all repos — mgba @ 9c2c93220b22887991cc7141a8c8669f2150d6fa

mGBA Game Boy Advance Emulator

src/gba/gba-audio.c (view raw)

  1#include "gba-audio.h"
  2
  3#include "gba.h"
  4#include "gba-io.h"
  5#include "gba-serialize.h"
  6#include "gba-thread.h"
  7
  8#include <limits.h>
  9
 10const unsigned GBA_AUDIO_SAMPLES = 512;
 11const unsigned GBA_AUDIO_FIFO_SIZE = 8 * sizeof(int32_t);
 12#define SWEEP_CYCLES (GBA_ARM7TDMI_FREQUENCY / 128)
 13
 14static int32_t _updateSquareChannel(struct GBAAudioSquareControl* envelope, int duty);
 15static void _updateEnvelope(struct GBAAudioEnvelope* envelope);
 16static int _updateSweep(struct GBAAudioChannel1* ch);
 17static int32_t _updateChannel1(struct GBAAudioChannel1* ch);
 18static int32_t _updateChannel2(struct GBAAudioChannel2* ch);
 19static int32_t _updateChannel3(struct GBAAudioChannel3* ch);
 20static int32_t _updateChannel4(struct GBAAudioChannel4* ch);
 21static void _sample(struct GBAAudio* audio);
 22
 23void GBAAudioInit(struct GBAAudio* audio) {
 24	audio->nextEvent = 0;
 25	audio->nextCh1 = 0;
 26	audio->nextCh2 = 0;
 27	audio->nextCh3 = 0;
 28	audio->nextCh4 = 0;
 29	audio->ch1.sweep.time = 0;
 30	audio->ch1.envelope.nextStep = INT_MAX;
 31	audio->ch1.control.nextStep = 0;
 32	audio->ch1.control.endTime = 0;
 33	audio->ch1.nextSweep = INT_MAX;
 34	audio->ch1.sample = 0;
 35	audio->ch2.envelope.nextStep = INT_MAX;
 36	audio->ch2.control.nextStep = 0;
 37	audio->ch2.control.endTime = 0;
 38	audio->ch2.sample = 0;
 39	audio->ch3.bank.packed = 0;
 40	audio->ch3.control.endTime = 0;
 41	audio->ch3.sample = 0;
 42	audio->ch4.sample = 0;
 43	audio->ch4.envelope.nextStep = INT_MAX;
 44	audio->eventDiff = 0;
 45	audio->nextSample = 0;
 46	audio->sampleRate = 0x8000;
 47	audio->soundcntLo = 0;
 48	audio->soundcntHi = 0;
 49	audio->soundcntX = 0;
 50	audio->sampleInterval = GBA_ARM7TDMI_FREQUENCY / audio->sampleRate;
 51
 52	CircleBufferInit(&audio->left, GBA_AUDIO_SAMPLES * sizeof(int32_t));
 53	CircleBufferInit(&audio->right, GBA_AUDIO_SAMPLES * sizeof(int32_t));
 54	CircleBufferInit(&audio->chA.fifo, GBA_AUDIO_FIFO_SIZE);
 55	CircleBufferInit(&audio->chB.fifo, GBA_AUDIO_FIFO_SIZE);
 56}
 57
 58void GBAAudioDeinit(struct GBAAudio* audio) {
 59	CircleBufferDeinit(&audio->left);
 60	CircleBufferDeinit(&audio->right);
 61	CircleBufferDeinit(&audio->chA.fifo);
 62	CircleBufferDeinit(&audio->chB.fifo);
 63}
 64
 65int32_t GBAAudioProcessEvents(struct GBAAudio* audio, int32_t cycles) {
 66	audio->nextEvent -= cycles;
 67	audio->eventDiff += cycles;
 68	while (audio->nextEvent <= 0) {
 69		audio->nextEvent = INT_MAX;
 70		if (audio->enable) {
 71			if (audio->playingCh1 && !audio->ch1.envelope.dead) {
 72				audio->nextCh1 -= audio->eventDiff;
 73				if (audio->ch1.envelope.nextStep != INT_MAX) {
 74					audio->ch1.envelope.nextStep -= audio->eventDiff;
 75					if (audio->ch1.envelope.nextStep <= 0) {
 76						int8_t sample = audio->ch1.control.hi * 0x10 - 0x8;
 77						_updateEnvelope(&audio->ch1.envelope);
 78						if (audio->ch1.envelope.nextStep < audio->nextEvent) {
 79							audio->nextEvent = audio->ch1.envelope.nextStep;
 80						}
 81						audio->ch1.sample = sample * audio->ch1.envelope.currentVolume;
