all repos — mgba @ a1e43c91a1aa67509ddb59b127375aa2edbbe385

mGBA Game Boy Advance Emulator

src/gb/memory.c (view raw)

  1/* Copyright (c) 2013-2016 Jeffrey Pfau
  2 *
  3 * This Source Code Form is subject to the terms of the Mozilla Public
  4 * License, v. 2.0. If a copy of the MPL was not distributed with this
  5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  6#include <mgba/internal/gb/memory.h>
  7
  8#include <mgba/core/interface.h>
  9#include <mgba/internal/gb/gb.h>
 10#include <mgba/internal/gb/io.h>
 11#include <mgba/internal/gb/mbc.h>
 12#include <mgba/internal/gb/serialize.h>
 13#include <mgba/internal/sm83/sm83.h>
 14
 15#include <mgba-util/memory.h>
 16
 17mLOG_DEFINE_CATEGORY(GB_MEM, "GB Memory", "gb.memory");
 18
 19static const uint8_t _yankBuffer[] = { 0xFF };
 20
 21enum GBBus {
 22	GB_BUS_CPU,
 23	GB_BUS_MAIN,
 24	GB_BUS_VRAM,
 25	GB_BUS_RAM
 26};
 27
 28static const enum GBBus _oamBlockDMG[] = {
 29	GB_BUS_MAIN, // 0x0000
 30	GB_BUS_MAIN, // 0x2000
 31	GB_BUS_MAIN, // 0x4000
 32	GB_BUS_MAIN, // 0x6000
 33	GB_BUS_VRAM, // 0x8000
 34	GB_BUS_MAIN, // 0xA000
 35	GB_BUS_MAIN, // 0xC000
 36	GB_BUS_CPU, // 0xE000
 37};
 38
 39static const enum GBBus _oamBlockCGB[] = {
 40	GB_BUS_MAIN, // 0x0000
 41	GB_BUS_MAIN, // 0x2000
 42	GB_BUS_MAIN, // 0x4000
 43	GB_BUS_MAIN, // 0x6000
 44	GB_BUS_VRAM, // 0x8000
 45	GB_BUS_MAIN, // 0xA000
 46	GB_BUS_RAM, // 0xC000
 47	GB_BUS_CPU // 0xE000
 48};
 49
 50static const uint8_t _blockedRegion[1] = { 0xFF };
 51
 52static void _pristineCow(struct GB* gba);
 53
 54static uint8_t GBFastLoad8(struct SM83Core* cpu, uint16_t address) {
 55	if (UNLIKELY(address >= cpu->memory.activeRegionEnd)) {
 56		cpu->memory.setActiveRegion(cpu, address);
 57		return cpu->memory.cpuLoad8(cpu, address);
 58	}
 59	return cpu->memory.activeRegion[address & cpu->memory.activeMask];
 60}
 61
 62static void GBSetActiveRegion(struct SM83Core* cpu, uint16_t address) {
 63	struct GB* gb = (struct GB*) cpu->master;
 64	struct GBMemory* memory = &gb->memory;
 65	switch (address >> 12) {
 66	case GB_REGION_CART_BANK0:
 67	case GB_REGION_CART_BANK0 + 1:
 68	case GB_REGION_CART_BANK0 + 2:
 69	case GB_REGION_CART_BANK0 + 3:
 70		cpu->memory.cpuLoad8 = GBFastLoad8;
 71		cpu->memory.activeRegion = memory->romBase;
 72		cpu->memory.activeRegionEnd = GB_BASE_CART_BANK1;
 73		cpu->memory.activeMask = GB_SIZE_CART_BANK0 - 1;
 74		if (gb->memory.romSize < GB_SIZE_CART_BANK0) {
 75			if (address >= gb->memory.romSize) {
 76				cpu->memory.activeRegion = _yankBuffer;
 77				cpu->memory.activeMask = 0;
 78			} else {
 79				cpu->memory.activeRegionEnd = gb->memory.romSize;
 80			}
 81		}
 82		break;
 83	case GB_REGION_CART_BANK1:
 84	case GB_REGION_CART_BANK1 + 1:
 85	case GB_REGION_CART_BANK1 + 2:
 86	case GB_REGION_CART_BANK1 + 3:
 87		cpu->memory.cpuLoad8 = GBFastLoad8;
 88		if (gb->memory.mbcType != GB_MBC6) {
 89			cpu->memory.activeRegion = memory->romBank;
 90			cpu->memory.activeRegionEnd = GB_BASE_VRAM;
 91			cpu->memory.activeMask = GB_SIZE_CART_BANK0 - 1;
 92		} else {
