >> 5) & 0x1F;
 983			int b = (gx->emit >> 10) & 0x1F;
 984			int i;
 985			for (i = 0; i < 4; ++i) {
 986				if (!(DSGXPolygonAttrsGetLights(gx->currentPoly.polyParams) & (1 << i))) {
 987					continue;
 988				}
 989				struct DSGXLight* light = &gx->lights[i];
 990				int diffuse = -_dot3(light->x, light->y, light->z, nx, ny, nz);
 991				if (diffuse < 0) {
 992					diffuse = 0;
 993				}
 994				int specular = -_dot3(-light->x >> 1, -light->y >> 1, (0x1000 - light->z) >> 1, nx, ny, nz);
 995				if (specular < 0) {
 996					specular = 0;
 997				} else {
 998					specular = 2 * specular * specular - (1 << 10);
 999				}
1000				unsigned lr = (light->color) & 0x1F;
1001				unsigned lg = (light->color >> 5) & 0x1F;
1002				unsigned lb = (light->color >> 10) & 0x1F;
1003				unsigned xr, xg, xb;
1004				xr = gx->specular & 0x1F;
1005				xg = (gx->specular >> 5) & 0x1F;
1006				xb = (gx->specular >> 10) & 0x1F;
1007				r += (specular * xr * lr) >> 17;
1008				g += (specular * xg * lg) >> 17;
1009				b += (specular * xb * lb) >> 17;
1010				xr = gx->diffuse & 0x1F;
1011				xg = (gx->diffuse >> 5) & 0x1F;
1012				xb = (gx->diffuse >> 10) & 0x1F;
1013				r += (diffuse * xr * lr) >> 17;
1014				g += (diffuse * xg * lg) >> 17;
1015				b += (diffuse * xb * lb) >> 17;
1016				xr = gx->ambient & 0x1F;
1017				xg = (gx->ambient >> 5) & 0x1F;
1018				xb = (gx->ambient >> 10) & 0x1F;
1019				r += (xr * lr) >> 5;
1020				g += (xg * lg) >> 5;
1021				b += (xb * lb) >> 5;
1022			}
1023			if (r < 0) {
1024				r = 0;
1025			} else if (r > 0x1F) {
1026				r = 0x1F;
1027			}
1028			if (g < 0) {
1029				g = 0;
1030			} else if (g > 0x1F) {
1031				g = 0x1F;
1032			}
1033			if (b < 0) {
1034				b = 0;
1035			} else if (b > 0x1F) {
1036				b = 0x1F;
1037			}
1038			gx->currentVertex.color = r | (g << 5) | (b << 10);
1039			break;
1040		}
1041		case DS_GX_CMD_TEXCOORD:
1042			gx->currentVertex.s = entry.params[0];
1043			gx->currentVertex.s |= entry.params[1] << 8;
1044			gx->currentVertex.t = entry.params[2];
1045			gx->currentVertex.t |= entry.params[3] << 8;
1046			if (DSGXTexParamsGetCoordTfMode(gx->currentPoly.texParams) == 1) {
1047				gx->currentVertex.vs = _dotTexture(&gx->currentVertex, 1, &gx->texMatrix.m[0]);
1048				gx->currentVertex.vt = _dotTexture(&gx->currentVertex, 1, &gx->texMatrix.m[1]);
1049			}
1050			break;
1051		case DS_GX_CMD_VTX_16: {
1052			int16_t x = gx->activeEntries[0].params[0];
1053			x |= gx->activeEntries[0].params[1] << 8;
1054			int16_t y = gx->activeEntries[0].params[2];
1055			y |= gx->activeEntries[0].params[3] << 8;
1056			int16_t z = gx->activeEntries[1].params[0];
1057			z |= gx->activeEntries[1].params[1] << 8;
1058			_emitVertex(gx, x, y, z);
1059			break;
1060		}
1061		case DS_GX_CMD_VTX_10: {
1062			int32_t xyz = entry.params[0];