 82					}
 83				}
 84
 85				if (audio->ch1.nextSweep != INT_MAX) {
 86					audio->ch1.nextSweep -= audio->eventDiff;
 87					if (audio->ch1.nextSweep <= 0) {
 88						audio->playingCh1 = _updateSweep(&audio->ch1);
 89						if (audio->ch1.nextSweep < audio->nextEvent) {
 90							audio->nextEvent = audio->ch1.nextSweep;
 91						}
 92					}
 93				}
 94
 95				if (audio->nextCh1 <= 0) {
 96					audio->nextCh1 += _updateChannel1(&audio->ch1);
 97					if (audio->nextCh1 < audio->nextEvent) {
 98						audio->nextEvent = audio->nextCh1;
 99					}
100				}
101
102				if (audio->ch1.control.stop) {
103					audio->ch1.control.endTime -= audio->eventDiff;
104					if (audio->ch1.control.endTime <= 0) {
105						audio->playingCh1 = 0;
106					}
107				}
108			}
109
110			if (audio->playingCh2 && !audio->ch2.envelope.dead) {
111				audio->nextCh2 -= audio->eventDiff;
112				if (audio->ch2.envelope.nextStep != INT_MAX) {
113					audio->ch2.envelope.nextStep -= audio->eventDiff;
114					if (audio->ch2.envelope.nextStep <= 0) {
115						int8_t sample = audio->ch2.control.hi * 0x10 - 0x8;
116						_updateEnvelope(&audio->ch2.envelope);
117						if (audio->ch2.envelope.nextStep < audio->nextEvent) {
118							audio->nextEvent = audio->ch2.envelope.nextStep;
119						}
120						audio->ch2.sample = sample * audio->ch2.envelope.currentVolume;
121					}
122				}
123
124				if (audio->nextCh2 <= 0) {
125					audio->nextCh2 += _updateChannel2(&audio->ch2);
126					if (audio->nextCh2 < audio->nextEvent) {
127						audio->nextEvent = audio->nextCh2;
128					}
129				}
130
131				if (audio->ch2.control.stop) {
132					audio->ch2.control.endTime -= audio->eventDiff;
133					if (audio->ch2.control.endTime <= 0) {
134						audio->playingCh2 = 0;
135					}
136				}
137			}
138
139			if (audio->playingCh3) {
140				audio->nextCh3 -= audio->eventDiff;
141				if (audio->nextCh3 <= 0) {
142					audio->nextCh3 += _updateChannel3(&audio->ch3);
143					if (audio->nextCh3 < audio->nextEvent) {
144						audio->nextEvent = audio->nextCh3;
145					}
146				}
147
148				if (audio->ch3.control.stop) {
149					audio->ch3.control.endTime -= audio->eventDiff;
150					if (audio->ch3.control.endTime <= 0) {
151						audio->playingCh3 = 0;
152					}
153				}
154			}
155
156			if (audio->playingCh4 && !audio->ch4.envelope.dead) {
157				audio->nextCh4 -= audio->eventDiff;
158				if (audio->ch4.envelope.nextStep != INT_MAX) {
159					audio->ch4.envelope.nextStep -= audio->eventDiff;
160					if (audio->ch4.envelope.nextStep <= 0) {
161						int8_t sample = (audio->ch4.sample >> 31) * 0x8;
162						_updateEnvelope(&audio->ch4.envelope);
163						if (audio->ch4.envelope.nextStep < audio->nextEvent) {
164							audio->nextEvent = audio->ch4.envelope.nextStep;
165						}
166						audio->ch4.sample = sample * audio->ch4.envelope.currentVolume;
167					}
168				}
169
170				if (audio->nextCh4 <= 0) {
171					audio->nextCh4 += _updateChannel4(&audio->ch4);
172					if (audio->nextCh4 < audio->nextEvent) {
173						audio->nextEvent = audio->nextCh4;
174					}
175				}
176
177				if (audio->ch4.control.stop) {
178					audio->ch4.control.endTime -= audio->eventDiff;