 93			cpu->memory.activeMask = GB_SIZE_CART_HALFBANK - 1;
 94			if (address & 0x2000) {
 95				cpu->memory.activeRegion = memory->mbcState.mbc6.romBank1;
 96				cpu->memory.activeRegionEnd = GB_BASE_VRAM;
 97			} else {
 98				cpu->memory.activeRegion = memory->romBank;
 99				cpu->memory.activeRegionEnd = GB_BASE_CART_BANK1 + 0x2000;
100			}
101		}
102		if (gb->memory.romSize < GB_SIZE_CART_BANK0 * 2) {
103			if (address >= gb->memory.romSize) {
104				cpu->memory.activeRegion = _yankBuffer;
105				cpu->memory.activeMask = 0;
106			} else {
107				cpu->memory.activeRegionEnd = gb->memory.romSize;
108			}
109		}
110		break;
111	default:
112		cpu->memory.cpuLoad8 = GBLoad8;
113		break;
114	}
115	if (gb->memory.dmaRemaining) {
116		const enum GBBus* block = gb->model < GB_MODEL_CGB ? _oamBlockDMG : _oamBlockCGB;
117		enum GBBus dmaBus = block[memory->dmaSource >> 13];
118		enum GBBus accessBus = block[address >> 13];
119		if ((dmaBus != GB_BUS_CPU && dmaBus == accessBus) || (address >= GB_BASE_OAM && address < GB_BASE_UNUSABLE)) {
120			cpu->memory.activeRegion = _blockedRegion;
121			cpu->memory.activeMask = 0;
122		}
123	}
124}
125
126static void _GBMemoryDMAService(struct mTiming* timing, void* context, uint32_t cyclesLate);
127static void _GBMemoryHDMAService(struct mTiming* timing, void* context, uint32_t cyclesLate);
128
129void GBMemoryInit(struct GB* gb) {
130	struct SM83Core* cpu = gb->cpu;
131	cpu->memory.cpuLoad8 = GBLoad8;
132	cpu->memory.load8 = GBLoad8;
133	cpu->memory.store8 = GBStore8;
134	cpu->memory.currentSegment = GBCurrentSegment;
135	cpu->memory.setActiveRegion = GBSetActiveRegion;
136
137	gb->memory.wram = 0;
138	gb->memory.wramBank = 0;
139	gb->memory.rom = 0;
140	gb->memory.romBank = 0;
141	gb->memory.romSize = 0;
142	gb->memory.sram = 0;
143	gb->memory.mbcType = GB_MBC_AUTODETECT;
144	gb->memory.mbcRead = NULL;
145	gb->memory.mbcWrite = NULL;
146
147	gb->memory.rtc = NULL;
148	gb->memory.rotation = NULL;
149	gb->memory.rumble = NULL;
150	gb->memory.cam = NULL;
151
152	GBIOInit(gb);
153}
154
155void GBMemoryDeinit(struct GB* gb) {
156	mappedMemoryFree(gb->memory.wram, GB_SIZE_WORKING_RAM);
157	if (gb->memory.rom) {
158		mappedMemoryFree(gb->memory.rom, gb->memory.romSize);
159	}
160}
161
162void GBMemoryReset(struct GB* gb) {
163	if (gb->memory.wram) {
164		mappedMemoryFree(gb->memory.wram, GB_SIZE_WORKING_RAM);
165	}
166	gb->memory.wram = anonymousMemoryMap(GB_SIZE_WORKING_RAM);
167	if (gb->model >= GB_MODEL_CGB) {
168		uint32_t* base = (uint32_t*) gb->memory.wram;
169		size_t i;
170		uint32_t pattern = 0;
171		for (i = 0; i < GB_SIZE_WORKING_RAM / 4; i += 4) {
172			if ((i & 0x1FF) == 0) {
173				pattern = ~pattern;
174			}
175			base[i + 0] = pattern;
176			base[i + 1] = pattern;
177			base[i + 2] = ~pattern;
178			base[i + 3] = ~pattern;
179		}
180	}
181	GBMemorySwitchWramBank(&gb->memory, 1);
182	gb->memory.romBank = &gb->memory.rom[GB_SIZE_CART_BANK0];
183	gb->memory.currentBank = 1;
184	gb->memory.sramCurrentBank = 0;
185
186	gb->memory.ime = false;
187	gb->memory.ie = 0;
