all repos — mgba @ 9fd181dba926bac7d06aa5c7bdd9905bdefc3c0a

mGBA Game Boy Advance Emulator

src/gba/gba-audio.c (view raw)

  1#include "gba-audio.h"
  2
  3#include "gba.h"
  4#include "gba-io.h"
  5#include "gba-thread.h"
  6
  7#include <limits.h>
  8
  9const unsigned GBA_AUDIO_SAMPLES = 512;
 10const unsigned GBA_AUDIO_FIFO_SIZE = 8 * sizeof(int32_t);
 11#define SWEEP_CYCLES (GBA_ARM7TDMI_FREQUENCY / 128)
 12
 13static int32_t _updateSquareChannel(struct GBAAudioSquareControl* envelope, int duty);
 14static void _updateEnvelope(struct GBAAudioEnvelope* envelope);
 15static int _updateSweep(struct GBAAudioChannel1* ch);
 16static int32_t _updateChannel1(struct GBAAudioChannel1* ch);
 17static int32_t _updateChannel2(struct GBAAudioChannel2* ch);
 18static int32_t _updateChannel3(struct GBAAudioChannel3* ch);
 19static int32_t _updateChannel4(struct GBAAudioChannel4* ch);
 20static void _sample(struct GBAAudio* audio);
 21
 22void GBAAudioInit(struct GBAAudio* audio) {
 23	audio->nextEvent = 0;
 24	audio->nextCh1 = 0;
 25	audio->nextCh2 = 0;
 26	audio->nextCh3 = 0;
 27	audio->nextCh4 = 0;
 28	audio->ch1.envelope.nextStep = INT_MAX;
 29	audio->ch1.control.nextStep = 0;
 30	audio->ch1.nextSweep = INT_MAX;
 31	audio->ch1.sample = 0;
 32	audio->ch2.envelope.nextStep = INT_MAX;
 33	audio->ch2.control.nextStep = 0;
 34	audio->ch2.sample = 0;
 35	audio->ch3.bank.packed = 0;
 36	audio->ch3.sample = 0;
 37	audio->ch4.sample = 0;
 38	audio->ch4.envelope.nextStep = INT_MAX;
 39	audio->eventDiff = 0;
 40	audio->nextSample = 0;
 41	audio->sampleRate = 0x8000;
 42	audio->soundcntLo = 0;
 43	audio->soundcntHi = 0;
 44	audio->soundcntX = 0;
 45	audio->sampleInterval = GBA_ARM7TDMI_FREQUENCY / audio->sampleRate;
 46
 47	CircleBufferInit(&audio->left, GBA_AUDIO_SAMPLES * sizeof(int32_t));
 48	CircleBufferInit(&audio->right, GBA_AUDIO_SAMPLES * sizeof(int32_t));
 49	CircleBufferInit(&audio->chA.fifo, GBA_AUDIO_FIFO_SIZE);
 50	CircleBufferInit(&audio->chB.fifo, GBA_AUDIO_FIFO_SIZE);
 51
 52	pthread_mutex_init(&audio->bufferMutex, 0);
 53}
 54
 55void GBAAudioDeinit(struct GBAAudio* audio) {
 56	CircleBufferDeinit(&audio->left);
 57	CircleBufferDeinit(&audio->right);
 58	CircleBufferDeinit(&audio->chA.fifo);
 59	CircleBufferDeinit(&audio->chB.fifo);
 60
 61	pthread_mutex_lock(&audio->bufferMutex);
 62	pthread_mutex_destroy(&audio->bufferMutex);
 63}
 64
 65int32_t GBAAudioProcessEvents(struct GBAAudio* audio, int32_t cycles) {
 66	audio->nextEvent -= cycles;
 67	audio->eventDiff += cycles;
 68	while (audio->nextEvent <= 0) {
 69		audio->nextEvent = INT_MAX;
 70		if (audio->enable) {
 71			if (audio->playingCh1 && !audio->ch1.envelope.dead) {
 72				audio->nextCh1 -= audio->eventDiff;
 73				if (audio->ch1.envelope.nextStep != INT_MAX) {
 74					audio->ch1.envelope.nextStep -= audio->eventDiff;
 75					if (audio->ch1.envelope.nextStep <= 0) {
 76						int8_t sample = audio->ch1.control.hi * 0x10 - 0x8;
 77						_updateEnvelope(&audio->ch1.envelope);
 78						if (audio->ch1.envelope.nextStep < audio->nextEvent) {
