all repos — mgba @ 9e10c8f1c264642191de6082c0d8f1f7cef02540

mGBA Game Boy Advance Emulator

src/gb/audio.c (view raw)

  1/* Copyright (c) 2013-2016 Jeffrey Pfau
  2 *
  3 * This Source Code Form is subject to the terms of the Mozilla Public
  4 * License, v. 2.0. If a copy of the MPL was not distributed with this
  5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  6#include "audio.h"
  7
  8#include "core/interface.h"
  9#include "core/sync.h"
 10#include "gb/gb.h"
 11#include "gb/serialize.h"
 12#include "gb/io.h"
 13
 14#ifdef _3DS
 15#define blip_add_delta blip_add_delta_fast
 16#endif
 17
 18#define FRAME_CYCLES (DMG_LR35902_FREQUENCY >> 9)
 19
 20const uint32_t DMG_LR35902_FREQUENCY = 0x400000;
 21static const int CLOCKS_PER_BLIP_FRAME = 0x1000;
 22static const unsigned BLIP_BUFFER_SIZE = 0x4000;
 23const int GB_AUDIO_VOLUME_MAX = 0x100;
 24
 25static void _writeDuty(struct GBAudioEnvelope* envelope, uint8_t value);
 26static bool _writeSweep(struct GBAudioEnvelope* envelope, uint8_t value);
 27static int32_t _updateSquareChannel(struct GBAudioSquareControl* envelope, int duty);
 28static void _updateEnvelope(struct GBAudioEnvelope* envelope);
 29static bool _updateSweep(struct GBAudioChannel1* ch, bool initial);
 30static int32_t _updateChannel1(struct GBAudioChannel1* ch);
 31static int32_t _updateChannel2(struct GBAudioChannel2* ch);
 32static int32_t _updateChannel3(struct GBAudioChannel3* ch, enum GBAudioStyle style);
 33static int32_t _updateChannel4(struct GBAudioChannel4* ch);
 34static void _sample(struct GBAudio* audio, int32_t cycles);
 35static void _scheduleEvent(struct GBAudio* audio);
 36
 37void GBAudioInit(struct GBAudio* audio, size_t samples, uint8_t* nr52, enum GBAudioStyle style) {
 38	audio->samples = samples;
 39	audio->left = blip_new(BLIP_BUFFER_SIZE);
 40	audio->right = blip_new(BLIP_BUFFER_SIZE);
 41	audio->clockRate = DMG_LR35902_FREQUENCY;
 42	// Guess too large; we hang producing extra samples if we guess too low
 43	blip_set_rates(audio->left, DMG_LR35902_FREQUENCY, 96000);
 44	blip_set_rates(audio->right, DMG_LR35902_FREQUENCY, 96000);
 45	audio->forceDisableCh[0] = false;
 46	audio->forceDisableCh[1] = false;
 47	audio->forceDisableCh[2] = false;
 48	audio->forceDisableCh[3] = false;
 49	audio->masterVolume = GB_AUDIO_VOLUME_MAX;
 50	audio->nr52 = nr52;
 51	audio->style = style;
 52}
 53
 54void GBAudioDeinit(struct GBAudio* audio) {
 55	blip_delete(audio->left);
 56	blip_delete(audio->right);
 57}
 58
 59void GBAudioReset(struct GBAudio* audio) {
 60	audio->nextEvent = 0;
 61	audio->nextCh1 = 0;
 62	audio->nextCh2 = 0;
 63	audio->nextCh3 = 0;
 64	audio->fadeCh3 = 0;
 65	audio->nextCh4 = 0;
 66	audio->ch1 = (struct GBAudioChannel1) { .envelope = { .dead = 2 } };
 67	audio->ch2 = (struct GBAudioChannel2) { .envelope = { .dead = 2 } };
 68	audio->ch3 = (struct GBAudioChannel3) { .bank = 0 };
 69	audio->ch4 = (struct GBAudioChannel4) { .envelope = { .dead = 2 } };
 70	audio->eventDiff = 0;
 71	audio->nextFrame = 0;
 72	audio->frame = 0;
 73	audio->nextSample = 0;
 74	audio->sampleInterval = 128;
 75	audio->lastLeft = 0;
 76	audio->lastRight = 0;
 77	audio->clock = 0;
 78	audio->volumeRight = 0;
 79	audio->volumeLeft = 0;
 80	audio->ch1Right = false;
 81	audio->ch2Right = false;
 82	audio->ch3Right = false;
 83	audio->ch4Right = false;
 84	audio->ch1Left = false;
 85	audio->ch2Left = false;
 86	audio->ch3Left = false;
 87	audio->ch4Left = false;
 88	audio->playingCh1 = false;
 89	audio->playingCh2 = false;
 90	audio->playingCh3 = false;
 91	audio->playingCh4 = false;
 92}
 93
 94void GBAudioResizeBuffer(struct GBAudio* audio, size_t samples) {
 95	mCoreSyncLockAudio(audio->p->sync);
 96	audio->samples = samples;
 97	blip_clear(audio->left);
 98	blip_clear(audio->right);
 99	audio->clock = 0;
100	mCoreSyncConsumeAudio(audio->p->sync);
101}
102
103void GBAudioWriteNR10(struct GBAudio* audio, uint8_t value) {
104	audio->ch1.shift = GBAudioRegisterSquareSweepGetShift(value);
105	bool oldDirection = audio->ch1.direction;
106	audio->ch1.direction = GBAudioRegisterSquareSweepGetDirection(value);
107	if (audio->ch1.sweepOccurred && oldDirection && !audio->ch1.direction) {
108		audio->playingCh1 = false;
109		*audio->nr52 &= ~0x0001;
110	}