188
189	gb->memory.dmaRemaining = 0;
190	gb->memory.dmaSource = 0;
191	gb->memory.dmaDest = 0;
192	gb->memory.hdmaRemaining = 0;
193	gb->memory.hdmaSource = 0;
194	gb->memory.hdmaDest = 0;
195	gb->memory.isHdma = false;
196
197
198	gb->memory.dmaEvent.context = gb;
199	gb->memory.dmaEvent.name = "GB DMA";
200	gb->memory.dmaEvent.callback = _GBMemoryDMAService;
201	gb->memory.dmaEvent.priority = 0x40;
202	gb->memory.hdmaEvent.context = gb;
203	gb->memory.hdmaEvent.name = "GB HDMA";
204	gb->memory.hdmaEvent.callback = _GBMemoryHDMAService;
205	gb->memory.hdmaEvent.priority = 0x41;
206
207	memset(&gb->memory.hram, 0, sizeof(gb->memory.hram));
208
209	memset(&gb->memory.mbcState, 0, sizeof(gb->memory.mbcState));
210	GBMBCInit(gb);
211	switch (gb->memory.mbcType) {
212	case GB_MBC1:
213		gb->memory.mbcState.mbc1.mode = 0;
214		gb->memory.mbcState.mbc1.bankLo = 1;
215		break;
216	case GB_MBC6:
217		GBMBCSwitchHalfBank(gb, 0, 2);
218		GBMBCSwitchHalfBank(gb, 1, 3);
219		gb->memory.mbcState.mbc6.sramAccess = false;
220		GBMBCSwitchSramHalfBank(gb, 0, 0);
221		GBMBCSwitchSramHalfBank(gb, 0, 1);
222		break;
223	case GB_MMM01:
224		GBMBCSwitchBank0(gb, gb->memory.romSize / GB_SIZE_CART_BANK0 - 2);
225		GBMBCSwitchBank(gb, gb->memory.romSize / GB_SIZE_CART_BANK0 - 1);
226		break;
227	default:
228		break;
229	}
230	gb->memory.sramBank = gb->memory.sram;
231
232	if (!gb->memory.wram) {
233		GBMemoryDeinit(gb);
234	}
235}
236
237void GBMemorySwitchWramBank(struct GBMemory* memory, int bank) {
238	bank &= 7;
239	if (!bank) {
240		bank = 1;
241	}
242	memory->wramBank = &memory->wram[GB_SIZE_WORKING_RAM_BANK0 * bank];
243	memory->wramCurrentBank = bank;
244}
245
246uint8_t GBLoad8(struct SM83Core* cpu, uint16_t address) {
247	struct GB* gb = (struct GB*) cpu->master;
248	struct GBMemory* memory = &gb->memory;
249	if (gb->memory.dmaRemaining) {
250		const enum GBBus* block = gb->model < GB_MODEL_CGB ? _oamBlockDMG : _oamBlockCGB;
251		enum GBBus dmaBus = block[memory->dmaSource >> 13];
252		enum GBBus accessBus = block[address >> 13];
253		if (dmaBus != GB_BUS_CPU && dmaBus == accessBus) {
254			return 0xFF;
255		}
256		if (address >= GB_BASE_OAM && address < GB_BASE_IO) {
257			return 0xFF;
258		}
259	}
260	switch (address >> 12) {
261	case GB_REGION_CART_BANK0:
262	case GB_REGION_CART_BANK0 + 1:
263	case GB_REGION_CART_BANK0 + 2:
264	case GB_REGION_CART_BANK0 + 3:
265		if (address >= memory->romSize) {
266			return 0xFF;
267		}
268		return memory->romBase[address & (GB_SIZE_CART_BANK0 - 1)];
269	case GB_REGION_CART_BANK1 + 2:
270	case GB_REGION_CART_BANK1 + 3:
271		if (memory->mbcType == GB_MBC6) {
272			return memory->mbcState.mbc6.romBank1[address & (GB_SIZE_CART_HALFBANK - 1)];
273		}
274		// Fall through
275	case GB_REGION_CART_BANK1:
276	case GB_REGION_CART_BANK1 + 1:
277		if (address >= memory->romSize) {
278			return 0xFF;
279		}
280		return memory->romBank[address & (GB_SIZE_CART_BANK0 - 1)];
281	case GB_REGION_VRAM:
282	case GB_REGION_VRAM + 1:
283		if (gb->video.mode != 3) {
