all repos — mgba @ 9c92a29b28d1f81224ba28d5fc83a9481eccd5eb

mGBA Game Boy Advance Emulator

src/gba/gba-audio.c (view raw)

  1/* Copyright (c) 2013-2014 Jeffrey Pfau
  2 *
  3 * This Source Code Form is subject to the terms of the Mozilla Public
  4 * License, v. 2.0. If a copy of the MPL was not distributed with this
  5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  6#include "gba-audio.h"
  7
  8#include "gba.h"
  9#include "gba-io.h"
 10#include "gba-serialize.h"
 11#include "gba-thread.h"
 12#include "gba-video.h"
 13
 14const unsigned GBA_AUDIO_SAMPLES = 2048;
 15const unsigned GBA_AUDIO_FIFO_SIZE = 8 * sizeof(int32_t);
 16#define SWEEP_CYCLES (GBA_ARM7TDMI_FREQUENCY / 128)
 17
 18static bool _writeEnvelope(struct GBAAudioEnvelope* envelope, uint16_t value);
 19static int32_t _updateSquareChannel(struct GBAAudioSquareControl* envelope, int duty);
 20static void _updateEnvelope(struct GBAAudioEnvelope* envelope);
 21static bool _updateSweep(struct GBAAudioChannel1* ch);
 22static int32_t _updateChannel1(struct GBAAudioChannel1* ch);
 23static int32_t _updateChannel2(struct GBAAudioChannel2* ch);
 24static int32_t _updateChannel3(struct GBAAudioChannel3* ch);
 25static int32_t _updateChannel4(struct GBAAudioChannel4* ch);
 26static int _applyBias(struct GBAAudio* audio, int sample);
 27static void _sample(struct GBAAudio* audio);
 28
 29void GBAAudioInit(struct GBAAudio* audio, size_t samples) {
 30	CircleBufferInit(&audio->left, samples * sizeof(int32_t));
 31	CircleBufferInit(&audio->right, samples * sizeof(int32_t));
 32	CircleBufferInit(&audio->chA.fifo, GBA_AUDIO_FIFO_SIZE);
 33	CircleBufferInit(&audio->chB.fifo, GBA_AUDIO_FIFO_SIZE);
 34}
 35
 36void GBAAudioReset(struct GBAAudio* audio) {
 37	audio->nextEvent = 0;
 38	audio->nextCh1 = 0;
 39	audio->nextCh2 = 0;
 40	audio->nextCh3 = 0;
 41	audio->nextCh4 = 0;
 42	audio->ch1 = (struct GBAAudioChannel1) { .envelope = { .nextStep = INT_MAX }, .nextSweep = INT_MAX };
 43	audio->ch2 = (struct GBAAudioChannel2) { .envelope = { .nextStep = INT_MAX } };
 44	audio->ch3 = (struct GBAAudioChannel3) { .bank = { .bank = 0 } };
 45	audio->ch4 = (struct GBAAudioChannel4) { .envelope = { .nextStep = INT_MAX } };
 46	audio->chA.dmaSource = 0;
 47	audio->chB.dmaSource = 0;
 48	audio->chA.sample = 0;
 49	audio->chB.sample = 0;
 50	audio->eventDiff = 0;
 51	audio->nextSample = 0;
 52	audio->sampleRate = 0x8000;
 53	audio->soundbias = 0x200;
 54	audio->volumeRight = 0;
 55	audio->volumeLeft = 0;
 56	audio->ch1Right = false;
 57	audio->ch2Right = false;
 58	audio->ch3Right = false;
 59	audio->ch4Right = false;
 60	audio->ch1Left = false;
 61	audio->ch2Left = false;
 62	audio->ch3Left = false;
 63	audio->ch4Left = false;
 64	audio->volume = 0;
 65	audio->volumeChA = false;
 66	audio->volumeChB = false;
 67	audio->chARight = false;
 68	audio->chALeft = false;
 69	audio->chATimer = false;
 70	audio->chBRight = false;
 71	audio->chBLeft = false;
 72	audio->chBTimer = false;
 73	audio->playingCh1 = false;
 74	audio->playingCh2 = false;
 75	audio->playingCh3 = false;
 76	audio->playingCh4 = false;
 77	audio->enable = false;
 78	audio->sampleInterval = GBA_ARM7TDMI_FREQUENCY / audio->sampleRate;
 79
 80	CircleBufferClear(&audio->left);
 81	CircleBufferClear(&audio->right);
 82	CircleBufferClear(&audio->chA.fifo);
 83	CircleBufferClear(&audio->chB.fifo);
 84}
 85
 86void GBAAudioDeinit(struct GBAAudio* audio) {
 87	CircleBufferDeinit(&audio->left);
 88	CircleBufferDeinit(&audio->right);
 89	CircleBufferDeinit(&audio->chA.fifo);
 90	CircleBufferDeinit(&audio->chB.fifo);
 91}
 92
 93void GBAAudioResizeBuffer(struct GBAAudio* audio, size_t samples) {
 94	if (samples > GBA_AUDIO_SAMPLES) {