111	audio->ch1.sweepOccurred = false;
112	audio->ch1.time = GBAudioRegisterSquareSweepGetTime(value);
113	if (!audio->ch1.time) {
114		audio->ch1.time = 8;
115	}
116}
117
118void GBAudioWriteNR11(struct GBAudio* audio, uint8_t value) {
119	_writeDuty(&audio->ch1.envelope, value);
120	audio->ch1.control.length = 64 - audio->ch1.envelope.length;
121}
122
123void GBAudioWriteNR12(struct GBAudio* audio, uint8_t value) {
124	if (!_writeSweep(&audio->ch1.envelope, value)) {
125		audio->playingCh1 = false;
126		*audio->nr52 &= ~0x0001;
127	}
128}
129
130void GBAudioWriteNR13(struct GBAudio* audio, uint8_t value) {
131	audio->ch1.control.frequency &= 0x700;
132	audio->ch1.control.frequency |= GBAudioRegisterControlGetFrequency(value);
133}
134
135void GBAudioWriteNR14(struct GBAudio* audio, uint8_t value) {
136	audio->ch1.control.frequency &= 0xFF;
137	audio->ch1.control.frequency |= GBAudioRegisterControlGetFrequency(value << 8);
138	bool wasStop = audio->ch1.control.stop;
139	audio->ch1.control.stop = GBAudioRegisterControlGetStop(value << 8);
140	if (!wasStop && audio->ch1.control.stop && audio->ch1.control.length && !(audio->frame & 1)) {
141		--audio->ch1.control.length;
142		if (audio->ch1.control.length == 0) {
143			audio->playingCh1 = false;
144		}
145	}
146	if (GBAudioRegisterControlIsRestart(value << 8)) {
147		audio->playingCh1 = audio->ch1.envelope.initialVolume || audio->ch1.envelope.direction;
148		audio->ch1.envelope.currentVolume = audio->ch1.envelope.initialVolume;
149		if (audio->ch1.envelope.currentVolume > 0) {
150			audio->ch1.envelope.dead = audio->ch1.envelope.stepTime ? 0 : 1;
151		} else {
152			audio->ch1.envelope.dead = audio->ch1.envelope.stepTime ? 0 : 2;
153		}
154		if (audio->nextEvent == INT_MAX) {
155			audio->eventDiff = 0;
156		}
157		if (audio->playingCh1) {
158			audio->ch1.control.hi = !audio->ch1.control.hi;
159		}
160		audio->nextCh1 = audio->eventDiff;
161
162		audio->ch1.realFrequency = audio->ch1.control.frequency;
163		audio->ch1.sweepStep = audio->ch1.time;
164		audio->ch1.sweepEnable = (audio->ch1.sweepStep != 8) || audio->ch1.shift;
165		audio->ch1.sweepOccurred = false;
166		if (audio->playingCh1 && audio->ch1.shift) {
167			audio->playingCh1 = _updateSweep(&audio->ch1, true);
168		}
169		if (!audio->ch1.control.length) {
170			audio->ch1.control.length = 64;
171			if (audio->ch1.control.stop && !(audio->frame & 1)) {
172				--audio->ch1.control.length;
173			}
174		}
175		_scheduleEvent(audio);
176	}
177	*audio->nr52 &= ~0x0001;
178	*audio->nr52 |= audio->playingCh1;
179}
180
181void GBAudioWriteNR21(struct GBAudio* audio, uint8_t value) {
182	_writeDuty(&audio->ch2.envelope, value);
183	audio->ch2.control.length = 64 - audio->ch2.envelope.length;
184}
185
186void GBAudioWriteNR22(struct GBAudio* audio, uint8_t value) {
187	if (!_writeSweep(&audio->ch2.envelope, value)) {
188		audio->playingCh2 = false;
189		*audio->nr52 &= ~0x0002;
190	}
191}
192
193void GBAudioWriteNR23(struct GBAudio* audio, uint8_t value) {
194	audio->ch2.control.frequency &= 0x700;
195	audio->ch2.control.frequency |= GBAudioRegisterControlGetFrequency(value);
196}
197
198void GBAudioWriteNR24(struct GBAudio* audio, uint8_t value) {
199	audio->ch2.control.frequency &= 0xFF;
200	audio->ch2.control.frequency |= GBAudioRegisterControlGetFrequency(value << 8);
201	bool wasStop = audio->ch2.control.stop;
202	audio->ch2.control.stop = GBAudioRegisterControlGetStop(value << 8);
203	if (!wasStop && audio->ch2.control.stop && audio->ch2.control.length && !(audio->frame & 1)) {
204		--audio->ch2.control.length;
205		if (audio->ch2.control.length == 0) {
206			audio->playingCh2 = false;
207		}
208	}
209	if (GBAudioRegisterControlIsRestart(value << 8)) {
210		audio->playingCh2 = audio->ch2.envelope.initialVolume || audio->ch2.envelope.direction;
211		audio->ch2.envelope.currentVolume = audio->ch2.envelope.initialVolume;
212		if (audio->ch2.envelope.currentVolume > 0) {
213			audio->ch2.envelope.dead = audio->ch2.envelope.stepTime ? 0 : 1;
214		} else {
215			audio->ch2.envelope.dead = audio->ch2.envelope.stepTime ? 0 : 2;
216		}
217		if (audio->nextEvent == INT_MAX) {
218			audio->eventDiff = 0;
219		}
220		if (audio->playingCh2) {
221			audio->ch2.control.hi = !audio->ch2.control.hi;
222		}