284			return gb->video.vramBank[address & (GB_SIZE_VRAM_BANK0 - 1)];
285		}
286		return 0xFF;
287	case GB_REGION_EXTERNAL_RAM:
288	case GB_REGION_EXTERNAL_RAM + 1:
289		if (memory->rtcAccess) {
290			return memory->rtcRegs[memory->activeRtcReg];
291		} else if (memory->mbcRead) {
292			return memory->mbcRead(memory, address);
293		} else if (memory->sramAccess && memory->sram) {
294			return memory->sramBank[address & (GB_SIZE_EXTERNAL_RAM - 1)];
295		} else if (memory->mbcType == GB_HuC3) {
296			return 0x01; // TODO: Is this supposed to be the current SRAM bank?
297		}
298		return 0xFF;
299	case GB_REGION_WORKING_RAM_BANK0:
300	case GB_REGION_WORKING_RAM_BANK0 + 2:
301		return memory->wram[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
302	case GB_REGION_WORKING_RAM_BANK1:
303		return memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
304	default:
305		if (address < GB_BASE_OAM) {
306			return memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
307		}
308		if (address < GB_BASE_UNUSABLE) {
309			if (gb->video.mode < 2) {
310				return gb->video.oam.raw[address & 0xFF];
311			}
312			return 0xFF;
313		}
314		if (address < GB_BASE_IO) {
315			mLOG(GB_MEM, GAME_ERROR, "Attempt to read from unusable memory: %04X", address);
316			return 0xFF;
317		}
318		if (address < GB_BASE_HRAM) {
319			return GBIORead(gb, address & (GB_SIZE_IO - 1));
320		}
321		if (address < GB_BASE_IE) {
322			return memory->hram[address & GB_SIZE_HRAM];
323		}
324		return GBIORead(gb, REG_IE);
325	}
326}
327
328void GBStore8(struct SM83Core* cpu, uint16_t address, int8_t value) {
329	struct GB* gb = (struct GB*) cpu->master;
330	struct GBMemory* memory = &gb->memory;
331	if (gb->memory.dmaRemaining) {
332		const enum GBBus* block = gb->model < GB_MODEL_CGB ? _oamBlockDMG : _oamBlockCGB;
333		enum GBBus dmaBus = block[memory->dmaSource >> 13];
334		enum GBBus accessBus = block[address >> 13];
335		if (dmaBus != GB_BUS_CPU && dmaBus == accessBus) {
336			return;
337		}
338		if (address >= GB_BASE_OAM && address < GB_BASE_UNUSABLE) {
339			return;
340		}
341	}
342	switch (address >> 12) {
343	case GB_REGION_CART_BANK0:
344	case GB_REGION_CART_BANK0 + 1:
345	case GB_REGION_CART_BANK0 + 2:
346	case GB_REGION_CART_BANK0 + 3:
347	case GB_REGION_CART_BANK1:
348	case GB_REGION_CART_BANK1 + 1:
349	case GB_REGION_CART_BANK1 + 2:
350	case GB_REGION_CART_BANK1 + 3:
351		memory->mbcWrite(gb, address, value);
352		cpu->memory.setActiveRegion(cpu, cpu->pc);
353		return;
354	case GB_REGION_VRAM:
355	case GB_REGION_VRAM + 1:
356		if (gb->video.mode != 3) {
357			gb->video.renderer->writeVRAM(gb->video.renderer, (address & (GB_SIZE_VRAM_BANK0 - 1)) | (GB_SIZE_VRAM_BANK0 * gb->video.vramCurrentBank));
358			gb->video.vramBank[address & (GB_SIZE_VRAM_BANK0 - 1)] = value;
359		}
360		return;
361	case GB_REGION_EXTERNAL_RAM:
362	case GB_REGION_EXTERNAL_RAM + 1:
363		if (memory->rtcAccess) {
364			memory->rtcRegs[memory->activeRtcReg] = value;
365		} else if (memory->sramAccess && memory->sram && memory->directSramAccess) {