 95		return;
 96	}
 97
 98	GBASyncLockAudio(audio->p->sync);
 99	int32_t buffer[GBA_AUDIO_SAMPLES];
100	int32_t dummy;
101	size_t read;
102	size_t i;
103
104	read = CircleBufferDump(&audio->left, buffer, sizeof(buffer));
105	CircleBufferDeinit(&audio->left);
106	CircleBufferInit(&audio->left, samples * sizeof(int32_t));
107	for (i = 0; i * sizeof(int32_t) < read; ++i) {
108		if (!CircleBufferWrite32(&audio->left, buffer[i])) {
109			CircleBufferRead32(&audio->left, &dummy);
110			CircleBufferWrite32(&audio->left, buffer[i]);
111		}
112	}
113
114	read = CircleBufferDump(&audio->right, buffer, sizeof(buffer));
115	CircleBufferDeinit(&audio->right);
116	CircleBufferInit(&audio->right, samples * sizeof(int32_t));
117	for (i = 0; i * sizeof(int32_t) < read; ++i) {
118		if (!CircleBufferWrite32(&audio->right, buffer[i])) {
119			CircleBufferRead32(&audio->right, &dummy);
120			CircleBufferWrite32(&audio->right, buffer[i]);
121		}
122	}
123
124	GBASyncConsumeAudio(audio->p->sync);
125}
126
127int32_t GBAAudioProcessEvents(struct GBAAudio* audio, int32_t cycles) {
128	audio->nextEvent -= cycles;
129	audio->eventDiff += cycles;
130	if (audio->nextEvent <= 0) {
131		audio->nextEvent = INT_MAX;
132		if (audio->enable) {
133			if (audio->playingCh1 && !audio->ch1.envelope.dead) {
134				audio->nextCh1 -= audio->eventDiff;
135				if (audio->ch1.envelope.nextStep != INT_MAX) {
136					audio->ch1.envelope.nextStep -= audio->eventDiff;
137					if (audio->ch1.envelope.nextStep <= 0) {
138						int8_t sample = audio->ch1.control.hi * 0x10 - 0x8;
139						_updateEnvelope(&audio->ch1.envelope);
140						if (audio->ch1.envelope.nextStep < audio->nextEvent) {
141							audio->nextEvent = audio->ch1.envelope.nextStep;
142						}
143						audio->ch1.sample = sample * audio->ch1.envelope.currentVolume;
144					}
145				}
146
147				if (audio->ch1.nextSweep != INT_MAX) {
148					audio->ch1.nextSweep -= audio->eventDiff;
149					if (audio->ch1.nextSweep <= 0) {
150						audio->playingCh1 = _updateSweep(&audio->ch1);
151						if (audio->ch1.nextSweep < audio->nextEvent) {
152							audio->nextEvent = audio->ch1.nextSweep;
153						}
154					}
155				}
156
157				if (audio->nextCh1 <= 0) {
158					audio->nextCh1 += _updateChannel1(&audio->ch1);
159					if (audio->nextCh1 < audio->nextEvent) {
160						audio->nextEvent = audio->nextCh1;
161					}
162				}
163
164				if (audio->ch1.control.stop) {
165					audio->ch1.control.endTime -= audio->eventDiff;
166					if (audio->ch1.control.endTime <= 0) {
167						audio->playingCh1 = 0;
168					}
169				}
170			}
171
172			if (audio->playingCh2 && !audio->ch2.envelope.dead) {
173				audio->nextCh2 -= audio->eventDiff;
174				if (audio->ch2.envelope.nextStep != INT_MAX) {
175					audio->ch2.envelope.nextStep -= audio->eventDiff;
176					if (audio->ch2.envelope.nextStep <= 0) {
177						int8_t sample = audio->ch2.control.hi * 0x10 - 0x8;
178						_updateEnvelope(&audio->ch2.envelope);
179						if (audio->ch2.envelope.nextStep < audio->nextEvent) {
180							audio->nextEvent = audio->ch2.envelope.nextStep;
181						}
182						audio->ch2.sample = sample * audio->ch2.envelope.currentVolume;
183					}
184				}
185
186				if (audio->nextCh2 <= 0) {
187					audio->nextCh2 += _updateChannel2(&audio->ch2);
188					if (audio->nextCh2 < audio->nextEvent) {
189						audio->nextEvent = audio->nextCh2;
190					}
191				}
192
193				if (audio->ch2.control.stop) {
194					audio->ch2.control.endTime -= audio->eventDiff;
195					if (audio->ch2.control.endTime <= 0) {
196						audio->playingCh2 = 0;
197					}
198				}
199			}
200
201			if (audio->playingCh3) {
202				audio->nextCh3 -= audio->eventDiff;
203				if (audio->nextCh3 <= 0) {