223		audio->nextCh2 = audio->eventDiff;
224		if (!audio->ch2.control.length) {
225			audio->ch2.control.length = 64;
226			if (audio->ch2.control.stop && !(audio->frame & 1)) {
227				--audio->ch2.control.length;
228			}
229		}
230		_scheduleEvent(audio);
231	}
232	*audio->nr52 &= ~0x0002;
233	*audio->nr52 |= audio->playingCh2 << 1;
234}
235
236void GBAudioWriteNR30(struct GBAudio* audio, uint8_t value) {
237	audio->ch3.enable = GBAudioRegisterBankGetEnable(value);
238	if (!audio->ch3.enable) {
239		audio->playingCh3 = false;
240		*audio->nr52 &= ~0x0004;
241	}
242}
243
244void GBAudioWriteNR31(struct GBAudio* audio, uint8_t value) {
245	audio->ch3.length = 256 - value;
246}
247
248void GBAudioWriteNR32(struct GBAudio* audio, uint8_t value) {
249	audio->ch3.volume = GBAudioRegisterBankVolumeGetVolumeGB(value);
250}
251
252void GBAudioWriteNR33(struct GBAudio* audio, uint8_t value) {
253	audio->ch3.rate &= 0x700;
254	audio->ch3.rate |= GBAudioRegisterControlGetRate(value);
255}
256
257void GBAudioWriteNR34(struct GBAudio* audio, uint8_t value) {
258	audio->ch3.rate &= 0xFF;
259	audio->ch3.rate |= GBAudioRegisterControlGetRate(value << 8);
260	bool wasStop = audio->ch3.stop;
261	audio->ch3.stop = GBAudioRegisterControlGetStop(value << 8);
262	if (!wasStop && audio->ch3.stop && audio->ch3.length && !(audio->frame & 1)) {
263		--audio->ch3.length;
264		if (audio->ch3.length == 0) {
265			audio->playingCh3 = false;
266		}
267	}
268	bool wasEnable = audio->playingCh3;
269	if (GBAudioRegisterControlIsRestart(value << 8)) {
270		audio->playingCh3 = audio->ch3.enable;
271		if (!audio->ch3.length) {
272			audio->ch3.length = 256;
273			if (audio->ch3.stop && !(audio->frame & 1)) {
274				--audio->ch3.length;
275			}
276		}
277
278		if (audio->style == GB_AUDIO_DMG && wasEnable && audio->playingCh3 && audio->ch3.readable) {
279			if (audio->ch3.window < 8) {
280				audio->ch3.wavedata8[0] = audio->ch3.wavedata8[audio->ch3.window >> 1];
281			} else {
282				audio->ch3.wavedata8[0] = audio->ch3.wavedata8[((audio->ch3.window >> 1) & ~3)];
283				audio->ch3.wavedata8[1] = audio->ch3.wavedata8[((audio->ch3.window >> 1) & ~3) + 1];
284				audio->ch3.wavedata8[2] = audio->ch3.wavedata8[((audio->ch3.window >> 1) & ~3) + 2];
285				audio->ch3.wavedata8[3] = audio->ch3.wavedata8[((audio->ch3.window >> 1) & ~3) + 3];
286			}
287		}
288		audio->ch3.window = 0;
289	}
290	if (audio->playingCh3) {
291		if (audio->nextEvent == INT_MAX) {
292			audio->eventDiff = 0;
293		}
294		audio->ch3.readable = audio->style != GB_AUDIO_DMG;
295		_scheduleEvent(audio);
296		// TODO: Where does this cycle delay come from?
297		audio->nextCh3 = audio->eventDiff + audio->nextEvent + 4 + 2 * (2048 - audio->ch3.rate);
298	}
299	*audio->nr52 &= ~0x0004;
300	*audio->nr52 |= audio->playingCh3 << 2;
301}
302
303void GBAudioWriteNR41(struct GBAudio* audio, uint8_t value) {
304	_writeDuty(&audio->ch4.envelope, value);
305	audio->ch4.length = 64 - audio->ch4.envelope.length;
306}
307
308void GBAudioWriteNR42(struct GBAudio* audio, uint8_t value) {
309	if (!_writeSweep(&audio->ch4.envelope, value)) {
310		audio->playingCh4 = false;
311		*audio->nr52 &= ~0x0008;
312	}
313}
314
315void GBAudioWriteNR43(struct GBAudio* audio, uint8_t value) {
316	audio->ch4.ratio = GBAudioRegisterNoiseFeedbackGetRatio(value);
317	audio->ch4.frequency = GBAudioRegisterNoiseFeedbackGetFrequency(value);
318	audio->ch4.power = GBAudioRegisterNoiseFeedbackGetPower(value);
319}
320
321void GBAudioWriteNR44(struct GBAudio* audio, uint8_t value) {
322	bool wasStop = audio->ch4.stop;
323	audio->ch4.stop = GBAudioRegisterNoiseControlGetStop(value);
324	if (!wasStop && audio->ch4.stop && audio->ch4.length && !(audio->frame & 1)) {
325		--audio->ch4.length;
326		if (audio->ch4.length == 0) {
327			audio->playingCh4 = false;
328		}
329	}
330	if (GBAudioRegisterNoiseControlIsRestart(value)) {
331		audio->playingCh4 = audio->ch4.envelope.initialVolume || audio->ch4.envelope.direction;
332		audio->ch4.envelope.currentVolume = audio->ch4.envelope.initialVolume;
333		if (audio->ch4.envelope.currentVolume > 0) {
334			audio->ch4.envelope.dead = audio->ch4.envelope.stepTime ? 0 : 1;
335		} else {
336			audio->ch4.envelope.dead = audio->ch4.envelope.stepTime ? 0 : 2;
337		}
338		if (audio->ch4.power) {