1063			xyz |= entry.params[1] << 8;
1064			xyz |= entry.params[2] << 16;
1065			xyz |= entry.params[3] << 24;
1066			int16_t x = (xyz << 6) & 0xFFC0;
1067			int16_t y = (xyz >> 4) & 0xFFC0;
1068			int16_t z = (xyz >> 14) & 0xFFC0;
1069			_emitVertex(gx, x, y, z);
1070			break;
1071		}
1072		case DS_GX_CMD_VTX_XY: {
1073			int16_t x = entry.params[0];
1074			x |= entry.params[1] << 8;
1075			int16_t y = entry.params[2];
1076			y |= entry.params[3] << 8;
1077			_emitVertex(gx, x, y, gx->currentVertex.coord[2]);
1078			break;
1079		}
1080		case DS_GX_CMD_VTX_XZ: {
1081			int16_t x = entry.params[0];
1082			x |= entry.params[1] << 8;
1083			int16_t z = entry.params[2];
1084			z |= entry.params[3] << 8;
1085			_emitVertex(gx, x, gx->currentVertex.coord[1], z);
1086			break;
1087		}
1088		case DS_GX_CMD_VTX_YZ: {
1089			int16_t y = entry.params[0];
1090			y |= entry.params[1] << 8;
1091			int16_t z = entry.params[2];
1092			z |= entry.params[3] << 8;
1093			_emitVertex(gx, gx->currentVertex.coord[0], y, z);
1094			break;
1095		}
1096		case DS_GX_CMD_VTX_DIFF: {
1097			int32_t xyz = entry.params[0];
1098			xyz |= entry.params[1] << 8;
1099			xyz |= entry.params[2] << 16;
1100			xyz |= entry.params[3] << 24;
1101			int16_t x = (xyz << 6) & 0xFFC0;
1102			int16_t y = (xyz >> 4) & 0xFFC0;
1103			int16_t z = (xyz >> 14) & 0xFFC0;
1104			_emitVertex(gx, gx->currentVertex.coord[0] + (x >> 6),
1105			                gx->currentVertex.coord[1] + (y >> 6),
1106			                gx->currentVertex.coord[2] + (z >> 6));
1107			break;
1108		}
1109		case DS_GX_CMD_DIF_AMB:
1110			gx->diffuse = entry.params[0];
1111			gx->diffuse |= entry.params[1] << 8;
1112			if (gx->diffuse & 0x8000) {
1113				gx->currentVertex.color = gx->diffuse;
1114			}
1115			gx->ambient = entry.params[2];
1116			gx->ambient |= entry.params[3] << 8;
1117			break;
1118		case DS_GX_CMD_SPE_EMI:
1119			gx->specular = entry.params[0];
1120			gx->specular |= entry.params[1] << 8;
1121			gx->emit = entry.params[2];
1122			gx->emit |= entry.params[3] << 8;
1123			break;
1124		case DS_GX_CMD_LIGHT_VECTOR: {
1125			uint32_t xyz = entry.params[0];
1126			xyz |= entry.params[1] << 8;
1127			xyz |= entry.params[2] << 16;
1128			xyz |= entry.params[3] << 24;
1129			struct DSGXLight* light = &gx->lights[xyz >> 30];
1130			int16_t x = (xyz << 6) & 0xFFC0;
1131			int16_t y = (xyz >> 4) & 0xFFC0;
1132			int16_t z = (xyz >> 14) & 0xFFC0;
1133			x >>= 3;
1134			y >>= 3;
1135			z >>= 3;
1136			light->x = _dotFrac(x, y, z, &gx->vecMatrix.m[0]);
1137			light->y = _dotFrac(x, y, z, &gx->vecMatrix.m[1]);
1138			light->z = _dotFrac(x, y, z, &gx->vecMatrix.m[2]);
1139			break;
1140		}
1141		case DS_GX_CMD_LIGHT_COLOR: {
1142			struct DSGXLight* light = &gx->lights[entry.params[3] >> 6];
1143			light->color = entry.params[0];