366			memory->sramBank[address & (GB_SIZE_EXTERNAL_RAM - 1)] = value;
367		} else {
368			memory->mbcWrite(gb, address, value);
369		}
370		gb->sramDirty |= GB_SRAM_DIRT_NEW;
371		return;
372	case GB_REGION_WORKING_RAM_BANK0:
373	case GB_REGION_WORKING_RAM_BANK0 + 2:
374		memory->wram[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)] = value;
375		return;
376	case GB_REGION_WORKING_RAM_BANK1:
377		memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)] = value;
378		return;
379	default:
380		if (address < GB_BASE_OAM) {
381			memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)] = value;
382		} else if (address < GB_BASE_UNUSABLE) {
383			if (gb->video.mode < 2) {
384				gb->video.oam.raw[address & 0xFF] = value;
385				gb->video.renderer->writeOAM(gb->video.renderer, address & 0xFF);
386			}
387		} else if (address < GB_BASE_IO) {
388			mLOG(GB_MEM, GAME_ERROR, "Attempt to write to unusable memory: %04X:%02X", address, value);
389		} else if (address < GB_BASE_HRAM) {
390			GBIOWrite(gb, address & (GB_SIZE_IO - 1), value);
391		} else if (address < GB_BASE_IE) {
392			memory->hram[address & GB_SIZE_HRAM] = value;
393		} else {
394			GBIOWrite(gb, REG_IE, value);
395		}
396	}
397}
398
399int GBCurrentSegment(struct SM83Core* cpu, uint16_t address) {
400	struct GB* gb = (struct GB*) cpu->master;
401	struct GBMemory* memory = &gb->memory;
402	switch (address >> 12) {
403	case GB_REGION_CART_BANK0:
404	case GB_REGION_CART_BANK0 + 1:
405	case GB_REGION_CART_BANK0 + 2:
406	case GB_REGION_CART_BANK0 + 3:
407		return 0;
408	case GB_REGION_CART_BANK1:
409	case GB_REGION_CART_BANK1 + 1:
410	case GB_REGION_CART_BANK1 + 2:
411	case GB_REGION_CART_BANK1 + 3:
412		return memory->currentBank;
413	case GB_REGION_VRAM:
414	case GB_REGION_VRAM + 1:
415		return gb->video.vramCurrentBank;
416	case GB_REGION_EXTERNAL_RAM:
417	case GB_REGION_EXTERNAL_RAM + 1:
418		return memory->sramCurrentBank;
419	case GB_REGION_WORKING_RAM_BANK0:
420	case GB_REGION_WORKING_RAM_BANK0 + 2:
421		return 0;
422	case GB_REGION_WORKING_RAM_BANK1:
423		return memory->wramCurrentBank;
424	default:
425		return 0;
426	}
427}
428
429uint8_t GBView8(struct SM83Core* cpu, uint16_t address, int segment) {
430	struct GB* gb = (struct GB*) cpu->master;
431	struct GBMemory* memory = &gb->memory;
432	switch (address >> 12) {
433	case GB_REGION_CART_BANK0:
434	case GB_REGION_CART_BANK0 + 1:
435	case GB_REGION_CART_BANK0 + 2:
436	case GB_REGION_CART_BANK0 + 3:
437		return memory->romBase[address & (GB_SIZE_CART_BANK0 - 1)];
438	case GB_REGION_CART_BANK1:
439	case GB_REGION_CART_BANK1 + 1:
440	case GB_REGION_CART_BANK1 + 2:
441	case GB_REGION_CART_BANK1 + 3:
442		if (segment < 0) {
443			return memory->romBank[address & (GB_SIZE_CART_BANK0 - 1)];
444		} else if ((size_t) segment * GB_SIZE_CART_BANK0 < memory->romSize) {
445			return memory->rom[(address & (GB_SIZE_CART_BANK0 - 1)) + segment * GB_SIZE_CART_BANK0];
446		} else {
447			return 0xFF;
448		}
449	case GB_REGION_VRAM:
450	case GB_REGION_VRAM + 1:
451		if (segment < 0) {