204					audio->nextCh3 += _updateChannel3(&audio->ch3);
205					if (audio->nextCh3 < audio->nextEvent) {
206						audio->nextEvent = audio->nextCh3;
207					}
208				}
209
210				if (audio->ch3.control.stop) {
211					audio->ch3.control.endTime -= audio->eventDiff;
212					if (audio->ch3.control.endTime <= 0) {
213						audio->playingCh3 = 0;
214					}
215				}
216			}
217
218			if (audio->playingCh4 && !audio->ch4.envelope.dead) {
219				audio->nextCh4 -= audio->eventDiff;
220				if (audio->ch4.envelope.nextStep != INT_MAX) {
221					audio->ch4.envelope.nextStep -= audio->eventDiff;
222					if (audio->ch4.envelope.nextStep <= 0) {
223						int8_t sample = (audio->ch4.sample >> 31) * 0x8;
224						_updateEnvelope(&audio->ch4.envelope);
225						if (audio->ch4.envelope.nextStep < audio->nextEvent) {
226							audio->nextEvent = audio->ch4.envelope.nextStep;
227						}
228						audio->ch4.sample = sample * audio->ch4.envelope.currentVolume;
229					}
230				}
231
232				if (audio->nextCh4 <= 0) {
233					audio->nextCh4 += _updateChannel4(&audio->ch4);
234					if (audio->nextCh4 < audio->nextEvent) {
235						audio->nextEvent = audio->nextCh4;
236					}
237				}
238
239				if (audio->ch4.control.stop) {
240					audio->ch4.control.endTime -= audio->eventDiff;
241					if (audio->ch4.control.endTime <= 0) {
242						audio->playingCh4 = 0;
243					}
244				}
245			}
246		}
247
248		audio->nextSample -= audio->eventDiff;
249		if (audio->nextSample <= 0) {
250			_sample(audio);
251			audio->nextSample += audio->sampleInterval;
252		}
253
254		if (audio->nextSample < audio->nextEvent) {
255			audio->nextEvent = audio->nextSample;
256		}
257		audio->eventDiff = 0;
258	}
259	return audio->nextEvent;
260}
261
262void GBAAudioScheduleFifoDma(struct GBAAudio* audio, int number, struct GBADMA* info) {
263	switch (info->dest) {
264	case BASE_IO | REG_FIFO_A_LO:
265		audio->chA.dmaSource = number;
266		break;
267	case BASE_IO | REG_FIFO_B_LO:
268		audio->chB.dmaSource = number;
269		break;
270	default:
271		GBALog(audio->p, GBA_LOG_GAME_ERROR, "Invalid FIFO destination: 0x%08X", info->dest);
272		return;
273	}
274	info->reg = GBADMARegisterSetDestControl(info->reg, DMA_FIXED);
275}
276
277void GBAAudioWriteSOUND1CNT_LO(struct GBAAudio* audio, uint16_t value) {
278	audio->ch1.sweep.shift = GBAAudioRegisterSquareSweepGetShift(value);
279	audio->ch1.sweep.direction = GBAAudioRegisterSquareSweepGetDirection(value);
280	audio->ch1.sweep.time = GBAAudioRegisterSquareSweepGetTime(value);
281	if (audio->ch1.sweep.time) {
282		audio->ch1.nextSweep = audio->ch1.sweep.time * SWEEP_CYCLES;
283	} else {
284		audio->ch1.nextSweep = INT_MAX;
285	}
286}
287
288void GBAAudioWriteSOUND1CNT_HI(struct GBAAudio* audio, uint16_t value) {
289	if (!_writeEnvelope(&audio->ch1.envelope, value)) {
290		audio->ch1.sample = 0;
291	}
292}
293
294void GBAAudioWriteSOUND1CNT_X(struct GBAAudio* audio, uint16_t value) {
295	audio->ch1.control.frequency = GBAAudioRegisterControlGetFrequency(value);
296	audio->ch1.control.stop = GBAAudioRegisterControlGetStop(value);
297	audio->ch1.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch1.envelope.length)) >> 8;
298	if (GBAAudioRegisterControlIsRestart(value)) {
299		if (audio->ch1.sweep.time) {
300			audio->ch1.nextSweep = audio->ch1.sweep.time * SWEEP_CYCLES;
301		} else {
302			audio->ch1.nextSweep = INT_MAX;
303		}
304		if (!audio->playingCh1) {
305			audio->nextCh1 = 0;
306		}
307		audio->playingCh1 = 1;
308		if (audio->ch1.envelope.stepTime) {
309			audio->ch1.envelope.nextStep = 0;
310		} else {
311			audio->ch1.envelope.nextStep = INT_MAX;
312		}
313		audio->ch1.envelope.currentVolume = audio->ch1.envelope.initialVolume;