179					if (audio->ch4.control.endTime <= 0) {
180						audio->playingCh4 = 0;
181					}
182				}
183			}
184		}
185
186		audio->nextSample -= audio->eventDiff;
187		if (audio->nextSample <= 0) {
188			_sample(audio);
189			audio->nextSample += audio->sampleInterval;
190		}
191
192		if (audio->nextSample < audio->nextEvent) {
193			audio->nextEvent = audio->nextSample;
194		}
195		audio->eventDiff = 0;
196	}
197	return audio->nextEvent;
198}
199
200void GBAAudioScheduleFifoDma(struct GBAAudio* audio, int number, struct GBADMA* info) {
201	switch (info->dest) {
202	case BASE_IO | REG_FIFO_A_LO:
203		audio->chA.dmaSource = number;
204		break;
205	case BASE_IO | REG_FIFO_B_LO:
206		audio->chB.dmaSource = number;
207		break;
208	default:
209		GBALog(audio->p, GBA_LOG_GAME_ERROR, "Invalid FIFO destination: 0x%08X", info->dest);
210		return;
211	}
212	info->dstControl = DMA_FIXED;
213}
214
215void GBAAudioWriteSOUND1CNT_LO(struct GBAAudio* audio, uint16_t value) {
216	audio->ch1.sweep.packed = value;
217	if (audio->ch1.sweep.time) {
218		audio->ch1.nextSweep = audio->ch1.sweep.time * SWEEP_CYCLES;
219	} else {
220		audio->ch1.nextSweep = INT_MAX;
221	}
222}
223
224void GBAAudioWriteSOUND1CNT_HI(struct GBAAudio* audio, uint16_t value) {
225	audio->ch1.envelope.packed = value;
226	audio->ch1.envelope.dead = 0;
227	if (audio->ch1.envelope.stepTime) {
228		audio->ch1.envelope.nextStep = 0;
229	} else {
230		audio->ch1.envelope.nextStep = INT_MAX;
231		if (audio->ch1.envelope.initialVolume == 0) {
232			audio->ch1.envelope.dead = 1;
233			audio->ch1.sample = 0;
234		}
235	}
236}
237
238void GBAAudioWriteSOUND1CNT_X(struct GBAAudio* audio, uint16_t value) {
239	audio->ch1.control.packed = value;
240	audio->ch1.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch1.envelope.length)) >> 8;
241	if (audio->ch1.control.restart) {
242		if (audio->ch1.sweep.time) {
243			audio->ch1.nextSweep = audio->ch1.sweep.time * SWEEP_CYCLES;
244		} else {
245			audio->ch1.nextSweep = INT_MAX;
246		}
247		if (!audio->playingCh1) {
248			audio->nextCh1 = 0;
249		}
250		audio->playingCh1 = 1;
251		if (audio->ch1.envelope.stepTime) {
252			audio->ch1.envelope.nextStep = 0;
253		} else {
254			audio->ch1.envelope.nextStep = INT_MAX;
255		}
256		audio->ch1.envelope.currentVolume = audio->ch1.envelope.initialVolume;
257		if (audio->ch1.envelope.stepTime) {
258			audio->ch1.envelope.nextStep = 0;
259		} else {
260			audio->ch1.envelope.nextStep = INT_MAX;
261		}
262	}
263}
264
265void GBAAudioWriteSOUND2CNT_LO(struct GBAAudio* audio, uint16_t value) {
266	audio->ch2.envelope.packed = value;
267	audio->ch2.envelope.dead = 0;
268	if (audio->ch2.envelope.stepTime) {
269		audio->ch2.envelope.nextStep = 0;
270	} else {
271		audio->ch2.envelope.nextStep = INT_MAX;
272		if (audio->ch2.envelope.initialVolume == 0) {
273			audio->ch2.envelope.dead = 1;
274			audio->ch2.sample = 0;
275		}
276	}
277}
278
279void GBAAudioWriteSOUND2CNT_HI(struct GBAAudio* audio, uint16_t value) {
280	audio->ch2.control.packed = value;
281	audio->ch1.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch2.envelope.length)) >> 8;
282	if (audio->ch2.control.restart) {
283		audio->playingCh2 = 1;