 79							audio->nextEvent = audio->ch1.envelope.nextStep;
 80						}
 81						audio->ch1.sample = sample * audio->ch1.envelope.currentVolume;
 82					}
 83				}
 84
 85				if (audio->ch1.nextSweep != INT_MAX) {
 86					audio->ch1.nextSweep -= audio->eventDiff;
 87					if (audio->ch1.nextSweep <= 0) {
 88						audio->playingCh1 = _updateSweep(&audio->ch1);
 89						if (audio->ch1.nextSweep < audio->nextEvent) {
 90							audio->nextEvent = audio->ch1.nextSweep;
 91						}
 92					}
 93				}
 94
 95				if (audio->nextCh1 <= 0) {
 96					audio->nextCh1 += _updateChannel1(&audio->ch1);
 97					if (audio->nextCh1 < audio->nextEvent) {
 98						audio->nextEvent = audio->nextCh1;
 99					}
100				}
101
102				if (audio->ch1.control.stop) {
103					audio->ch1.control.endTime -= audio->eventDiff;
104					if (audio->ch1.control.endTime <= 0) {
105						audio->playingCh1 = 0;
106					}
107				}
108			}
109
110			if (audio->playingCh2 && !audio->ch2.envelope.dead) {
111				audio->nextCh2 -= audio->eventDiff;
112				if (audio->ch2.envelope.nextStep != INT_MAX) {
113					audio->ch2.envelope.nextStep -= audio->eventDiff;
114					if (audio->ch2.envelope.nextStep <= 0) {
115						int8_t sample = audio->ch2.control.hi * 0x10 - 0x8;
116						_updateEnvelope(&audio->ch2.envelope);
117						if (audio->ch2.envelope.nextStep < audio->nextEvent) {
118							audio->nextEvent = audio->ch2.envelope.nextStep;
119						}
120						audio->ch2.sample = sample * audio->ch2.envelope.currentVolume;
121					}
122				}
123
124				if (audio->nextCh2 <= 0) {
125					audio->nextCh2 += _updateChannel2(&audio->ch2);
126					if (audio->nextCh2 < audio->nextEvent) {
127						audio->nextEvent = audio->nextCh2;
128					}
129				}
130
131				if (audio->ch2.control.stop) {
132					audio->ch2.control.endTime -= audio->eventDiff;
133					if (audio->ch2.control.endTime <= 0) {
134						audio->playingCh2 = 0;
135					}
136				}
137			}
138
139			if (audio->playingCh3) {
140				audio->nextCh3 -= audio->eventDiff;
141				if (audio->nextCh3 <= 0) {
142					audio->nextCh3 += _updateChannel3(&audio->ch3);
143					if (audio->nextCh3 < audio->nextEvent) {
144						audio->nextEvent = audio->nextCh3;
145					}
146				}
147
148				if (audio->ch3.control.stop) {
149					audio->ch3.control.endTime -= audio->eventDiff;
150					if (audio->ch3.control.endTime <= 0) {
151						audio->playingCh3 = 0;
152					}
153				}
154			}
155
156			if (audio->playingCh4 && !audio->ch4.envelope.dead) {
157				audio->nextCh4 -= audio->eventDiff;
158				if (audio->ch4.envelope.nextStep != INT_MAX) {
159					audio->ch4.envelope.nextStep -= audio->eventDiff;
160					if (audio->ch4.envelope.nextStep <= 0) {
161						int8_t sample = (audio->ch4.sample >> 31) * 0x8;
162						_updateEnvelope(&audio->ch4.envelope);
163						if (audio->ch4.envelope.nextStep < audio->nextEvent) {
164							audio->nextEvent = audio->ch4.envelope.nextStep;
165						}
166						audio->ch4.sample = sample * audio->ch4.envelope.currentVolume;
167					}
168				}
169
170				if (audio->nextCh4 <= 0) {