1144			light->color |= entry.params[1] << 8;
1145			break;
1146		}
1147		case DS_GX_CMD_POLYGON_ATTR:
1148			gx->nextPoly.polyParams = entry.params[0];
1149			gx->nextPoly.polyParams |= entry.params[1] << 8;
1150			gx->nextPoly.polyParams |= entry.params[2] << 16;
1151			gx->nextPoly.polyParams |= entry.params[3] << 24;
1152			break;
1153		case DS_GX_CMD_TEXIMAGE_PARAM:
1154			gx->nextPoly.texParams = entry.params[0];
1155			gx->nextPoly.texParams |= entry.params[1] << 8;
1156			gx->nextPoly.texParams |= entry.params[2] << 16;
1157			gx->nextPoly.texParams |= entry.params[3] << 24;
1158			gx->currentPoly.texParams = gx->nextPoly.texParams;
1159			break;
1160		case DS_GX_CMD_PLTT_BASE:
1161			gx->nextPoly.palBase = entry.params[0];
1162			gx->nextPoly.palBase |= entry.params[1] << 8;
1163			gx->nextPoly.palBase |= entry.params[2] << 16;
1164			gx->nextPoly.palBase |= entry.params[3] << 24;
1165			gx->currentPoly.palBase = gx->nextPoly.palBase;
1166			break;
1167		case DS_GX_CMD_BEGIN_VTXS:
1168			gx->vertexMode = entry.params[0] & 3;
1169			gx->currentPoly = gx->nextPoly;
1170			gx->reverseWinding = false;
1171			memset(gx->pendingVertexIds, -1, sizeof(gx->pendingVertexIds));
1172			break;
1173		case DS_GX_CMD_END_VTXS:
1174			gx->vertexMode = -1;
1175			break;
1176		case DS_GX_CMD_SWAP_BUFFERS:
1177			gx->swapBuffers = true;
1178			gx->wSort = entry.params[0] & 2;
1179			break;
1180		case DS_GX_CMD_VIEWPORT:
1181			gx->viewportX1 = (uint8_t) entry.params[0];
1182			gx->viewportY1 = (uint8_t) entry.params[1];
1183			gx->viewportX2 = (uint8_t) entry.params[2];
1184			gx->viewportY2 = (uint8_t) entry.params[3];
1185			gx->viewportWidth = gx->viewportX2 - gx->viewportX1 + 1;
1186			gx->viewportHeight = gx->viewportY2 - gx->viewportY1 + 1;
1187			gx->currentVertex.viewportX = gx->viewportX1;
1188			gx->currentVertex.viewportY = gx->viewportY1;
1189			gx->currentVertex.viewportWidth = gx->viewportWidth;
1190			gx->currentVertex.viewportHeight = gx->viewportHeight;
1191			break;
1192		case DS_GX_CMD_BOX_TEST:
1193			gxstat = DSRegGXSTATClearTestBusy(gxstat);
1194			gxstat = DSRegGXSTATTestFillBoxTestResult(gxstat, _boxTest(gx));
1195			break;
1196		default:
1197			mLOG(DS_GX, STUB, "Unimplemented GX command %02X:%02X %02X %02X %02X", entry.command, entry.params[0], entry.params[1], entry.params[2], entry.params[3]);
1198			break;
1199		}
1200
1201		gxstat = DSRegGXSTATSetPVMatrixStackLevel(gxstat, gx->pvMatrixPointer);
1202		gxstat = DSRegGXSTATSetProjMatrixStackLevel(gxstat, projMatrixPointer);
1203		gxstat = DSRegGXSTATTestFillMatrixStackError(gxstat, projMatrixPointer || gx->pvMatrixPointer >= 0x1F);
1204		gx->p->memory.io9[DS9_REG_GXSTAT_LO >> 1] = gxstat;
1205
1206		if (cyclesLate >= cycles) {
1207			cyclesLate -= cycles;
1208		} else {
1209			break;
1210		}
1211	}