284		audio->ch2.envelope.currentVolume = audio->ch2.envelope.initialVolume;
285		if (audio->ch2.envelope.stepTime) {
286			audio->ch2.envelope.nextStep = 0;
287		} else {
288			audio->ch2.envelope.nextStep = INT_MAX;
289		}
290		audio->nextCh2 = 0;
291	}
292}
293
294void GBAAudioWriteSOUND3CNT_LO(struct GBAAudio* audio, uint16_t value) {
295	audio->ch3.bank.packed = value;
296	if (audio->ch3.control.endTime >= 0) {
297		audio->playingCh3 = audio->ch3.bank.enable;
298	}
299}
300
301void GBAAudioWriteSOUND3CNT_HI(struct GBAAudio* audio, uint16_t value) {
302	audio->ch3.wave.packed = value;
303}
304
305void GBAAudioWriteSOUND3CNT_X(struct GBAAudio* audio, uint16_t value) {
306	audio->ch3.control.packed = value;
307	audio->ch3.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (256 - audio->ch3.wave.length)) >> 8;
308	if (audio->ch3.control.restart) {
309		audio->playingCh3 = audio->ch3.bank.enable;
310	}
311}
312
313void GBAAudioWriteSOUND4CNT_LO(struct GBAAudio* audio, uint16_t value) {
314	audio->ch4.envelope.packed = value;
315	audio->ch4.envelope.dead = 0;
316	if (audio->ch4.envelope.stepTime) {
317		audio->ch4.envelope.nextStep = 0;
318	} else {
319		audio->ch4.envelope.nextStep = INT_MAX;
320		if (audio->ch4.envelope.initialVolume == 0) {
321			audio->ch4.envelope.dead = 1;
322			audio->ch4.sample = 0;
323		}
324	}
325}
326
327void GBAAudioWriteSOUND4CNT_HI(struct GBAAudio* audio, uint16_t value) {
328	audio->ch4.control.packed = value;
329	audio->ch4.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch4.envelope.length)) >> 8;
330	if (audio->ch4.control.restart) {
331		audio->playingCh4 = 1;
332		audio->ch4.envelope.currentVolume = audio->ch4.envelope.initialVolume;
333		if (audio->ch4.envelope.stepTime) {
334			audio->ch4.envelope.nextStep = 0;
335		} else {
336			audio->ch4.envelope.nextStep = INT_MAX;
337		}
338		if (audio->ch4.control.power) {
339			audio->ch4.lfsr = 0x40;
340		} else {
341			audio->ch4.lfsr = 0x4000;
342		}
343		audio->nextCh4 = 0;
344	}
345}
346
347void GBAAudioWriteSOUNDCNT_LO(struct GBAAudio* audio, uint16_t value) {
348	audio->soundcntLo = value;
349}
350
351void GBAAudioWriteSOUNDCNT_HI(struct GBAAudio* audio, uint16_t value) {
352	audio->soundcntHi = value;
353}
354
355void GBAAudioWriteSOUNDCNT_X(struct GBAAudio* audio, uint16_t value) {
356	audio->soundcntX = (value & 0x80) | (audio->soundcntX & 0x0F);
357}
358
359void GBAAudioWriteWaveRAM(struct GBAAudio* audio, int address, uint32_t value) {
360	audio->ch3.wavedata[address | (!audio->ch3.bank.bank * 4)] = value;
361}
362
363void GBAAudioWriteFIFO(struct GBAAudio* audio, int address, uint32_t value) {
364	struct CircleBuffer* fifo;
365	switch (address) {
366	case REG_FIFO_A_LO:
367		fifo = &audio->chA.fifo;
368		break;
369	case REG_FIFO_B_LO:
370		fifo = &audio->chB.fifo;
371		break;
372	default:
373		GBALog(audio->p, GBA_LOG_ERROR, "Bad FIFO write to address 0x%03x", address);
374		return;
375	}
376	while (!CircleBufferWrite32(fifo, value)) {
377		int32_t dummy;
378		CircleBufferRead32(fifo, &dummy);
379	}
380}
381
382void GBAAudioSampleFIFO(struct GBAAudio* audio, int fifoId, int32_t cycles) {
383	struct GBAAudioFIFO* channel;
384	if (fifoId == 0) {