339			audio->ch4.lfsr = 0x40;
340		} else {
341			audio->ch4.lfsr = 0x4000;
342		}
343		if (audio->nextEvent == INT_MAX) {
344			audio->eventDiff = 0;
345		}
346		audio->nextCh4 = audio->eventDiff;
347		if (!audio->ch4.length) {
348			audio->ch4.length = 64;
349			if (audio->ch4.stop && !(audio->frame & 1)) {
350				--audio->ch4.length;
351			}
352		}
353		_scheduleEvent(audio);
354	}
355	*audio->nr52 &= ~0x0008;
356	*audio->nr52 |= audio->playingCh4 << 3;
357}
358
359void GBAudioWriteNR50(struct GBAudio* audio, uint8_t value) {
360	audio->volumeRight = GBRegisterNR50GetVolumeRight(value);
361	audio->volumeLeft = GBRegisterNR50GetVolumeLeft(value);
362}
363
364void GBAudioWriteNR51(struct GBAudio* audio, uint8_t value) {
365	audio->ch1Right = GBRegisterNR51GetCh1Right(value);
366	audio->ch2Right = GBRegisterNR51GetCh2Right(value);
367	audio->ch3Right = GBRegisterNR51GetCh3Right(value);
368	audio->ch4Right = GBRegisterNR51GetCh4Right(value);
369	audio->ch1Left = GBRegisterNR51GetCh1Left(value);
370	audio->ch2Left = GBRegisterNR51GetCh2Left(value);
371	audio->ch3Left = GBRegisterNR51GetCh3Left(value);
372	audio->ch4Left = GBRegisterNR51GetCh4Left(value);
373}
374
375void GBAudioWriteNR52(struct GBAudio* audio, uint8_t value) {
376	bool wasEnable = audio->enable;
377	audio->enable = GBAudioEnableGetEnable(value);
378	if (!audio->enable) {
379		audio->playingCh1 = 0;
380		audio->playingCh2 = 0;
381		audio->playingCh3 = 0;
382		audio->playingCh4 = 0;
383		GBAudioWriteNR10(audio, 0);
384		GBAudioWriteNR12(audio, 0);
385		GBAudioWriteNR13(audio, 0);
386		GBAudioWriteNR14(audio, 0);
387		GBAudioWriteNR22(audio, 0);
388		GBAudioWriteNR23(audio, 0);
389		GBAudioWriteNR24(audio, 0);
390		GBAudioWriteNR30(audio, 0);
391		GBAudioWriteNR32(audio, 0);
392		GBAudioWriteNR33(audio, 0);
393		GBAudioWriteNR34(audio, 0);
394		GBAudioWriteNR42(audio, 0);
395		GBAudioWriteNR43(audio, 0);
396		GBAudioWriteNR44(audio, 0);
397		GBAudioWriteNR50(audio, 0);
398		GBAudioWriteNR51(audio, 0);
399		if (audio->style != GB_AUDIO_DMG) {
400			GBAudioWriteNR11(audio, 0);
401			GBAudioWriteNR21(audio, 0);
402			GBAudioWriteNR31(audio, 0);
403			GBAudioWriteNR41(audio, 0);
404		}
405
406		if (audio->p) {
407			audio->p->memory.io[REG_NR10] = 0;
408			audio->p->memory.io[REG_NR11] = 0;
409			audio->p->memory.io[REG_NR12] = 0;
410			audio->p->memory.io[REG_NR13] = 0;
411			audio->p->memory.io[REG_NR14] = 0;
412			audio->p->memory.io[REG_NR21] = 0;
413			audio->p->memory.io[REG_NR22] = 0;
414			audio->p->memory.io[REG_NR23] = 0;
415			audio->p->memory.io[REG_NR24] = 0;
416			audio->p->memory.io[REG_NR30] = 0;
417			audio->p->memory.io[REG_NR31] = 0;
418			audio->p->memory.io[REG_NR32] = 0;
419			audio->p->memory.io[REG_NR33] = 0;
420			audio->p->memory.io[REG_NR34] = 0;
421			audio->p->memory.io[REG_NR42] = 0;
422			audio->p->memory.io[REG_NR43] = 0;
423			audio->p->memory.io[REG_NR44] = 0;
424			audio->p->memory.io[REG_NR50] = 0;
425			audio->p->memory.io[REG_NR51] = 0;
426			if (audio->style != GB_AUDIO_DMG) {
427				audio->p->memory.io[REG_NR11] = 0;
428				audio->p->memory.io[REG_NR21] = 0;
429				audio->p->memory.io[REG_NR31] = 0;
430				audio->p->memory.io[REG_NR41] = 0;
431			}
432		}
433		*audio->nr52 &= ~0x000F;
434	} else if (!wasEnable) {
435		audio->frame = 7;
436	}
437}
438
439int32_t GBAudioProcessEvents(struct GBAudio* audio, int32_t cycles) {
440	if (audio->nextEvent == INT_MAX) {
441		return INT_MAX;
442	}
443	audio->nextEvent -= cycles;
444	audio->eventDiff += cycles;
445	while (audio->nextEvent <= 0) {
446		audio->nextEvent = INT_MAX;
447		if (audio->enable) {
448			audio->nextFrame -= audio->eventDiff;
449			int frame = -1;
450			if (audio->nextFrame <= 0) {
451				frame = (audio->frame + 1) & 7;
452				audio->frame = frame;
453				audio->nextFrame += FRAME_CYCLES;
454				if (audio->nextFrame < audio->nextEvent) {
455					audio->nextEvent = audio->nextFrame;
456				}
457			}
458
459			if (audio->playingCh1) {
460				audio->nextCh1 -= audio->eventDiff;
461				if (!audio->ch1.envelope.dead && frame == 7) {
462					--audio->ch1.envelope.nextStep;
463					if (audio->ch1.envelope.nextStep == 0) {
464						int8_t sample = audio->ch1.control.hi * 0x10 - 0x8;
465						_updateEnvelope(&audio->ch1.envelope);