1212	if (cycles && !gx->swapBuffers) {
1213		mTimingSchedule(timing, &gx->fifoEvent, cycles - cyclesLate);
1214	}
1215	if (CircleBufferSize(&gx->fifo) < (DS_GX_FIFO_SIZE * sizeof(struct DSGXEntry))) {
1216		_flushOutstanding(gx);
1217	}
1218	DSGXUpdateGXSTAT(gx);
1219}
1220
1221void DSGXInit(struct DSGX* gx) {
1222	gx->renderer = &dummyRenderer;
1223	CircleBufferInit(&gx->fifo, sizeof(struct DSGXEntry) * DS_GX_FIFO_SIZE);
1224	CircleBufferInit(&gx->pipe, sizeof(struct DSGXEntry) * DS_GX_PIPE_SIZE);
1225	gx->vertexBuffer[0] = malloc(sizeof(struct DSGXVertex) * DS_GX_VERTEX_BUFFER_SIZE);
1226	gx->vertexBuffer[1] = malloc(sizeof(struct DSGXVertex) * DS_GX_VERTEX_BUFFER_SIZE);
1227	gx->polygonBuffer[0] = malloc(sizeof(struct DSGXPolygon) * DS_GX_POLYGON_BUFFER_SIZE);
1228	gx->polygonBuffer[1] = malloc(sizeof(struct DSGXPolygon) * DS_GX_POLYGON_BUFFER_SIZE);
1229	gx->fifoEvent.name = "DS GX FIFO";
1230	gx->fifoEvent.priority = 0xC;
1231	gx->fifoEvent.context = gx;
1232	gx->fifoEvent.callback = _fifoRun;
1233}
1234
1235void DSGXDeinit(struct DSGX* gx) {
1236	DSGXAssociateRenderer(gx, &dummyRenderer);
1237	CircleBufferDeinit(&gx->fifo);
1238	CircleBufferDeinit(&gx->pipe);
1239	free(gx->vertexBuffer[0]);
1240	free(gx->vertexBuffer[1]);
1241	free(gx->polygonBuffer[0]);
1242	free(gx->polygonBuffer[1]);
1243}
1244
1245void DSGXReset(struct DSGX* gx) {
1246	CircleBufferClear(&gx->fifo);
1247	CircleBufferClear(&gx->pipe);
1248	DSGXMtxIdentity(&gx->projMatrix);
1249	DSGXMtxIdentity(&gx->texMatrix);
1250	DSGXMtxIdentity(&gx->posMatrix);
1251	DSGXMtxIdentity(&gx->vecMatrix);
1252
1253	DSGXMtxIdentity(&gx->clipMatrix);
1254	DSGXMtxIdentity(&gx->projMatrixStack);
1255	DSGXMtxIdentity(&gx->texMatrixStack);
1256	int i;
1257	for (i = 0; i < 32; ++i) {
1258		DSGXMtxIdentity(&gx->posMatrixStack[i]);
1259		DSGXMtxIdentity(&gx->vecMatrixStack[i]);
1260	}
1261	gx->swapBuffers = false;
1262	gx->bufferIndex = 0;
1263	gx->vertexIndex = 0;
1264	gx->polygonIndex = 0;
1265	gx->mtxMode = 0;
1266	gx->pvMatrixPointer = 0;
1267	gx->vertexMode = -1;
1268
1269	gx->viewportX1 = 0;
1270	gx->viewportY1 = 0;
1271	gx->viewportX2 = DS_VIDEO_HORIZONTAL_PIXELS - 1;
1272	gx->viewportY2 = DS_VIDEO_VERTICAL_PIXELS - 1;
1273	gx->viewportWidth = gx->viewportX2 - gx->viewportX1 + 1;
1274	gx->viewportHeight = gx->viewportY2 - gx->viewportY1 + 1;
1275
1276	memset(gx->outstandingParams, 0, sizeof(gx->outstandingParams));
1277	memset(gx->outstandingCommand, 0, sizeof(gx->outstandingCommand));
1278	memset(&gx->outstandingEntry, 0, sizeof(gx->outstandingEntry));
1279	gx->activeParams = 0;
1280	memset(&gx->currentVertex, 0, sizeof(gx->currentVertex));
1281	memset(&gx->nextPoly, 0, sizeof(gx-> nextPoly));
1282	gx->currentVertex.color = 0x7FFF;
1283	gx->currentPoly.polyParams = 0x001F00C0;
1284	gx->nextPoly.polyParams = 0x001F00C0;