314		if (audio->ch1.envelope.stepTime) {
315			audio->ch1.envelope.nextStep = 0;
316		} else {
317			audio->ch1.envelope.nextStep = INT_MAX;
318		}
319	}
320}
321
322void GBAAudioWriteSOUND2CNT_LO(struct GBAAudio* audio, uint16_t value) {
323	if (!_writeEnvelope(&audio->ch2.envelope, value)) {
324		audio->ch2.sample = 0;
325	}
326}
327
328void GBAAudioWriteSOUND2CNT_HI(struct GBAAudio* audio, uint16_t value) {
329	audio->ch2.control.frequency = GBAAudioRegisterControlGetFrequency(value);
330	audio->ch2.control.stop = GBAAudioRegisterControlGetStop(value);
331	audio->ch2.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch2.envelope.length)) >> 8;
332	if (GBAAudioRegisterControlIsRestart(value)) {
333		audio->playingCh2 = 1;
334		audio->ch2.envelope.currentVolume = audio->ch2.envelope.initialVolume;
335		if (audio->ch2.envelope.stepTime) {
336			audio->ch2.envelope.nextStep = 0;
337		} else {
338			audio->ch2.envelope.nextStep = INT_MAX;
339		}
340		audio->nextCh2 = 0;
341	}
342}
343
344void GBAAudioWriteSOUND3CNT_LO(struct GBAAudio* audio, uint16_t value) {
345	audio->ch3.bank.size = GBAAudioRegisterBankGetSize(value);
346	audio->ch3.bank.bank = GBAAudioRegisterBankGetBank(value);
347	audio->ch3.bank.enable = GBAAudioRegisterBankGetEnable(value);
348	if (audio->ch3.control.endTime >= 0) {
349		audio->playingCh3 = audio->ch3.bank.enable;
350	}
351}
352
353void GBAAudioWriteSOUND3CNT_HI(struct GBAAudio* audio, uint16_t value) {
354	audio->ch3.wave.length = GBAAudioRegisterBankWaveGetLength(value);
355	audio->ch3.wave.volume = GBAAudioRegisterBankWaveGetVolume(value);
356}
357
358void GBAAudioWriteSOUND3CNT_X(struct GBAAudio* audio, uint16_t value) {
359	audio->ch3.control.rate = GBAAudioRegisterControlGetRate(value);
360	audio->ch3.control.stop = GBAAudioRegisterControlGetStop(value);
361	audio->ch3.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (256 - audio->ch3.wave.length)) >> 8;
362	if (GBAAudioRegisterControlIsRestart(value)) {
363		audio->playingCh3 = audio->ch3.bank.enable;
364	}
365}
366
367void GBAAudioWriteSOUND4CNT_LO(struct GBAAudio* audio, uint16_t value) {
368	if (!_writeEnvelope(&audio->ch4.envelope, value)) {
369		audio->ch4.sample = 0;
370	}
371}
372
373void GBAAudioWriteSOUND4CNT_HI(struct GBAAudio* audio, uint16_t value) {
374	audio->ch4.control.ratio = GBAAudioRegisterCh4ControlGetRatio(value);
375	audio->ch4.control.frequency = GBAAudioRegisterCh4ControlGetFrequency(value);
376	audio->ch4.control.power = GBAAudioRegisterCh4ControlGetPower(value);
377	audio->ch4.control.stop = GBAAudioRegisterCh4ControlGetStop(value);
378	audio->ch4.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch4.envelope.length)) >> 8;
379	if (GBAAudioRegisterCh4ControlIsRestart(value)) {
380		audio->playingCh4 = 1;
381		audio->ch4.envelope.currentVolume = audio->ch4.envelope.initialVolume;
382		if (audio->ch4.envelope.stepTime) {
383			audio->ch4.envelope.nextStep = 0;
384		} else {
385			audio->ch4.envelope.nextStep = INT_MAX;
386		}
387		if (audio->ch4.control.power) {
388			audio->ch4.lfsr = 0x40;
389		} else {
390			audio->ch4.lfsr = 0x4000;
391		}
392		audio->nextCh4 = 0;
393	}
394}
395
396void GBAAudioWriteSOUNDCNT_LO(struct GBAAudio* audio, uint16_t value) {
397	audio->volumeRight = GBARegisterSOUNDCNT_LOGetVolumeRight(value);
398	audio->volumeLeft = GBARegisterSOUNDCNT_LOGetVolumeLeft(value);
399	audio->ch1Right = GBARegisterSOUNDCNT_LOGetCh1Right(value);
400	audio->ch2Right = GBARegisterSOUNDCNT_LOGetCh2Right(value);
401	audio->ch3Right = GBARegisterSOUNDCNT_LOGetCh3Right(value);
402	audio->ch4Right = GBARegisterSOUNDCNT_LOGetCh4Right(value);
403	audio->ch1Left = GBARegisterSOUNDCNT_LOGetCh1Left(value);