466						audio->ch1.sample = sample * audio->ch1.envelope.currentVolume;
467					}
468				}
469
470				if (audio->ch1.sweepEnable && (frame & 3) == 2) {
471					--audio->ch1.sweepStep;
472					if (audio->ch1.sweepStep == 0) {
473						audio->playingCh1 = _updateSweep(&audio->ch1, false);
474					}
475				}
476
477				if (audio->ch1.envelope.dead != 2) {
478					if (audio->nextCh1 <= 0) {
479						audio->nextCh1 += _updateChannel1(&audio->ch1);
480					}
481					if (audio->nextCh1 < audio->nextEvent) {
482						audio->nextEvent = audio->nextCh1;
483					}
484				}
485			}
486
487			if (audio->ch1.control.length && audio->ch1.control.stop && !(frame & 1)) {
488				--audio->ch1.control.length;
489				if (audio->ch1.control.length == 0) {
490					audio->playingCh1 = 0;
491				}
492			}
493
494			if (audio->playingCh2) {
495				audio->nextCh2 -= audio->eventDiff;
496				if (!audio->ch2.envelope.dead && frame == 7) {
497					--audio->ch2.envelope.nextStep;
498					if (audio->ch2.envelope.nextStep == 0) {
499						int8_t sample = audio->ch2.control.hi * 0x10 - 0x8;
500						_updateEnvelope(&audio->ch2.envelope);
501						audio->ch2.sample = sample * audio->ch2.envelope.currentVolume;
502					}
503				}
504
505				if (audio->ch2.envelope.dead != 2) {
506					if (audio->nextCh2 <= 0) {
507						audio->nextCh2 += _updateChannel2(&audio->ch2);
508					}
509					if (audio->nextCh2 < audio->nextEvent) {
510						audio->nextEvent = audio->nextCh2;
511					}
512				}
513			}
514
515			if (audio->ch2.control.length && audio->ch2.control.stop && !(frame & 1)) {
516				--audio->ch2.control.length;
517				if (audio->ch2.control.length == 0) {
518					audio->playingCh2 = 0;
519				}
520			}
521
522			if (audio->playingCh3) {
523				audio->nextCh3 -= audio->eventDiff;
524				audio->fadeCh3 -= audio->eventDiff;
525				if (audio->fadeCh3 <= 0) {
526					audio->ch3.readable = false;
527					audio->fadeCh3 = INT_MAX;
528				}
529				if (audio->nextCh3 <= 0) {
530					if (audio->style == GB_AUDIO_DMG) {
531						audio->fadeCh3 = audio->nextCh3 + 2;
532					}
533					audio->nextCh3 += _updateChannel3(&audio->ch3, audio->style);
534					audio->ch3.readable = true;
535				}
536				if (audio->fadeCh3 < audio->nextEvent) {
537					audio->nextEvent = audio->fadeCh3;
538				}
539				if (audio->nextCh3 < audio->nextEvent) {
540					audio->nextEvent = audio->nextCh3;
541				}
542			}
543
544			if (audio->ch3.length && audio->ch3.stop && !(frame & 1)) {
545				--audio->ch3.length;
546				if (audio->ch3.length == 0) {
547					audio->playingCh3 = 0;
548				}
549			}
550
551			if (audio->playingCh4) {
552				audio->nextCh4 -= audio->eventDiff;
553				if (!audio->ch4.envelope.dead && frame == 7) {
554					--audio->ch4.envelope.nextStep;
555					if (audio->ch4.envelope.nextStep == 0) {
556						int8_t sample = (audio->ch4.sample >> 31) * 0x8;
557						_updateEnvelope(&audio->ch4.envelope);
558						audio->ch4.sample = sample * audio->ch4.envelope.currentVolume;
559					}
560				}
561			}
562
563			if (audio->ch4.length && audio->ch4.stop && !(frame & 1)) {
564				--audio->ch4.length;
565				if (audio->ch4.length == 0) {
566					audio->playingCh4 = 0;
567				}
568			}
569		}
570
571		*audio->nr52 &= ~0x000F;
572		*audio->nr52 |= audio->playingCh1;
573		*audio->nr52 |= audio->playingCh2 << 1;
574		*audio->nr52 |= audio->playingCh3 << 2;
575		*audio->nr52 |= audio->playingCh4 << 3;
576
577		if (audio->p) {
578			audio->nextSample -= audio->eventDiff;
579			if (audio->nextSample <= 0) {
580				_sample(audio, audio->sampleInterval);
581				audio->nextSample += audio->sampleInterval;
582			}
583
584			if (audio->nextSample < audio->nextEvent) {
585				audio->nextEvent = audio->nextSample;
586			}
587		}
588		audio->eventDiff = 0;
589	}
590	return audio->nextEvent;
591}
592
593void GBAudioSamplePSG(struct GBAudio* audio, int16_t* left, int16_t* right) {
594	int sampleLeft = 0;
595	int sampleRight = 0;
596
597	if (audio->ch4.envelope.dead != 2) {
598		while (audio->nextCh4 <= 0) {
599			audio->nextCh4 += _updateChannel4(&audio->ch4);
600		}
601		if (audio->nextCh4 < audio->nextEvent) {
602			audio->nextEvent = audio->nextCh4;
603		}
604	}
605
606	if (audio->playingCh1 && !audio->forceDisableCh[0]) {
607		if (audio->ch1Left) {