171					audio->nextCh4 += _updateChannel4(&audio->ch4);
172					if (audio->nextCh4 < audio->nextEvent) {
173						audio->nextEvent = audio->nextCh4;
174					}
175				}
176
177				if (audio->ch4.control.stop) {
178					audio->ch4.control.endTime -= audio->eventDiff;
179					if (audio->ch4.control.endTime <= 0) {
180						audio->playingCh4 = 0;
181					}
182				}
183			}
184		}
185
186		audio->nextSample -= audio->eventDiff;
187		if (audio->nextSample <= 0) {
188			_sample(audio);
189			audio->nextSample += audio->sampleInterval;
190		}
191
192		if (audio->nextSample < audio->nextEvent) {
193			audio->nextEvent = audio->nextSample;
194		}
195		audio->eventDiff = 0;
196	}
197	return audio->nextEvent;
198}
199
200void GBAAudioScheduleFifoDma(struct GBAAudio* audio, int number, struct GBADMA* info) {
201	switch (info->dest) {
202	case BASE_IO | REG_FIFO_A_LO:
203		audio->chA.dmaSource = number;
204		break;
205	case BASE_IO | REG_FIFO_B_LO:
206		audio->chB.dmaSource = number;
207		break;
208	default:
209		GBALog(audio->p, GBA_LOG_GAME_ERROR, "Invalid FIFO destination: 0x%08X", info->dest);
210		return;
211	}
212	info->dstControl = DMA_FIXED;
213}
214
215void GBAAudioWriteSOUND1CNT_LO(struct GBAAudio* audio, uint16_t value) {
216	audio->ch1.sweep.packed = value;
217	if (audio->ch1.sweep.time) {
218		audio->ch1.nextSweep = audio->ch1.sweep.time * SWEEP_CYCLES;
219	} else {
220		audio->ch1.nextSweep = INT_MAX;
221	}
222}
223
224void GBAAudioWriteSOUND1CNT_HI(struct GBAAudio* audio, uint16_t value) {
225	audio->ch1.envelope.packed = value;
226	audio->ch1.envelope.dead = 0;
227	if (audio->ch1.envelope.stepTime) {
228		audio->ch1.envelope.nextStep = 0;
229	} else {
230		audio->ch1.envelope.nextStep = INT_MAX;
231		if (audio->ch1.envelope.initialVolume == 0) {
232			audio->ch1.envelope.dead = 1;
233			audio->ch1.sample = 0;
234		}
235	}
236}
237
238void GBAAudioWriteSOUND1CNT_X(struct GBAAudio* audio, uint16_t value) {
239	audio->ch1.control.packed = value;
240	audio->ch1.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch1.envelope.length)) >> 8;
241	if (audio->ch1.control.restart) {
242		if (audio->ch1.sweep.time) {
243			audio->ch1.nextSweep = audio->ch1.sweep.time * SWEEP_CYCLES;
244		} else {
245			audio->ch1.nextSweep = INT_MAX;
246		}
247		if (!audio->playingCh1) {
248			audio->nextCh1 = 0;
249		}
250		audio->playingCh1 = 1;
251		if (audio->ch1.envelope.stepTime) {
252			audio->ch1.envelope.nextStep = 0;
253		} else {
254			audio->ch1.envelope.nextStep = INT_MAX;
255		}
256		audio->ch1.envelope.currentVolume = audio->ch1.envelope.initialVolume;
257		if (audio->ch1.envelope.stepTime) {
258			audio->ch1.envelope.nextStep = 0;
259		} else {
260			audio->ch1.envelope.nextStep = INT_MAX;
261		}
262	}
263}
264
265void GBAAudioWriteSOUND2CNT_LO(struct GBAAudio* audio, uint16_t value) {
266	audio->ch2.envelope.packed = value;
267	audio->ch2.envelope.dead = 0;
268	if (audio->ch2.envelope.stepTime) {
269		audio->ch2.envelope.nextStep = 0;
270	} else {
271		audio->ch2.envelope.nextStep = INT_MAX;
272		if (audio->ch2.envelope.initialVolume == 0) {