404	audio->ch2Left = GBARegisterSOUNDCNT_LOGetCh2Left(value);
405	audio->ch3Left = GBARegisterSOUNDCNT_LOGetCh3Left(value);
406	audio->ch4Left = GBARegisterSOUNDCNT_LOGetCh4Left(value);
407}
408
409void GBAAudioWriteSOUNDCNT_HI(struct GBAAudio* audio, uint16_t value) {
410	audio->volume = GBARegisterSOUNDCNT_HIGetVolume(value);
411	audio->volumeChA = GBARegisterSOUNDCNT_HIGetVolumeChA(value);
412	audio->volumeChB = GBARegisterSOUNDCNT_HIGetVolumeChB(value);
413	audio->chARight = GBARegisterSOUNDCNT_HIGetChARight(value);
414	audio->chALeft = GBARegisterSOUNDCNT_HIGetChALeft(value);
415	audio->chATimer = GBARegisterSOUNDCNT_HIGetChATimer(value);
416	audio->chBRight = GBARegisterSOUNDCNT_HIGetChBRight(value);
417	audio->chBLeft = GBARegisterSOUNDCNT_HIGetChBLeft(value);
418	audio->chBTimer = GBARegisterSOUNDCNT_HIGetChBTimer(value);
419	// TODO: Implement channel reset
420}
421
422void GBAAudioWriteSOUNDCNT_X(struct GBAAudio* audio, uint16_t value) {
423	audio->enable = GBARegisterSOUNDCNT_XGetEnable(value);
424}
425
426void GBAAudioWriteSOUNDBIAS(struct GBAAudio* audio, uint16_t value) {
427	audio->soundbias = value;
428}
429
430void GBAAudioWriteWaveRAM(struct GBAAudio* audio, int address, uint32_t value) {
431	audio->ch3.wavedata[address | (!audio->ch3.bank.bank * 4)] = value;
432}
433
434void GBAAudioWriteFIFO(struct GBAAudio* audio, int address, uint32_t value) {
435	struct CircleBuffer* fifo;
436	switch (address) {
437	case REG_FIFO_A_LO:
438		fifo = &audio->chA.fifo;
439		break;
440	case REG_FIFO_B_LO:
441		fifo = &audio->chB.fifo;
442		break;
443	default:
444		GBALog(audio->p, GBA_LOG_ERROR, "Bad FIFO write to address 0x%03x", address);
445		return;
446	}
447	int i;
448	for (i = 0; i < 4; ++i) {
449		while (!CircleBufferWrite8(fifo, value >> (8 * i))) {
450			int8_t dummy;
451			CircleBufferRead8(fifo, &dummy);
452		}
453	}
454}
455
456void GBAAudioSampleFIFO(struct GBAAudio* audio, int fifoId, int32_t cycles) {
457	struct GBAAudioFIFO* channel;
458	if (fifoId == 0) {
459		channel = &audio->chA;
460	} else if (fifoId == 1) {
461		channel = &audio->chB;
462	} else {
463		GBALog(audio->p, GBA_LOG_ERROR, "Bad FIFO write to address 0x%03x", fifoId);
464		return;
465	}
466	if (CircleBufferSize(&channel->fifo) <= 4 * sizeof(int32_t)) {
467		struct GBADMA* dma = &audio->p->memory.dma[channel->dmaSource];
468		dma->nextCount = 4;
469		dma->nextEvent = 0;
470		GBAMemoryUpdateDMAs(audio->p, -cycles);
471	}
472	CircleBufferRead8(&channel->fifo, &channel->sample);
473}
474
475unsigned GBAAudioCopy(struct GBAAudio* audio, void* left, void* right, unsigned nSamples) {
476	GBASyncLockAudio(audio->p->sync);
477	unsigned read = 0;
478	if (left) {
479		unsigned readL = CircleBufferRead(&audio->left, left, nSamples * sizeof(int32_t)) >> 2;
480		if (readL < nSamples) {
481			memset((int32_t*) left + readL, 0, nSamples - readL);
482		}
483		read = readL;
484	}
485	if (right) {
486		unsigned readR = CircleBufferRead(&audio->right, right, nSamples * sizeof(int32_t)) >> 2;
487		if (readR < nSamples) {
488			memset((int32_t*) right + readR, 0, nSamples - readR);
489		}
490		read = read >= readR ? read : readR;
491	}
492	GBASyncConsumeAudio(audio->p->sync);
493	return read;
494}
495
496unsigned GBAAudioResampleNN(struct GBAAudio* audio, float ratio, float* drift, struct GBAStereoSample* output, unsigned nSamples) {
497	int32_t left[GBA_AUDIO_SAMPLES];
498	int32_t right[GBA_AUDIO_SAMPLES];
499
500	// toRead is in GBA samples
501	// TODO: Do this with fixed-point math
502	unsigned toRead = ceilf(nSamples / ratio);
503	unsigned totalRead = 0;
504	while (nSamples) {
505		unsigned currentRead = GBA_AUDIO_SAMPLES;
506		if (currentRead > toRead) {