452			return gb->video.vramBank[address & (GB_SIZE_VRAM_BANK0 - 1)];
453		} else if (segment < 2) {
454			return gb->video.vram[(address & (GB_SIZE_VRAM_BANK0 - 1)) + segment *GB_SIZE_VRAM_BANK0];
455		} else {
456			return 0xFF;
457		}
458	case GB_REGION_EXTERNAL_RAM:
459	case GB_REGION_EXTERNAL_RAM + 1:
460		if (memory->rtcAccess) {
461			return memory->rtcRegs[memory->activeRtcReg];
462		} else if (memory->sramAccess) {
463			if (segment < 0 && memory->sram) {
464				return memory->sramBank[address & (GB_SIZE_EXTERNAL_RAM - 1)];
465			} else if ((size_t) segment * GB_SIZE_EXTERNAL_RAM < gb->sramSize) {
466				return memory->sram[(address & (GB_SIZE_EXTERNAL_RAM - 1)) + segment *GB_SIZE_EXTERNAL_RAM];
467			} else {
468				return 0xFF;
469			}
470		} else if (memory->mbcRead) {
471			return memory->mbcRead(memory, address);
472		} else if (memory->mbcType == GB_HuC3) {
473			return 0x01; // TODO: Is this supposed to be the current SRAM bank?
474		}
475		return 0xFF;
476	case GB_REGION_WORKING_RAM_BANK0:
477	case GB_REGION_WORKING_RAM_BANK0 + 2:
478		return memory->wram[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
479	case GB_REGION_WORKING_RAM_BANK1:
480		if (segment < 0) {
481			return memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
482		} else if (segment < 8) {
483			return memory->wram[(address & (GB_SIZE_WORKING_RAM_BANK0 - 1)) + segment *GB_SIZE_WORKING_RAM_BANK0];
484		} else {
485			return 0xFF;
486		}
487	default:
488		if (address < GB_BASE_OAM) {
489			return memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
490		}
491		if (address < GB_BASE_UNUSABLE) {
492			if (gb->video.mode < 2) {
493				return gb->video.oam.raw[address & 0xFF];
494			}
495			return 0xFF;
496		}
497		if (address < GB_BASE_IO) {
498			mLOG(GB_MEM, GAME_ERROR, "Attempt to read from unusable memory: %04X", address);
499			if (gb->video.mode < 2) {
500				switch (gb->model) {
501				case GB_MODEL_AGB:
502					return (address & 0xF0) | ((address >> 4) & 0xF);
503				case GB_MODEL_CGB:
504					// TODO: R/W behavior
505					return 0x00;
506				default:
507					return 0x00;
508				}
509			}
510			return 0xFF;
511		}
512		if (address < GB_BASE_HRAM) {
513			return GBIORead(gb, address & (GB_SIZE_IO - 1));
514		}
515		if (address < GB_BASE_IE) {
516			return memory->hram[address & GB_SIZE_HRAM];
517		}
518		return GBIORead(gb, REG_IE);
519	}
520}
521
522void GBMemoryDMA(struct GB* gb, uint16_t base) {
523	if (base >= 0xE000) {
524		base &= 0xDFFF;
525	}
526	mTimingDeschedule(&gb->timing, &gb->memory.dmaEvent);
527	mTimingSchedule(&gb->timing, &gb->memory.dmaEvent, 8);
528	if (gb->cpu->cycles + 8 < gb->cpu->nextEvent) {
529		gb->cpu->nextEvent = gb->cpu->cycles + 8;
530	}
531	gb->memory.dmaSource = base;
532	gb->memory.dmaDest = 0;
533	gb->memory.dmaRemaining = 0xA0;
534}
535
536uint8_t GBMemoryWriteHDMA5(struct GB* gb, uint8_t value) {
537	gb->memory.hdmaSource = gb->memory.io[REG_HDMA1] << 8;
538	gb->memory.hdmaSource |= gb->memory.io[REG_HDMA2];
539	gb->memory.hdmaDest = gb->memory.io[REG_HDMA3] << 8;