273			audio->ch2.envelope.dead = 1;
274			audio->ch2.sample = 0;
275		}
276	}
277}
278
279void GBAAudioWriteSOUND2CNT_HI(struct GBAAudio* audio, uint16_t value) {
280	audio->ch2.control.packed = value;
281	audio->ch1.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch2.envelope.length)) >> 8;
282	if (audio->ch2.control.restart) {
283		audio->playingCh2 = 1;
284		audio->ch2.envelope.currentVolume = audio->ch2.envelope.initialVolume;
285		if (audio->ch2.envelope.stepTime) {
286			audio->ch2.envelope.nextStep = 0;
287		} else {
288			audio->ch2.envelope.nextStep = INT_MAX;
289		}
290		audio->nextCh2 = 0;
291	}
292}
293
294void GBAAudioWriteSOUND3CNT_LO(struct GBAAudio* audio, uint16_t value) {
295	audio->ch3.bank.packed = value;
296	if (audio->ch3.control.endTime >= 0) {
297		audio->playingCh3 = audio->ch3.bank.enable;
298	}
299}
300
301void GBAAudioWriteSOUND3CNT_HI(struct GBAAudio* audio, uint16_t value) {
302	audio->ch3.wave.packed = value;
303}
304
305void GBAAudioWriteSOUND3CNT_X(struct GBAAudio* audio, uint16_t value) {
306	audio->ch3.control.packed = value;
307	audio->ch3.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (256 - audio->ch3.wave.length)) >> 8;
308	if (audio->ch3.control.restart) {
309		audio->playingCh3 = audio->ch3.bank.enable;
310	}
311}
312
313void GBAAudioWriteSOUND4CNT_LO(struct GBAAudio* audio, uint16_t value) {
314	audio->ch4.envelope.packed = value;
315	audio->ch4.envelope.dead = 0;
316	if (audio->ch4.envelope.stepTime) {
317		audio->ch4.envelope.nextStep = 0;
318	} else {
319		audio->ch4.envelope.nextStep = INT_MAX;
320		if (audio->ch4.envelope.initialVolume == 0) {
321			audio->ch4.envelope.dead = 1;
322			audio->ch4.sample = 0;
323		}
324	}
325}
326
327void GBAAudioWriteSOUND4CNT_HI(struct GBAAudio* audio, uint16_t value) {
328	audio->ch4.control.packed = value;
329	audio->ch4.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch4.envelope.length)) >> 8;
330	if (audio->ch4.control.restart) {
331		audio->playingCh4 = 1;
332		audio->ch4.envelope.currentVolume = audio->ch4.envelope.initialVolume;
333		if (audio->ch4.envelope.stepTime) {
334			audio->ch4.envelope.nextStep = 0;
335		} else {
336			audio->ch4.envelope.nextStep = INT_MAX;
337		}
338		if (audio->ch4.control.power) {
339			audio->ch4.lfsr = 0x40;
340		} else {
341			audio->ch4.lfsr = 0x4000;
342		}
343		audio->nextCh4 = 0;
344	}
345}
346
347void GBAAudioWriteSOUNDCNT_LO(struct GBAAudio* audio, uint16_t value) {
348	audio->soundcntLo = value;
349}
350
351void GBAAudioWriteSOUNDCNT_HI(struct GBAAudio* audio, uint16_t value) {
352	audio->soundcntHi = value;
353}
354
355void GBAAudioWriteSOUNDCNT_X(struct GBAAudio* audio, uint16_t value) {
356	audio->soundcntX = (value & 0x80) | (audio->soundcntX & 0x0F);
357}
358
359void GBAAudioWriteWaveRAM(struct GBAAudio* audio, int address, uint32_t value) {
360	audio->ch3.wavedata[address | (!audio->ch3.bank.bank * 4)] = value;
361}
362
363void GBAAudioWriteFIFO(struct GBAAudio* audio, int address, uint32_t value) {
364	struct CircleBuffer* fifo;
365	switch (address) {