507			currentRead = toRead;
508		}
509		unsigned read = GBAAudioCopy(audio, left, right, currentRead);
510		toRead -= read;
511		unsigned i;
512		for (i = 0; i < read; ++i) {
513			*drift += ratio;
514			while (*drift >= 1.f) {
515				output->left = left[i];
516				output->right = right[i];
517				++output;
518				++totalRead;
519				--nSamples;
520				*drift -= 1.f;
521				if (!nSamples) {
522					return totalRead;
523				}
524			}
525		}
526		if (read < currentRead) {
527			memset(output, 0, nSamples * sizeof(struct GBAStereoSample));
528			break;
529		}
530	}
531	return totalRead;
532}
533
534bool _writeEnvelope(struct GBAAudioEnvelope* envelope, uint16_t value) {
535	envelope->length = GBAAudioRegisterEnvelopeGetLength(value);
536	envelope->duty = GBAAudioRegisterEnvelopeGetDuty(value);
537	envelope->stepTime = GBAAudioRegisterEnvelopeGetStepTime(value);
538	envelope->direction = GBAAudioRegisterEnvelopeGetDirection(value);
539	envelope->initialVolume = GBAAudioRegisterEnvelopeGetInitialVolume(value);
540	envelope->dead = 0;
541	if (envelope->stepTime) {
542		envelope->nextStep = 0;
543	} else {
544		envelope->nextStep = INT_MAX;
545		if (envelope->initialVolume == 0) {
546			envelope->dead = 1;
547			return false;
548		}
549	}
550	return true;
551}
552
553static int32_t _updateSquareChannel(struct GBAAudioSquareControl* control, int duty) {
554	control->hi = !control->hi;
555	int period = 16 * (2048 - control->frequency);
556	switch (duty) {
557	case 0:
558		return control->hi ? period : period * 7;
559	case 1:
560		return control->hi ? period * 2 : period * 6;
561	case 2:
562		return period * 4;
563	case 3:
564		return control->hi ? period * 6 : period * 2;
565	default:
566		// This should never be hit
567		return period * 4;
568	}
569}
570
571static void _updateEnvelope(struct GBAAudioEnvelope* envelope) {
572	if (envelope->direction) {
573		++envelope->currentVolume;
574	} else {
575		--envelope->currentVolume;
576	}
577	if (envelope->currentVolume >= 15) {
578		envelope->currentVolume = 15;
579		envelope->nextStep = INT_MAX;
580	} else if (envelope->currentVolume <= 0) {
581		envelope->currentVolume = 0;
582		envelope->dead = 1;
583		envelope->nextStep = INT_MAX;
584	} else {
585		envelope->nextStep += envelope->stepTime * (GBA_ARM7TDMI_FREQUENCY >> 6);
586	}
587}
588
589static bool _updateSweep(struct GBAAudioChannel1* ch) {
590	if (ch->sweep.direction) {
591		int frequency = ch->control.frequency;
592		frequency -= frequency >> ch->sweep.shift;
593		if (frequency >= 0) {
594			ch->control.frequency = frequency;
595		}
596	} else {
597		int frequency = ch->control.frequency;
598		frequency += frequency >> ch->sweep.shift;
599		if (frequency < 2048) {
600			ch->control.frequency = frequency;
601		} else {
602			return false;
603		}
604	}
605	ch->nextSweep += ch->sweep.time * SWEEP_CYCLES;
606	return true;
607}
608
609static int32_t _updateChannel1(struct GBAAudioChannel1* ch) {
610	int timing = _updateSquareChannel(&ch->control, ch->envelope.duty);
611	ch->sample = ch->control.hi * 0x10 - 0x8;
612	ch->sample *= ch->envelope.currentVolume;
613	return timing;
614}
615
616static int32_t _updateChannel2(struct GBAAudioChannel2* ch) {
617	int timing = _updateSquareChannel(&ch->control, ch->envelope.duty);
618	ch->sample = ch->control.hi * 0x10 - 0x8;
619	ch->sample *= ch->envelope.currentVolume;
620	return timing;
621}
622
623static int32_t _updateChannel3(struct GBAAudioChannel3* ch) {
624	int i;
625	int start;
626	int end;
627	int volume;
628	switch (ch->wave.volume) {
629	case 0:
630		volume = 0;
631		break;
632	case 1:
633		volume = 4;
634		break;
635	case 2:
636		volume = 2;
637		break;
638	case 3:
639		volume = 1;
640		break;