1285	gx->dmaSource = -1;
1286}
1287
1288void DSGXAssociateRenderer(struct DSGX* gx, struct DSGXRenderer* renderer) {
1289	gx->renderer->deinit(gx->renderer);
1290	gx->renderer = renderer;
1291	memcpy(gx->renderer->tex, gx->tex, sizeof(gx->renderer->tex));
1292	memcpy(gx->renderer->texPal, gx->texPal, sizeof(gx->renderer->texPal));
1293	gx->renderer->init(gx->renderer);
1294}
1295
1296void DSGXUpdateGXSTAT(struct DSGX* gx) {
1297	uint32_t value = gx->p->memory.io9[DS9_REG_GXSTAT_HI >> 1] << 16;
1298	value = DSRegGXSTATIsDoIRQ(value);
1299
1300	size_t entries = CircleBufferSize(&gx->fifo) / sizeof(struct DSGXEntry);
1301	// XXX
1302	if (gx->swapBuffers) {
1303		entries++;
1304	}
1305	value = DSRegGXSTATSetFIFOEntries(value, entries);
1306	value = DSRegGXSTATSetFIFOLtHalf(value, entries < (DS_GX_FIFO_SIZE / 2));
1307	value = DSRegGXSTATSetFIFOEmpty(value, entries == 0);
1308
1309	if ((DSRegGXSTATGetDoIRQ(value) == 1 && entries < (DS_GX_FIFO_SIZE / 2)) ||
1310		(DSRegGXSTATGetDoIRQ(value) == 2 && entries == 0)) {
1311		DSRaiseIRQ(gx->p->ds9.cpu, gx->p->ds9.memory.io, DS_IRQ_GEOM_FIFO);
1312	}
1313
1314	value = DSRegGXSTATSetBusy(value, mTimingIsScheduled(&gx->p->ds9.timing, &gx->fifoEvent) || gx->swapBuffers);
1315
1316	gx->p->memory.io9[DS9_REG_GXSTAT_HI >> 1] = value >> 16;
1317
1318	struct GBADMA* dma = NULL;
1319	if (gx->dmaSource >= 0) {
1320		dma = &gx->p->ds9.memory.dma[gx->dmaSource];
1321		if (GBADMARegisterGetTiming9(dma->reg) != DS_DMA_TIMING_GEOM_FIFO) {
1322			gx->dmaSource = -1;
1323		} else if (GBADMARegisterIsEnable(dma->reg) && entries < (DS_GX_FIFO_SIZE / 2) && !dma->nextCount) {
1324			dma->nextCount = dma->count;
1325			dma->when = mTimingCurrentTime(&gx->p->ds9.timing);
1326			DSDMAUpdate(&gx->p->ds9);
1327		}
1328	}
1329}
1330
1331static void DSGXUnpackCommand(struct DSGX* gx, uint32_t command) {
1332	gx->outstandingCommand[0] = command;
1333	gx->outstandingCommand[1] = command >> 8;
1334	gx->outstandingCommand[2] = command >> 16;
1335	gx->outstandingCommand[3] = command >> 24;
1336	if (gx->outstandingCommand[0] >= DS_GX_CMD_MAX) {
1337		gx->outstandingCommand[0] = 0;
1338	}
1339	if (gx->outstandingCommand[1] >= DS_GX_CMD_MAX) {
1340		gx->outstandingCommand[1] = 0;
1341	}
1342	if (gx->outstandingCommand[2] >= DS_GX_CMD_MAX) {
1343		gx->outstandingCommand[2] = 0;
1344	}
1345	if (gx->outstandingCommand[3] >= DS_GX_CMD_MAX) {
1346		gx->outstandingCommand[3] = 0;
1347	}
1348	if (!_gxCommandCycleBase[gx->outstandingCommand[0]]) {
1349		gx->outstandingCommand[0] = gx->outstandingCommand[1];
1350		gx->outstandingCommand[1] = gx->outstandingCommand[2];
1351		gx->outstandingCommand[2] = gx->outstandingCommand[3];
1352		gx->outstandingCommand[3] = 0;
1353	}
1354	if (!_gxCommandCycleBase[gx->outstandingCommand[1]]) {