385		channel = &audio->chA;
386	} else if (fifoId == 1) {
387		channel = &audio->chB;
388	} else {
389		GBALog(audio->p, GBA_LOG_ERROR, "Bad FIFO write to address 0x%03x", fifoId);
390		return;
391	}
392	if (CircleBufferSize(&channel->fifo) <= 4 * sizeof(int32_t)) {
393		struct GBADMA* dma = &audio->p->memory.dma[channel->dmaSource];
394		dma->nextCount = 4;
395		dma->nextEvent = 0;
396		GBAMemoryUpdateDMAs(&audio->p->memory, -cycles);
397	}
398	CircleBufferRead8(&channel->fifo, &channel->sample);
399}
400
401unsigned GBAAudioCopy(struct GBAAudio* audio, void* left, void* right, unsigned nSamples) {
402	GBASyncLockAudio(audio->p->sync);
403	unsigned read = 0;
404	if (left) {
405		unsigned readL = CircleBufferRead(&audio->left, left, nSamples * sizeof(int32_t)) >> 2;
406		if (readL < nSamples) {
407			memset((int32_t*) left + readL, 0, nSamples - readL);
408		}
409		read = readL;
410	}
411	if (right) {
412		unsigned readR = CircleBufferRead(&audio->right, right, nSamples * sizeof(int32_t)) >> 2;
413		if (readR < nSamples) {
414			memset((int32_t*) right + readR, 0, nSamples - readR);
415		}
416		read = read >= readR ? read : readR;
417	}
418	GBASyncConsumeAudio(audio->p->sync);
419	return read;
420}
421
422static int32_t _updateSquareChannel(struct GBAAudioSquareControl* control, int duty) {
423	control->hi = !control->hi;
424	int period = 16 * (2048 - control->frequency);
425	switch (duty) {
426	case 0:
427		return control->hi ? period : period * 7;
428	case 1:
429		return control->hi ? period * 2 : period * 6;
430	case 2:
431		return period * 4;
432	case 3:
433		return control->hi ? period * 6 : period * 2;
434	default:
435		// This should never be hit
436		return period * 4;
437	}
438}
439
440static void _updateEnvelope(struct GBAAudioEnvelope* envelope) {
441	if (envelope->direction) {
442		++envelope->currentVolume;
443	} else {
444		--envelope->currentVolume;
445	}
446	if (envelope->currentVolume >= 15) {
447		envelope->currentVolume = 15;
448		envelope->nextStep = INT_MAX;
449	} else if (envelope->currentVolume <= 0) {
450		envelope->currentVolume = 0;
451		envelope->dead = 1;
452		envelope->nextStep = INT_MAX;
453	} else {
454		envelope->nextStep += envelope->stepTime * (GBA_ARM7TDMI_FREQUENCY >> 6);
455	}
456}
457
458static int _updateSweep(struct GBAAudioChannel1* ch) {
459	if (ch->sweep.direction) {
460		int frequency = ch->control.frequency;
461		frequency -= frequency >> ch->sweep.shift;
462		if (frequency >= 0) {
463			ch->control.frequency = frequency;
464		}
465	} else {
466		int frequency = ch->control.frequency;
467		frequency += frequency >> ch->sweep.shift;
468		if (frequency < 2048) {
469			ch->control.frequency = frequency;
470		} else {
471			return 0;
472		}
473	}
474	ch->nextSweep += ch->sweep.time * SWEEP_CYCLES;
475	return 1;
476}
477
478static int32_t _updateChannel1(struct GBAAudioChannel1* ch) {
479	int timing = _updateSquareChannel(&ch->control, ch->envelope.duty);
480	ch->sample = ch->control.hi * 0x10 - 0x8;
481	ch->sample *= ch->envelope.currentVolume;
482	return timing;
483}
484
485static int32_t _updateChannel2(struct GBAAudioChannel2* ch) {
486	int timing = _updateSquareChannel(&ch->control, ch->envelope.duty);