366	case REG_FIFO_A_LO:
367		fifo = &audio->chA.fifo;
368		break;
369	case REG_FIFO_B_LO:
370		fifo = &audio->chB.fifo;
371		break;
372	default:
373		GBALog(audio->p, GBA_LOG_ERROR, "Bad FIFO write to address 0x%03x", address);
374		return;
375	}
376	while (!CircleBufferWrite32(fifo, value)) {
377		int32_t dummy;
378		CircleBufferRead32(fifo, &dummy);
379	}
380}
381
382void GBAAudioSampleFIFO(struct GBAAudio* audio, int fifoId) {
383	struct GBAAudioFIFO* channel;
384	if (fifoId == 0) {
385		channel = &audio->chA;
386	} else if (fifoId == 1) {
387		channel = &audio->chB;
388	} else {
389		GBALog(audio->p, GBA_LOG_ERROR, "Bad FIFO write to address 0x%03x", fifoId);
390		return;
391	}
392	if (CircleBufferSize(&channel->fifo) <= 4 * sizeof(int32_t)) {
393		struct GBADMA* dma = &audio->p->memory.dma[channel->dmaSource];
394		dma->nextCount = 4;
395		GBAMemoryServiceDMA(&audio->p->memory, channel->dmaSource, dma);
396	}
397	CircleBufferRead8(&channel->fifo, &channel->sample);
398}
399
400static int32_t _updateSquareChannel(struct GBAAudioSquareControl* control, int duty) {
401	control->hi = !control->hi;
402	int period = 16 * (2048 - control->frequency);
403	switch (duty) {
404	case 0:
405		return control->hi ? period : period * 7;
406	case 1:
407		return control->hi ? period * 2 : period * 6;
408	case 2:
409		return period * 4;
410	case 3:
411		return control->hi ? period * 6 : period * 2;
412	default:
413		// This should never be hit
414		return period * 4;
415	}
416}
417
418static void _updateEnvelope(struct GBAAudioEnvelope* envelope) {
419	if (envelope->direction) {
420		++envelope->currentVolume;
421	} else {
422		--envelope->currentVolume;
423	}
424	if (envelope->currentVolume >= 15) {
425		envelope->currentVolume = 15;
426		envelope->nextStep = INT_MAX;
427	} else if (envelope->currentVolume <= 0) {
428		envelope->currentVolume = 0;
429		envelope->dead = 1;
430		envelope->nextStep = INT_MAX;
431	} else {
432		envelope->nextStep += envelope->stepTime * (GBA_ARM7TDMI_FREQUENCY >> 6);
433	}
434}
435
436static int _updateSweep(struct GBAAudioChannel1* ch) {
437	if (ch->sweep.direction) {
438		int frequency = ch->control.frequency;
439		frequency -= frequency >> ch->sweep.shift;
440		if (frequency >= 0) {
441			ch->control.frequency = frequency;
442		}
443	} else {
444		int frequency = ch->control.frequency;
445		frequency += frequency >> ch->sweep.shift;
446		if (frequency < 2048) {
447			ch->control.frequency = frequency;
448		} else {
449			return 0;
450		}
451	}
452	ch->nextSweep += ch->sweep.time * SWEEP_CYCLES;
453	return 1;
454}
455
456static int32_t _updateChannel1(struct GBAAudioChannel1* ch) {
457	int timing = _updateSquareChannel(&ch->control, ch->envelope.duty);
458	ch->sample = ch->control.hi * 0x10 - 0x8;
459	ch->sample *= ch->envelope.currentVolume;
460	return timing;
461}
462
463static int32_t _updateChannel2(struct GBAAudioChannel2* ch) {
464	int timing = _updateSquareChannel(&ch->control, ch->envelope.duty);
465	ch->sample = ch->control.hi * 0x10 - 0x8;
466	ch->sample *= ch->envelope.currentVolume;