1355		gx->outstandingCommand[1] = gx->outstandingCommand[2];
1356		gx->outstandingCommand[2] = gx->outstandingCommand[3];
1357		gx->outstandingCommand[3] = 0;
1358	}
1359	if (!_gxCommandCycleBase[gx->outstandingCommand[2]]) {
1360		gx->outstandingCommand[2] = gx->outstandingCommand[3];
1361		gx->outstandingCommand[3] = 0;
1362	}
1363	gx->outstandingParams[0] = _gxCommandParams[gx->outstandingCommand[0]];
1364	gx->outstandingParams[1] = _gxCommandParams[gx->outstandingCommand[1]];
1365	gx->outstandingParams[2] = _gxCommandParams[gx->outstandingCommand[2]];
1366	gx->outstandingParams[3] = _gxCommandParams[gx->outstandingCommand[3]];
1367	_flushOutstanding(gx);
1368	DSGXUpdateGXSTAT(gx);
1369}
1370
1371static void DSGXWriteFIFO(struct DSGX* gx, struct DSGXEntry entry) {
1372	if (CircleBufferSize(&gx->fifo) == (DS_GX_FIFO_SIZE * sizeof(entry))) {
1373		mLOG(DS_GX, INFO, "FIFO full");
1374		while (gx->p->cpuBlocked & DS_CPU_BLOCK_GX) {
1375			// Can happen from STM
1376			if (gx->swapBuffers) {
1377				// XXX: Let's hope those GX entries aren't important, since STM isn't preemptable
1378				mLOG(DS_GX, ERROR, "FIFO full with swap pending");
1379				return;
1380			}
1381			mTimingDeschedule(&gx->p->ds9.timing, &gx->fifoEvent);
1382			_fifoRun(&gx->p->ds9.timing, gx, 0);
1383		}
1384		gx->p->cpuBlocked |= DS_CPU_BLOCK_GX;
1385		gx->outstandingEntry = entry;
1386		gx->p->ds9.cpu->nextEvent = 0;
1387		return;
1388	}
1389	if (gx->outstandingCommand[0]) {
1390		entry.command = gx->outstandingCommand[0];
1391		if (gx->outstandingParams[0]) {
1392			--gx->outstandingParams[0];
1393		}
1394		if (!gx->outstandingParams[0]) {
1395			// TODO: improve this
1396			memmove(&gx->outstandingParams[0], &gx->outstandingParams[1], sizeof(gx->outstandingParams[0]) * 3);
1397			memmove(&gx->outstandingCommand[0], &gx->outstandingCommand[1], sizeof(gx->outstandingCommand[0]) * 3);
1398			gx->outstandingParams[3] = 0;
1399			gx->outstandingCommand[3] = 0;
1400		}
1401	} else {
1402		gx->outstandingParams[0] = _gxCommandParams[entry.command];
1403		if (gx->outstandingParams[0]) {
1404			--gx->outstandingParams[0];
1405		}
1406		if (gx->outstandingParams[0]) {
1407			gx->outstandingCommand[0] = entry.command;
1408		}
1409	}
1410	uint32_t cycles = _gxCommandCycleBase[entry.command];
1411	if (!cycles) {
1412		return;
1413	}
1414	if (CircleBufferSize(&gx->fifo) == 0 && CircleBufferSize(&gx->pipe) < (DS_GX_PIPE_SIZE * sizeof(entry))) {
1415		CircleBufferWrite(&gx->pipe, &entry, sizeof(entry));
1416	} else if (CircleBufferSize(&gx->fifo) < (DS_GX_FIFO_SIZE * sizeof(entry))) {
1417		CircleBufferWrite(&gx->fifo, &entry, sizeof(entry));
1418	}
1419	if (entry.command == DS_GX_CMD_BOX_TEST) {
1420		DSRegGXSTAT gxstat = gx->p->memory.io9[DS9_REG_GXSTAT_LO >> 1];
1421		gxstat = DSRegGXSTATFillTestBusy(gxstat);