608			sampleLeft += audio->ch1.sample;
609		}
610
611		if (audio->ch1Right) {
612			sampleRight += audio->ch1.sample;
613		}
614	}
615
616	if (audio->playingCh2 && !audio->forceDisableCh[1]) {
617		if (audio->ch2Left) {
618			sampleLeft += audio->ch2.sample;
619		}
620
621		if (audio->ch2Right) {
622			sampleRight += audio->ch2.sample;
623		}
624	}
625
626	if (audio->playingCh3 && !audio->forceDisableCh[2]) {
627		if (audio->ch3Left) {
628			sampleLeft += audio->ch3.sample;
629		}
630
631		if (audio->ch3Right) {
632			sampleRight += audio->ch3.sample;
633		}
634	}
635
636	if (audio->playingCh4 && !audio->forceDisableCh[3]) {
637		if (audio->ch4Left) {
638			sampleLeft += audio->ch4.sample;
639		}
640
641		if (audio->ch4Right) {
642			sampleRight += audio->ch4.sample;
643		}
644	}
645
646	*left = sampleLeft * (1 + audio->volumeLeft);
647	*right = sampleRight * (1 + audio->volumeRight);
648}
649
650void _sample(struct GBAudio* audio, int32_t cycles) {
651	int16_t sampleLeft = 0;
652	int16_t sampleRight = 0;
653	GBAudioSamplePSG(audio, &sampleLeft, &sampleRight);
654	sampleLeft = (sampleLeft * audio->masterVolume) >> 6;
655	sampleRight = (sampleRight * audio->masterVolume) >> 6;
656
657	mCoreSyncLockAudio(audio->p->sync);
658	unsigned produced;
659	if ((size_t) blip_samples_avail(audio->left) < audio->samples) {
660		blip_add_delta(audio->left, audio->clock, sampleLeft - audio->lastLeft);
661		blip_add_delta(audio->right, audio->clock, sampleRight - audio->lastRight);
662		audio->lastLeft = sampleLeft;
663		audio->lastRight = sampleRight;
664		audio->clock += cycles;
665		if (audio->clock >= CLOCKS_PER_BLIP_FRAME) {
666			blip_end_frame(audio->left, audio->clock);
667			blip_end_frame(audio->right, audio->clock);
668			audio->clock -= CLOCKS_PER_BLIP_FRAME;
669		}
670	}
671	produced = blip_samples_avail(audio->left);
672	if (audio->p->stream && audio->p->stream->postAudioFrame) {
673		audio->p->stream->postAudioFrame(audio->p->stream, sampleLeft, sampleRight);
674	}
675	bool wait = produced >= audio->samples;
676	mCoreSyncProduceAudio(audio->p->sync, wait);
677
678	if (wait && audio->p->stream && audio->p->stream->postAudioBuffer) {
679		audio->p->stream->postAudioBuffer(audio->p->stream, audio->left, audio->right);
680	}
681}
682
683void _writeDuty(struct GBAudioEnvelope* envelope, uint8_t value) {
684	envelope->length = GBAudioRegisterDutyGetLength(value);
685	envelope->duty = GBAudioRegisterDutyGetDuty(value);
686}
687
688bool _writeSweep(struct GBAudioEnvelope* envelope, uint8_t value) {
689	envelope->stepTime = GBAudioRegisterSweepGetStepTime(value);
690	envelope->direction = GBAudioRegisterSweepGetDirection(value);
691	envelope->initialVolume = GBAudioRegisterSweepGetInitialVolume(value);
692	if (envelope->stepTime == 0) {
693		envelope->dead = envelope->currentVolume ? 1 : 2;
694	} else if (!envelope->direction && !envelope->currentVolume) {
695		envelope->dead = 2;
696	} else if (envelope->direction && envelope->currentVolume == 0xF) {
697		envelope->dead = 1;
698	} else {
699		envelope->dead = 0;
700	}
701	envelope->nextStep = envelope->stepTime;
702	return envelope->initialVolume || envelope->direction;
703}
704
705static int32_t _updateSquareChannel(struct GBAudioSquareControl* control, int duty) {
706	control->hi = !control->hi;
707	int period = 4 * (2048 - control->frequency);
708	switch (duty) {
709	case 0:
710		return control->hi ? period : period * 7;
711	case 1:
712		return control->hi ? period * 2 : period * 6;
713	case 2:
714		return period * 4;
715	case 3:
716		return control->hi ? period * 6 : period * 2;
717	default:
718		// This should never be hit
719		return period * 4;
720	}
721}
722
723static void _updateEnvelope(struct GBAudioEnvelope* envelope) {
724	if (envelope->direction) {
725		++envelope->currentVolume;
726	} else {
727		--envelope->currentVolume;
728	}
729	if (envelope->currentVolume >= 15) {
730		envelope->currentVolume = 15;
731		envelope->dead = 1;
732	} else if (envelope->currentVolume <= 0) {
733		envelope->currentVolume = 0;
734		envelope->dead = 2;
735	} else {
736		envelope->nextStep = envelope->stepTime;
737	}
738}
739
740static bool _updateSweep(struct GBAudioChannel1* ch, bool initial) {
741	if (initial || ch->time != 8) {
742		int frequency = ch->realFrequency;