467	return timing;
468}
469
470static int32_t _updateChannel3(struct GBAAudioChannel3* ch) {
471	int i;
472	int start;
473	int end;
474	int volume;
475	switch (ch->wave.volume) {
476	case 0:
477		volume = 0;
478		break;
479	case 1:
480		volume = 4;
481		break;
482	case 2:
483		volume = 2;
484		break;
485	case 3:
486		volume = 1;
487		break;
488	default:
489		volume = 3;
490		break;
491	}
492	if (ch->bank.size) {
493		start = 7;
494		end = 0;
495	} else if (ch->bank.bank) {
496		start = 7;
497		end = 4;
498	} else {
499		start = 3;
500		end = 0;
501	}
502	uint32_t bitsCarry = ch->wavedata[end] & 0xF0000000;
503	uint32_t bits;
504	for (i = start; i >= end; --i) {
505		bits = ch->wavedata[i] & 0xF0000000;
506		ch->wavedata[i] <<= 4;
507		ch->wavedata[i] |= bitsCarry >> 28;
508		bitsCarry = bits;
509	}
510	ch->sample = ((bitsCarry >> 26) - 0x20) * volume;
511	return 8 * (2048 - ch->control.rate);
512}
513
514static int32_t _updateChannel4(struct GBAAudioChannel4* ch) {
515	int lsb = ch->lfsr & 1;
516	ch->sample = lsb * 0x10 - 0x8;
517	ch->sample *= ch->envelope.currentVolume;
518	ch->lfsr >>= 1;
519	ch->lfsr ^= (lsb * 0x60) << (ch->control.power ? 0 : 8);
520	int timing = ch->control.ratio ? 2 * ch->control.ratio : 1;
521	timing <<= ch->control.frequency;
522	timing *= 32;
523	return timing;
524}
525
526static void _sample(struct GBAAudio* audio) {
527	int32_t sampleLeft = 0;
528	int32_t sampleRight = 0;
529	int psgShift = 1 + audio->volume;
530
531	if (audio->ch1Left) {
532		sampleLeft += audio->ch1.sample;
533	}
534
535	if (audio->ch1Right) {
536		sampleRight += audio->ch1.sample;
537	}
538
539	if (audio->ch2Left) {
540		sampleLeft += audio->ch2.sample;
541	}
542
543	if (audio->ch2Right) {
544		sampleRight += audio->ch2.sample;
545	}
546
547	if (audio->ch3Left) {
548		sampleLeft += audio->ch3.sample;
549	}
550
551	if (audio->ch3Right) {
552		sampleRight += audio->ch3.sample;
553	}
554
555	if (audio->ch4Left) {
556		sampleLeft += audio->ch4.sample;
557	}
558
559	if (audio->ch4Right) {
560		sampleRight += audio->ch4.sample;
561	}
562
563	sampleLeft = (sampleLeft * (1 + audio->volumeLeft)) >> psgShift;
564	sampleRight = (sampleRight * (1 + audio->volumeRight)) >> psgShift;
565
566	if (audio->chALeft) {
567		sampleLeft += (audio->chA.sample << 2) >> !audio->volumeChA;
568	}
569
570	if (audio->chARight) {
571		sampleRight += (audio->chA.sample << 2) >> !audio->volumeChA;
572	}
573
574	if (audio->chBLeft) {
575		sampleLeft += (audio->chB.sample << 2) >> !audio->volumeChB;
576	}
577
578	if (audio->chBRight) {
579		sampleRight += (audio->chB.sample << 2) >> !audio->volumeChB;
580	}
581
582	pthread_mutex_lock(&audio->bufferMutex);
583	while (CircleBufferSize(&audio->left) + (GBA_AUDIO_SAMPLES * 2 / 5) >= audio->left.capacity) {
584		if (!audio->p->sync->audioWait) {
585			break;
586		}
587		GBASyncProduceAudio(audio->p->sync, &audio->bufferMutex);
588	}
589	CircleBufferWrite32(&audio->left, sampleLeft);
590	CircleBufferWrite32(&audio->right, sampleRight);
591	pthread_mutex_unlock(&audio->bufferMutex);
592}