1422		gxstat = DSRegGXSTATClearBoxTestResult(gxstat);
1423		gx->p->memory.io9[DS9_REG_GXSTAT_LO >> 1] = gxstat;
1424	}
1425	if (!gx->swapBuffers && !mTimingIsScheduled(&gx->p->ds9.timing, &gx->fifoEvent)) {
1426		mTimingSchedule(&gx->p->ds9.timing, &gx->fifoEvent, cycles);
1427	}
1428
1429	_flushOutstanding(gx);
1430}
1431
1432uint16_t DSGXWriteRegister(struct DSGX* gx, uint32_t address, uint16_t value) {
1433	uint16_t oldValue = gx->p->memory.io9[address >> 1];
1434	switch (address) {
1435	case DS9_REG_DISP3DCNT:
1436		mLOG(DS_GX, STUB, "Unimplemented GX write %03X:%04X", address, value);
1437		break;
1438	case DS9_REG_CLEAR_COLOR_LO:
1439	case DS9_REG_CLEAR_COLOR_HI:
1440		gx->renderer->writeRegister(gx->renderer, address, value);
1441		break;
1442	case DS9_REG_GXSTAT_LO:
1443		value = DSRegGXSTATIsMatrixStackError(value);
1444		if (value) {
1445			oldValue = DSRegGXSTATClearMatrixStackError(oldValue);
1446			oldValue = DSRegGXSTATClearProjMatrixStackLevel(oldValue);
1447		}
1448		value = oldValue;
1449		break;
1450	case DS9_REG_GXSTAT_HI:
1451		value = DSRegGXSTATIsDoIRQ(value << 16) >> 16;
1452		gx->p->memory.io9[address >> 1] = value;
1453		DSGXUpdateGXSTAT(gx);
1454		value = gx->p->memory.io9[address >> 1];
1455		break;
1456	default:
1457		if (address < DS9_REG_GXFIFO_00) {
1458			mLOG(DS_GX, STUB, "Unimplemented GX write %03X:%04X", address, value);
1459		} else if (address <= DS9_REG_GXFIFO_1F) {
1460			mLOG(DS_GX, STUB, "Unimplemented GX write %03X:%04X", address, value);
1461		} else if (address < DS9_REG_GXSTAT_LO) {
1462			struct DSGXEntry entry = {
1463				.command = (address & 0x1FC) >> 2,
1464				.params = {
1465					value,
1466					value >> 8,
1467				}
1468			};
1469			if (entry.command < DS_GX_CMD_MAX) {
1470				DSGXWriteFIFO(gx, entry);
1471			}
1472		} else {
1473			mLOG(DS_GX, STUB, "Unimplemented GX write %03X:%04X", address, value);
1474		}
1475		break;
1476	}
1477	return value;
1478}
1479
1480uint32_t DSGXWriteRegister32(struct DSGX* gx, uint32_t address, uint32_t value) {
1481	switch (address) {
1482	case DS9_REG_DISP3DCNT:
1483		mLOG(DS_GX, STUB, "Unimplemented GX write %03X:%08X", address, value);
1484		break;
1485	case DS9_REG_GXSTAT_LO:
1486		value = (value & 0xFFFF0000) | DSGXWriteRegister(gx, DS9_REG_GXSTAT_LO, value);
1487		value = (value & 0x0000FFFF) | (DSGXWriteRegister(gx, DS9_REG_GXSTAT_HI, value >> 16) << 16);
1488		break;
1489	case DS9_REG_CLEAR_COLOR_LO:
1490		gx->renderer->writeRegister(gx->renderer, address, value);
1491		gx->renderer->writeRegister(gx->renderer, address + 2, value >> 16);
1492		break;
1493	default:
1494		if (address < DS9_REG_GXFIFO_00) {
1495			mLOG(DS_GX, STUB, "Unimplemented GX write %03X:%08X", address, value);
1496		} else if (address <= DS9_REG_GXFIFO_1F) {
1497			if (gx->outstandingParams[0]) {