487	ch->sample = ch->control.hi * 0x10 - 0x8;
488	ch->sample *= ch->envelope.currentVolume;
489	return timing;
490}
491
492static int32_t _updateChannel3(struct GBAAudioChannel3* ch) {
493	int i;
494	int start;
495	int end;
496	int volume;
497	switch (ch->wave.volume) {
498	case 0:
499		volume = 0;
500		break;
501	case 1:
502		volume = 4;
503		break;
504	case 2:
505		volume = 2;
506		break;
507	case 3:
508		volume = 1;
509		break;
510	default:
511		volume = 3;
512		break;
513	}
514	if (ch->bank.size) {
515		start = 7;
516		end = 0;
517	} else if (ch->bank.bank) {
518		start = 7;
519		end = 4;
520	} else {
521		start = 3;
522		end = 0;
523	}
524	uint32_t bitsCarry = ch->wavedata[end] & 0xF0000000;
525	uint32_t bits;
526	for (i = start; i >= end; --i) {
527		bits = ch->wavedata[i] & 0xF0000000;
528		ch->wavedata[i] <<= 4;
529		ch->wavedata[i] |= bitsCarry >> 28;
530		bitsCarry = bits;
531	}
532	ch->sample = ((bitsCarry >> 26) - 0x20) * volume;
533	return 8 * (2048 - ch->control.rate);
534}
535
536static int32_t _updateChannel4(struct GBAAudioChannel4* ch) {
537	int lsb = ch->lfsr & 1;
538	ch->sample = lsb * 0x10 - 0x8;
539	ch->sample *= ch->envelope.currentVolume;
540	ch->lfsr >>= 1;
541	ch->lfsr ^= (lsb * 0x60) << (ch->control.power ? 0 : 8);
542	int timing = ch->control.ratio ? 2 * ch->control.ratio : 1;
543	timing <<= ch->control.frequency;
544	timing *= 32;
545	return timing;
546}
547
548static void _sample(struct GBAAudio* audio) {
549	int32_t sampleLeft = 0;
550	int32_t sampleRight = 0;
551	int psgShift = 6 - audio->volume;
552
553	if (audio->ch1Left) {
554		sampleLeft += audio->ch1.sample;
555	}
556
557	if (audio->ch1Right) {
558		sampleRight += audio->ch1.sample;
559	}
560
561	if (audio->ch2Left) {
562		sampleLeft += audio->ch2.sample;
563	}
564
565	if (audio->ch2Right) {
566		sampleRight += audio->ch2.sample;
567	}
568
569	if (audio->ch3Left) {
570		sampleLeft += audio->ch3.sample;
571	}
572
573	if (audio->ch3Right) {
574		sampleRight += audio->ch3.sample;
575	}
576
577	if (audio->ch4Left) {
578		sampleLeft += audio->ch4.sample;
579	}
580
581	if (audio->ch4Right) {
582		sampleRight += audio->ch4.sample;
583	}
584
585	sampleLeft = (sampleLeft * (1 + audio->volumeLeft)) >> psgShift;
586	sampleRight = (sampleRight * (1 + audio->volumeRight)) >> psgShift;
587
588	if (audio->chALeft) {
589		sampleLeft += (audio->chA.sample << 2) >> !audio->volumeChA;
590	}
591
592	if (audio->chARight) {
593		sampleRight += (audio->chA.sample << 2) >> !audio->volumeChA;
594	}
595
596	if (audio->chBLeft) {
597		sampleLeft += (audio->chB.sample << 2) >> !audio->volumeChB;
598	}
599
600	if (audio->chBRight) {
601		sampleRight += (audio->chB.sample << 2) >> !audio->volumeChB;
602	}
603
604	GBASyncLockAudio(audio->p->sync);
605	CircleBufferWrite32(&audio->left, sampleLeft << 5);
606	CircleBufferWrite32(&audio->right, sampleRight << 5);
607	unsigned produced = CircleBufferSize(&audio->left);
608	GBASyncProduceAudio(audio->p->sync, produced >= GBA_AUDIO_SAMPLES * 3);
609}
610
611void GBAAudioSerialize(const struct GBAAudio* audio, struct GBASerializedState* state) {
612	state->audio.ch1Volume = audio->ch1.envelope.currentVolume;