540	gb->memory.hdmaDest |= gb->memory.io[REG_HDMA4];
541	gb->memory.hdmaSource &= 0xFFF0;
542	if (gb->memory.hdmaSource >= 0x8000 && gb->memory.hdmaSource < 0xA000) {
543		mLOG(GB_MEM, GAME_ERROR, "Invalid HDMA source: %04X", gb->memory.hdmaSource);
544		return value | 0x80;
545	}
546	gb->memory.hdmaDest &= 0x1FF0;
547	gb->memory.hdmaDest |= 0x8000;
548	bool wasHdma = gb->memory.isHdma;
549	gb->memory.isHdma = value & 0x80;
550	if ((!wasHdma && !gb->memory.isHdma) || (GBRegisterLCDCIsEnable(gb->memory.io[REG_LCDC]) && gb->video.mode == 0)) {
551		if (gb->memory.isHdma) {
552			gb->memory.hdmaRemaining = 0x10;
553		} else {
554			gb->memory.hdmaRemaining = ((value & 0x7F) + 1) * 0x10;
555		}
556		gb->cpuBlocked = true;
557		mTimingSchedule(&gb->timing, &gb->memory.hdmaEvent, 0);
558	} else if (gb->memory.isHdma && !GBRegisterLCDCIsEnable(gb->memory.io[REG_LCDC])) {
559		return 0x80 | ((value + 1) & 0x7F);
560	}
561	return value & 0x7F;
562}
563
564void _GBMemoryDMAService(struct mTiming* timing, void* context, uint32_t cyclesLate) {
565	struct GB* gb = context;
566	int dmaRemaining = gb->memory.dmaRemaining;
567	gb->memory.dmaRemaining = 0;
568	uint8_t b = GBLoad8(gb->cpu, gb->memory.dmaSource);
569	// TODO: Can DMA write OAM during modes 2-3?
570	gb->video.oam.raw[gb->memory.dmaDest] = b;
571	gb->video.renderer->writeOAM(gb->video.renderer, gb->memory.dmaDest);
572	++gb->memory.dmaSource;
573	++gb->memory.dmaDest;
574	gb->memory.dmaRemaining = dmaRemaining - 1;
575	if (gb->memory.dmaRemaining) {
576		mTimingSchedule(timing, &gb->memory.dmaEvent, 4 - cyclesLate);
577	}
578}
579
580void _GBMemoryHDMAService(struct mTiming* timing, void* context, uint32_t cyclesLate) {
581	struct GB* gb = context;
582	gb->cpuBlocked = true;
583	uint8_t b = gb->cpu->memory.load8(gb->cpu, gb->memory.hdmaSource);
584	gb->cpu->memory.store8(gb->cpu, gb->memory.hdmaDest, b);
585	++gb->memory.hdmaSource;
586	++gb->memory.hdmaDest;
587	--gb->memory.hdmaRemaining;
588	if (gb->memory.hdmaRemaining) {
589		mTimingDeschedule(timing, &gb->memory.hdmaEvent);
590		mTimingSchedule(timing, &gb->memory.hdmaEvent, 2 - cyclesLate);
591	} else {
592		gb->cpuBlocked = false;
593		gb->memory.io[REG_HDMA1] = gb->memory.hdmaSource >> 8;
594		gb->memory.io[REG_HDMA2] = gb->memory.hdmaSource;
595		gb->memory.io[REG_HDMA3] = gb->memory.hdmaDest >> 8;
596		gb->memory.io[REG_HDMA4] = gb->memory.hdmaDest;
597		if (gb->memory.isHdma) {
598			--gb->memory.io[REG_HDMA5];
599			if (gb->memory.io[REG_HDMA5] == 0xFF) {
600				gb->memory.isHdma = false;
601			}
602		} else {
603			gb->memory.io[REG_HDMA5] = 0xFF;
604		}
605	}
606}
607
608void GBPatch8(struct SM83Core* cpu, uint16_t address, int8_t value, int8_t* old, int segment) {
609	struct GB* gb = (struct GB*) cpu->master;
610	struct GBMemory* memory = &gb->memory;
611	int8_t oldValue = -1;
612
613	switch (address >> 12) {
614	case GB_REGION_CART_BANK0:
615	case GB_REGION_CART_BANK0 + 1:
616	case GB_REGION_CART_BANK0 + 2:
617	case GB_REGION_CART_BANK0 + 3:
618		_pristineCow(gb);