641	default:
642		volume = 3;
643		break;
644	}
645	if (ch->bank.size) {
646		start = 7;
647		end = 0;
648	} else if (ch->bank.bank) {
649		start = 7;
650		end = 4;
651	} else {
652		start = 3;
653		end = 0;
654	}
655	uint32_t bitsCarry = ch->wavedata[end] & 0x0F000000;
656	uint32_t bits;
657	for (i = start; i >= end; --i) {
658		bits = ch->wavedata[i] & 0x0F000000;
659		ch->wavedata[i] = ((ch->wavedata[i] & 0xF0F0F0F0) >> 4) | ((ch->wavedata[i] & 0x000F0F0F) << 12);
660		ch->wavedata[i] |= bitsCarry >> 20;
661		bitsCarry = bits;
662	}
663	ch->sample = bitsCarry >> 24;
664	ch->sample -= 8;
665	ch->sample *= volume * 4;
666	return 8 * (2048 - ch->control.rate);
667}
668
669static int32_t _updateChannel4(struct GBAAudioChannel4* ch) {
670	int lsb = ch->lfsr & 1;
671	ch->sample = lsb * 0x10 - 0x8;
672	ch->sample *= ch->envelope.currentVolume;
673	ch->lfsr >>= 1;
674	ch->lfsr ^= (lsb * 0x60) << (ch->control.power ? 0 : 8);
675	int timing = ch->control.ratio ? 2 * ch->control.ratio : 1;
676	timing <<= ch->control.frequency;
677	timing *= 32;
678	return timing;
679}
680
681static int _applyBias(struct GBAAudio* audio, int sample) {
682	sample += GBARegisterSOUNDBIASGetBias(audio->soundbias);
683	if (sample >= 0x400) {
684		sample = 0x3FF;
685	} else if (sample < 0) {
686		sample = 0;
687	}
688	return (sample - GBARegisterSOUNDBIASGetBias(audio->soundbias)) << 6;
689}
690
691static void _sample(struct GBAAudio* audio) {
692	int32_t sampleLeft = 0;
693	int32_t sampleRight = 0;
694	int psgShift = 6 - audio->volume;
695
696	if (audio->ch1Left) {
697		sampleLeft += audio->ch1.sample;
698	}
699
700	if (audio->ch1Right) {
701		sampleRight += audio->ch1.sample;
702	}
703
704	if (audio->ch2Left) {
705		sampleLeft += audio->ch2.sample;
706	}
707
708	if (audio->ch2Right) {
709		sampleRight += audio->ch2.sample;
710	}
711
712	if (audio->ch3Left) {
713		sampleLeft += audio->ch3.sample;
714	}
715
716	if (audio->ch3Right) {
717		sampleRight += audio->ch3.sample;
718	}
719
720	if (audio->ch4Left) {
721		sampleLeft += audio->ch4.sample;
722	}
723
724	if (audio->ch4Right) {
725		sampleRight += audio->ch4.sample;
726	}
727
728	sampleLeft = (sampleLeft * (1 + audio->volumeLeft)) >> psgShift;
729	sampleRight = (sampleRight * (1 + audio->volumeRight)) >> psgShift;
730
731	if (audio->chALeft) {
732		sampleLeft += (audio->chA.sample << 2) >> !audio->volumeChA;
733	}
734
735	if (audio->chARight) {
736		sampleRight += (audio->chA.sample << 2) >> !audio->volumeChA;
737	}
738
739	if (audio->chBLeft) {
740		sampleLeft += (audio->chB.sample << 2) >> !audio->volumeChB;
741	}
742
743	if (audio->chBRight) {
744		sampleRight += (audio->chB.sample << 2) >> !audio->volumeChB;
745	}
746
747	sampleLeft = _applyBias(audio, sampleLeft);
748	sampleRight = _applyBias(audio, sampleRight);
749
750	GBASyncLockAudio(audio->p->sync);
751	CircleBufferWrite32(&audio->left, sampleLeft);
752	CircleBufferWrite32(&audio->right, sampleRight);
753	unsigned produced = CircleBufferSize(&audio->left);
754	struct GBAThread* thread = GBAThreadGetContext();
755	if (thread && thread->stream) {
756		thread->stream->postAudioFrame(thread->stream, sampleLeft, sampleRight);
757	}
758	GBASyncProduceAudio(audio->p->sync, produced >= CircleBufferCapacity(&audio->left) / sizeof(int32_t) * 3);
759}
760
761void GBAAudioSerialize(const struct GBAAudio* audio, struct GBASerializedState* state) {
762	state->audio.ch1Volume = audio->ch1.envelope.currentVolume;
763	state->audio.ch1Dead = audio->ch1.envelope.dead;
764	state->audio.ch1Hi = audio->ch1.control.hi;
765	state->audio.ch1.envelopeNextStep = audio->ch1.envelope.nextStep;
766	state->audio.ch1.waveNextStep = audio->ch1.control.nextStep;