613	state->audio.ch1Dead = audio->ch1.envelope.dead;
614	state->audio.ch1Hi = audio->ch1.control.hi;
615	state->audio.ch1.envelopeNextStep = audio->ch1.envelope.nextStep;
616	state->audio.ch1.waveNextStep = audio->ch1.control.nextStep;
617	state->audio.ch1.sweepNextStep = audio->ch1.nextSweep;
618	state->audio.ch1.endTime = audio->ch1.control.endTime;
619	state->audio.ch1.nextEvent = audio->nextCh1;
620
621	state->audio.ch2Volume = audio->ch2.envelope.currentVolume;
622	state->audio.ch2Dead = audio->ch2.envelope.dead;
623	state->audio.ch2Hi = audio->ch2.control.hi;
624	state->audio.ch2.envelopeNextStep = audio->ch2.envelope.nextStep;
625	state->audio.ch2.waveNextStep = audio->ch2.control.nextStep;
626	state->audio.ch2.endTime = audio->ch2.control.endTime;
627	state->audio.ch2.nextEvent = audio->nextCh2;
628
629	memcpy(state->audio.ch3.wavebanks, audio->ch3.wavedata, sizeof(state->audio.ch3.wavebanks));
630	state->audio.ch3.endTime = audio->ch3.control.endTime;
631	state->audio.ch3.nextEvent = audio->nextCh3;
632
633	state->audio.ch4Volume = audio->ch4.envelope.currentVolume;
634	state->audio.ch4Dead = audio->ch4.envelope.dead;
635	state->audio.ch4.envelopeNextStep = audio->ch4.envelope.nextStep;
636	state->audio.ch4.lfsr = audio->ch4.lfsr;
637	state->audio.ch4.endTime = audio->ch4.control.endTime;
638	state->audio.ch4.nextEvent = audio->nextCh4;
639
640	state->audio.nextEvent = audio->nextEvent;
641	state->audio.eventDiff = audio->eventDiff;
642	state->audio.nextSample = audio->nextSample;
643}
644
645void GBAAudioDeserialize(struct GBAAudio* audio, const struct GBASerializedState* state) {
646	audio->ch1.envelope.currentVolume = state->audio.ch1Volume;
647	audio->ch1.envelope.dead = state->audio.ch1Dead;
648	audio->ch1.control.hi = state->audio.ch1Hi;
649	audio->ch1.envelope.nextStep = state->audio.ch1.envelopeNextStep;
650	audio->ch1.control.nextStep = state->audio.ch1.waveNextStep;
651	audio->ch1.nextSweep = state->audio.ch1.sweepNextStep;
652	audio->ch1.control.endTime = state->audio.ch1.endTime;
653	audio->nextCh1 = state->audio.ch1.nextEvent;
654
655	audio->ch2.envelope.currentVolume = state->audio.ch2Volume;
656	audio->ch2.envelope.dead = state->audio.ch2Dead;
657	audio->ch2.control.hi = state->audio.ch2Hi;
658	audio->ch2.envelope.nextStep = state->audio.ch2.envelopeNextStep;
659	audio->ch2.control.nextStep = state->audio.ch2.waveNextStep;
660	audio->ch2.control.endTime = state->audio.ch2.endTime;
661	audio->nextCh2 = state->audio.ch2.nextEvent;
662
663	memcpy(audio->ch3.wavedata, state->audio.ch3.wavebanks, sizeof(audio->ch3.wavedata));
664	audio->ch3.control.endTime = state->audio.ch3.endTime;
665	audio->nextCh3 = state->audio.ch3.nextEvent;
666
667	audio->ch4.envelope.currentVolume = state->audio.ch4Volume;
668	audio->ch4.envelope.dead = state->audio.ch4Dead;
669	audio->ch4.envelope.nextStep = state->audio.ch4.envelopeNextStep;
670	audio->ch4.lfsr = state->audio.ch4.lfsr;
671	audio->ch4.control.endTime = state->audio.ch4.endTime;
672	audio->nextCh4 = state->audio.ch4.nextEvent;
673
674	audio->nextEvent = state->audio.nextEvent;
675	audio->eventDiff = state->audio.eventDiff;
676	audio->nextSample = state->audio.nextSample;
677}