743		if (ch->direction) {
744			frequency -= frequency >> ch->shift;
745			if (!initial && frequency >= 0) {
746				ch->control.frequency = frequency;
747				ch->realFrequency = frequency;
748			}
749		} else {
750			frequency += frequency >> ch->shift;
751			if (frequency < 2048) {
752				if (!initial && ch->shift) {
753					ch->control.frequency = frequency;
754					ch->realFrequency = frequency;
755					if (!_updateSweep(ch, true)) {
756						return false;
757					}
758				}
759			} else {
760				return false;
761			}
762		}
763		ch->sweepOccurred = true;
764	}
765	ch->sweepStep = ch->time;
766	return true;
767}
768
769static int32_t _updateChannel1(struct GBAudioChannel1* ch) {
770	int timing = _updateSquareChannel(&ch->control, ch->envelope.duty);
771	ch->sample = ch->control.hi * 0x10 - 0x8;
772	ch->sample *= ch->envelope.currentVolume;
773	return timing;
774}
775
776static int32_t _updateChannel2(struct GBAudioChannel2* ch) {
777	int timing = _updateSquareChannel(&ch->control, ch->envelope.duty);
778	ch->sample = ch->control.hi * 0x10 - 0x8;
779	ch->sample *= ch->envelope.currentVolume;
780	return timing;
781}
782
783static int32_t _updateChannel3(struct GBAudioChannel3* ch, enum GBAudioStyle style) {
784	int i;
785	int volume;
786	switch (ch->volume) {
787	case 0:
788		volume = 0;
789		break;
790	case 1:
791		volume = 4;
792		break;
793	case 2:
794		volume = 2;
795		break;
796	case 3:
797		volume = 1;
798		break;
799	default:
800		volume = 3;
801		break;
802	}
803	switch (style) {
804		int start;
805		int end;
806	case GB_AUDIO_DMG:
807	default:
808		++ch->window;
809		ch->window &= 0x1F;
810		ch->sample = ch->wavedata8[ch->window >> 1];
811		if (!(ch->window & 1)) {
812			ch->sample >>= 4;
813		}
814		ch->sample &= 0xF;
815		break;
816	case GB_AUDIO_GBA:
817		if (ch->size) {
818			start = 7;
819			end = 0;
820		} else if (ch->bank) {
821			start = 7;
822			end = 4;
823		} else {
824			start = 3;
825			end = 0;
826		}
827		uint32_t bitsCarry = ch->wavedata32[end] & 0x000000F0;
828		uint32_t bits;
829		for (i = start; i >= end; --i) {
830			bits = ch->wavedata32[i] & 0x000000F0;
831			ch->wavedata32[i] = ((ch->wavedata32[i] & 0x0F0F0F0F) << 4) | ((ch->wavedata32[i] & 0xF0F0F000) >> 12);
832			ch->wavedata32[i] |= bitsCarry << 20;
833			bitsCarry = bits;
834		}
835		ch->sample = bitsCarry >> 4;
836		break;
837	}
838	ch->sample -= 8;
839	ch->sample *= volume * 4;
840	return 2 * (2048 - ch->rate);
841}
842
843static int32_t _updateChannel4(struct GBAudioChannel4* ch) {
844	int lsb = ch->lfsr & 1;
845	ch->sample = lsb * 0x10 - 0x8;
846	ch->sample *= ch->envelope.currentVolume;
847	ch->lfsr >>= 1;
848	ch->lfsr ^= (lsb * 0x60) << (ch->power ? 0 : 8);
849	int timing = ch->ratio ? 2 * ch->ratio : 1;
850	timing <<= ch->frequency;
851	timing *= 8;
852	return timing;
853}
854
855void _scheduleEvent(struct GBAudio* audio) {
856	// TODO: Don't need p
857	if (audio->p) {
858		audio->nextEvent = audio->p->cpu->cycles >> audio->p->doubleSpeed;
859		audio->p->cpu->nextEvent = audio->p->cpu->cycles;
860	} else {
861		audio->nextEvent = 0;
862	}
863}
864
865void GBAudioPSGSerialize(const struct GBAudio* audio, struct GBSerializedPSGState* state, uint32_t* flagsOut) {
866	uint32_t flags = 0;
867	uint32_t ch1Flags = 0;
868	uint32_t ch2Flags = 0;
869	uint32_t ch4Flags = 0;
870
871	flags = GBSerializedAudioFlagsSetFrame(flags, audio->frame);
872
873	flags = GBSerializedAudioFlagsSetCh1Volume(flags, audio->ch1.envelope.currentVolume);
874	flags = GBSerializedAudioFlagsSetCh1Dead(flags, audio->ch1.envelope.dead);
875	flags = GBSerializedAudioFlagsSetCh1Hi(flags, audio->ch1.control.hi);
876	flags = GBSerializedAudioFlagsSetCh1SweepEnabled(flags, audio->ch1.sweepEnable);
877	flags = GBSerializedAudioFlagsSetCh1SweepOccurred(flags, audio->ch1.sweepOccurred);
878	ch1Flags = GBSerializedAudioEnvelopeSetLength(ch1Flags, audio->ch1.control.length);
879	ch1Flags = GBSerializedAudioEnvelopeSetNextStep(ch1Flags, audio->ch1.envelope.nextStep);
880	ch1Flags = GBSerializedAudioEnvelopeSetFrequency(ch1Flags, audio->ch1.realFrequency);
881	STORE_32LE(ch1Flags, 0, &state->ch1.envelope);
882	STORE_32LE(audio->nextFrame, 0, &state->ch1.nextFrame);
883	STORE_32LE(audio->nextCh1, 0, &state->ch1.nextEvent);
884