767	state->audio.ch1.sweepNextStep = audio->ch1.nextSweep;
768	state->audio.ch1.endTime = audio->ch1.control.endTime;
769	state->audio.ch1.nextEvent = audio->nextCh1;
770
771	state->audio.ch2Volume = audio->ch2.envelope.currentVolume;
772	state->audio.ch2Dead = audio->ch2.envelope.dead;
773	state->audio.ch2Hi = audio->ch2.control.hi;
774	state->audio.ch2.envelopeNextStep = audio->ch2.envelope.nextStep;
775	state->audio.ch2.waveNextStep = audio->ch2.control.nextStep;
776	state->audio.ch2.endTime = audio->ch2.control.endTime;
777	state->audio.ch2.nextEvent = audio->nextCh2;
778
779	memcpy(state->audio.ch3.wavebanks, audio->ch3.wavedata, sizeof(state->audio.ch3.wavebanks));
780	state->audio.ch3.endTime = audio->ch3.control.endTime;
781	state->audio.ch3.nextEvent = audio->nextCh3;
782
783	state->audio.ch4Volume = audio->ch4.envelope.currentVolume;
784	state->audio.ch4Dead = audio->ch4.envelope.dead;
785	state->audio.ch4.envelopeNextStep = audio->ch4.envelope.nextStep;
786	state->audio.ch4.lfsr = audio->ch4.lfsr;
787	state->audio.ch4.endTime = audio->ch4.control.endTime;
788	state->audio.ch4.nextEvent = audio->nextCh4;
789
790	CircleBufferDump(&audio->chA.fifo, state->audio.fifoA, sizeof(state->audio.fifoA));
791	CircleBufferDump(&audio->chB.fifo, state->audio.fifoB, sizeof(state->audio.fifoB));
792	state->audio.fifoSize = CircleBufferSize(&audio->chA.fifo);
793
794	state->audio.nextEvent = audio->nextEvent;
795	state->audio.eventDiff = audio->eventDiff;
796	state->audio.nextSample = audio->nextSample;
797}
798
799void GBAAudioDeserialize(struct GBAAudio* audio, const struct GBASerializedState* state) {
800	audio->ch1.envelope.currentVolume = state->audio.ch1Volume;
801	audio->ch1.envelope.dead = state->audio.ch1Dead;
802	audio->ch1.control.hi = state->audio.ch1Hi;
803	audio->ch1.envelope.nextStep = state->audio.ch1.envelopeNextStep;
804	audio->ch1.control.nextStep = state->audio.ch1.waveNextStep;
805	audio->ch1.nextSweep = state->audio.ch1.sweepNextStep;
806	audio->ch1.control.endTime = state->audio.ch1.endTime;
807	audio->nextCh1 = state->audio.ch1.nextEvent;
808
809	audio->ch2.envelope.currentVolume = state->audio.ch2Volume;
810	audio->ch2.envelope.dead = state->audio.ch2Dead;
811	audio->ch2.control.hi = state->audio.ch2Hi;
812	audio->ch2.envelope.nextStep = state->audio.ch2.envelopeNextStep;
813	audio->ch2.control.nextStep = state->audio.ch2.waveNextStep;
814	audio->ch2.control.endTime = state->audio.ch2.endTime;
815	audio->nextCh2 = state->audio.ch2.nextEvent;
816
817	memcpy(audio->ch3.wavedata, state->audio.ch3.wavebanks, sizeof(audio->ch3.wavedata));
818	audio->ch3.control.endTime = state->audio.ch3.endTime;
819	audio->nextCh3 = state->audio.ch3.nextEvent;
820
821	audio->ch4.envelope.currentVolume = state->audio.ch4Volume;
822	audio->ch4.envelope.dead = state->audio.ch4Dead;
823	audio->ch4.envelope.nextStep = state->audio.ch4.envelopeNextStep;
824	audio->ch4.lfsr = state->audio.ch4.lfsr;
825	audio->ch4.control.endTime = state->audio.ch4.endTime;
826	audio->nextCh4 = state->audio.ch4.nextEvent;
827
828	CircleBufferClear(&audio->chA.fifo);
829	CircleBufferClear(&audio->chB.fifo);
830	int i;
831	for (i = 0; i < state->audio.fifoSize; ++i) {
832		CircleBufferWrite8(&audio->chA.fifo, state->audio.fifoA[i]);
833		CircleBufferWrite8(&audio->chB.fifo, state->audio.fifoB[i]);
834	}
835
836	audio->nextEvent = state->audio.nextEvent;
837	audio->eventDiff = state->audio.eventDiff;
838	audio->nextSample = state->audio.nextSample;
839}
840
841float GBAAudioCalculateRatio(struct GBAAudio* audio, float desiredFPS, float desiredSampleRate) {
842	return desiredSampleRate * GBA_ARM7TDMI_FREQUENCY / (VIDEO_TOTAL_LENGTH * desiredFPS * audio->sampleRate);
843}