1498				struct DSGXEntry entry = {
1499					.command = gx->outstandingCommand[0],
1500					.params = {
1501						value,
1502						value >> 8,
1503						value >> 16,
1504						value >> 24
1505					}
1506				};
1507				DSGXWriteFIFO(gx, entry);
1508			} else {
1509				DSGXUnpackCommand(gx, value);
1510			}
1511		} else if (address < DS9_REG_GXSTAT_LO) {
1512			struct DSGXEntry entry = {
1513				.command = (address & 0x1FC) >> 2,
1514				.params = {
1515					value,
1516					value >> 8,
1517					value >> 16,
1518					value >> 24
1519				}
1520			};
1521			DSGXWriteFIFO(gx, entry);
1522		} else {
1523			mLOG(DS_GX, STUB, "Unimplemented GX write %03X:%08X", address, value);
1524		}
1525		break;
1526	}
1527	return value;
1528}
1529
1530void DSGXFlush(struct DSGX* gx) {
1531	if (gx->swapBuffers) {
1532		gx->renderer->setRAM(gx->renderer, gx->vertexBuffer[gx->bufferIndex], gx->polygonBuffer[gx->bufferIndex], gx->polygonIndex, gx->wSort);
1533		gx->swapBuffers = false;
1534		gx->bufferIndex ^= 1;
1535		gx->vertexIndex = 0;
1536		gx->pendingVertexIndex = 0;
1537		gx->polygonIndex = 0;
1538		if (CircleBufferSize(&gx->fifo)) {
1539			mTimingSchedule(&gx->p->ds9.timing, &gx->fifoEvent, 0);
1540		}
1541	}
1542
1543	DSGXUpdateGXSTAT(gx);
1544}
1545
1546void DSGXScheduleDMA(struct DSCommon* dscore, int number, struct GBADMA* info) {
1547	UNUSED(info);
1548	dscore->p->gx.dmaSource = number;
1549}
1550
1551static void DSGXDummyRendererInit(struct DSGXRenderer* renderer) {
1552	UNUSED(renderer);
1553	// Nothing to do
1554}
1555
1556static void DSGXDummyRendererReset(struct DSGXRenderer* renderer) {
1557	UNUSED(renderer);
1558	// Nothing to do
1559}
1560
1561static void DSGXDummyRendererDeinit(struct DSGXRenderer* renderer) {
1562	UNUSED(renderer);
1563	// Nothing to do
1564}
1565
1566static void DSGXDummyRendererInvalidateTex(struct DSGXRenderer* renderer, int slot) {
1567	UNUSED(renderer);
1568	UNUSED(slot);
1569	// Nothing to do
1570}
1571
1572static void DSGXDummyRendererSetRAM(struct DSGXRenderer* renderer, struct DSGXVertex* verts, struct DSGXPolygon* polys, unsigned polyCount, bool wSort) {
1573	UNUSED(renderer);
1574	UNUSED(verts);
1575	UNUSED(polys);
1576	UNUSED(polyCount);
1577	UNUSED(wSort);
1578	// Nothing to do
1579}
1580
1581static void DSGXDummyRendererDrawScanline(struct DSGXRenderer* renderer, int y) {
1582	UNUSED(renderer);
1583	UNUSED(y);
1584	// Nothing to do
1585}
1586
1587static void DSGXDummyRendererGetScanline(struct DSGXRenderer* renderer, int y, const color_t** output) {
1588	UNUSED(renderer);
1589	UNUSED(y);
1590	*output = NULL;
1591	// Nothing to do
1592}
1593
1594static void DSGXDummyRendererWriteRegister(struct DSGXRenderer* renderer, uint32_t address, uint16_t value) {
1595	UNUSED(renderer);
1596	UNUSED(address);
1597	UNUSED(value);
1598	// Nothing to do
1599}