885	flags = GBSerializedAudioFlagsSetCh2Volume(flags, audio->ch2.envelope.currentVolume);
886	flags = GBSerializedAudioFlagsSetCh2Dead(flags, audio->ch2.envelope.dead);
887	flags = GBSerializedAudioFlagsSetCh2Hi(flags, audio->ch2.control.hi);
888	ch2Flags = GBSerializedAudioEnvelopeSetLength(ch2Flags, audio->ch2.control.length);
889	ch2Flags = GBSerializedAudioEnvelopeSetNextStep(ch2Flags, audio->ch2.envelope.nextStep);
890	STORE_32LE(ch2Flags, 0, &state->ch2.envelope);
891	STORE_32LE(audio->nextCh2, 0, &state->ch2.nextEvent);
892
893	memcpy(state->ch3.wavebanks, audio->ch3.wavedata32, sizeof(state->ch3.wavebanks));
894	STORE_16LE(audio->ch3.length, 0, &state->ch3.length);
895	STORE_32LE(audio->nextCh3, 0, &state->ch3.nextEvent);
896
897	flags = GBSerializedAudioFlagsSetCh4Volume(flags, audio->ch4.envelope.currentVolume);
898	flags = GBSerializedAudioFlagsSetCh4Dead(flags, audio->ch4.envelope.dead);
899	STORE_32LE(audio->ch4.lfsr, 0, &state->ch4.lfsr);
900	ch4Flags = GBSerializedAudioEnvelopeSetLength(ch4Flags, audio->ch4.length);
901	ch4Flags = GBSerializedAudioEnvelopeSetNextStep(ch4Flags, audio->ch4.envelope.nextStep);
902	STORE_32LE(ch4Flags, 0, &state->ch4.envelope);
903	STORE_32LE(audio->nextCh4, 0, &state->ch4.nextEvent);
904
905	STORE_32LE(flags, 0, flagsOut);
906}
907
908void GBAudioPSGDeserialize(struct GBAudio* audio, const struct GBSerializedPSGState* state, const uint32_t* flagsIn) {
909	uint32_t flags;
910	uint32_t ch1Flags = 0;
911	uint32_t ch2Flags = 0;
912	uint32_t ch4Flags = 0;
913
914	LOAD_32LE(flags, 0, flagsIn);
915	LOAD_32LE(ch1Flags, 0, &state->ch1.envelope);
916	audio->ch1.envelope.currentVolume = GBSerializedAudioFlagsGetCh1Volume(flags);
917	audio->ch1.envelope.dead = GBSerializedAudioFlagsGetCh1Dead(flags);
918	audio->ch1.control.hi = GBSerializedAudioFlagsGetCh1Hi(flags);
919	audio->ch1.sweepEnable = GBSerializedAudioFlagsGetCh1SweepEnabled(flags);
920	audio->ch1.sweepOccurred = GBSerializedAudioFlagsGetCh1SweepOccurred(flags);
921	audio->ch1.control.length = GBSerializedAudioEnvelopeGetLength(ch1Flags);
922	audio->ch1.envelope.nextStep = GBSerializedAudioEnvelopeGetNextStep(ch1Flags);
923	audio->ch1.realFrequency = GBSerializedAudioEnvelopeGetFrequency(ch1Flags);
924	LOAD_32LE(audio->nextFrame, 0, &state->ch1.nextFrame);
925	LOAD_32LE(audio->nextCh1, 0, &state->ch1.nextEvent);
926
927	LOAD_32LE(ch2Flags, 0, &state->ch1.envelope);
928	audio->ch2.envelope.currentVolume = GBSerializedAudioFlagsGetCh2Volume(flags);
929	audio->ch2.envelope.dead = GBSerializedAudioFlagsGetCh2Dead(flags);
930	audio->ch2.control.hi = GBSerializedAudioFlagsGetCh2Hi(flags);
931	audio->ch2.control.length = GBSerializedAudioEnvelopeGetLength(ch2Flags);
932	audio->ch2.envelope.nextStep = GBSerializedAudioEnvelopeGetNextStep(ch2Flags);
933	LOAD_32LE(audio->nextCh2, 0, &state->ch2.nextEvent);
934
935	// TODO: Big endian?
936	memcpy(audio->ch3.wavedata32, state->ch3.wavebanks, sizeof(audio->ch3.wavedata32));
937	LOAD_16LE(audio->ch3.length, 0, &state->ch3.length);
938	LOAD_32LE(audio->nextCh3, 0, &state->ch3.nextEvent);
939
940	LOAD_32LE(ch4Flags, 0, &state->ch1.envelope);
941	audio->ch4.envelope.currentVolume = GBSerializedAudioFlagsGetCh4Volume(flags);
942	audio->ch4.envelope.dead = GBSerializedAudioFlagsGetCh4Dead(flags);
943	audio->ch4.length = GBSerializedAudioEnvelopeGetLength(ch4Flags);
944	audio->ch4.envelope.nextStep = GBSerializedAudioEnvelopeGetNextStep(ch4Flags);
945	LOAD_32LE(audio->ch4.lfsr, 0, &state->ch4.lfsr);
946	LOAD_32LE(audio->nextCh4, 0, &state->ch4.nextEvent);
947}
948
949void GBAudioSerialize(const struct GBAudio* audio, struct GBSerializedState* state) {
950	GBAudioPSGSerialize(audio, &state->audio.psg, &state->audio.flags);
951
952	STORE_32LE(audio->nextEvent, 0, &state->audio.nextEvent);
953	STORE_32LE(audio->eventDiff, 0, &state->audio.eventDiff);
954	STORE_32LE(audio->nextSample, 0, &state->audio.nextSample);
955}
956
957void GBAudioDeserialize(struct GBAudio* audio, const struct GBSerializedState* state) {
958	GBAudioPSGDeserialize(audio, &state->audio.psg, &state->audio.flags);
959
960	LOAD_32LE(audio->nextEvent, 0, &state->audio.nextEvent);
961	LOAD_32LE(audio->eventDiff, 0, &state->audio.eventDiff);
962	LOAD_32LE(audio->nextSample, 0, &state->audio.nextSample);
963}
964