619		oldValue = memory->romBase[address & (GB_SIZE_CART_BANK0 - 1)];
620		memory->romBase[address & (GB_SIZE_CART_BANK0 - 1)] =  value;
621		break;
622	case GB_REGION_CART_BANK1:
623	case GB_REGION_CART_BANK1 + 1:
624	case GB_REGION_CART_BANK1 + 2:
625	case GB_REGION_CART_BANK1 + 3:
626		_pristineCow(gb);
627		if (segment < 0) {
628			oldValue = memory->romBank[address & (GB_SIZE_CART_BANK0 - 1)];
629			memory->romBank[address & (GB_SIZE_CART_BANK0 - 1)] = value;
630		} else if ((size_t) segment * GB_SIZE_CART_BANK0 < memory->romSize) {
631			oldValue = memory->rom[(address & (GB_SIZE_CART_BANK0 - 1)) + segment * GB_SIZE_CART_BANK0];
632			memory->rom[(address & (GB_SIZE_CART_BANK0 - 1)) + segment * GB_SIZE_CART_BANK0] = value;
633		} else {
634			return;
635		}
636		break;
637	case GB_REGION_VRAM:
638	case GB_REGION_VRAM + 1:
639		if (segment < 0) {
640			oldValue = gb->video.vramBank[address & (GB_SIZE_VRAM_BANK0 - 1)];
641			gb->video.vramBank[address & (GB_SIZE_VRAM_BANK0 - 1)] = value;
642			gb->video.renderer->writeVRAM(gb->video.renderer, (address & (GB_SIZE_VRAM_BANK0 - 1)) + GB_SIZE_VRAM_BANK0 * gb->video.vramCurrentBank);
643		} else if (segment < 2) {
644			oldValue = gb->video.vram[(address & (GB_SIZE_VRAM_BANK0 - 1)) + segment * GB_SIZE_VRAM_BANK0];
645			gb->video.vramBank[(address & (GB_SIZE_VRAM_BANK0 - 1)) + segment * GB_SIZE_VRAM_BANK0] = value;
646			gb->video.renderer->writeVRAM(gb->video.renderer, (address & (GB_SIZE_VRAM_BANK0 - 1)) + segment * GB_SIZE_VRAM_BANK0);
647		} else {
648			return;
649		}
650		break;
651	case GB_REGION_EXTERNAL_RAM:
652	case GB_REGION_EXTERNAL_RAM + 1:
653		if (memory->rtcAccess) {
654			memory->rtcRegs[memory->activeRtcReg] = value;
655		} else if (memory->sramAccess && memory->sram && memory->mbcType != GB_MBC2) {
656			// TODO: Remove sramAccess check?
657			memory->sramBank[address & (GB_SIZE_EXTERNAL_RAM - 1)] = value;
658		} else {
659			memory->mbcWrite(gb, address, value);
660		}
661		gb->sramDirty |= GB_SRAM_DIRT_NEW;
662		return;
663	case GB_REGION_WORKING_RAM_BANK0:
664	case GB_REGION_WORKING_RAM_BANK0 + 2:
665		oldValue = memory->wram[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
666		memory->wram[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)] = value;
667		break;
668	case GB_REGION_WORKING_RAM_BANK1:
669		if (segment < 0) {
670			oldValue = memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
671			memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)] = value;
672		} else if (segment < 8) {
673			oldValue = memory->wram[(address & (GB_SIZE_WORKING_RAM_BANK0 - 1)) + segment * GB_SIZE_WORKING_RAM_BANK0];
674			memory->wram[(address & (GB_SIZE_WORKING_RAM_BANK0 - 1)) + segment * GB_SIZE_WORKING_RAM_BANK0] = value;
675		} else {
676			return;
677		}
678		break;
679	default:
680		if (address < GB_BASE_OAM) {
681			oldValue = memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
682			memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)] = value;
683		} else if (address < GB_BASE_UNUSABLE) {
684			oldValue = gb->video.oam.raw[address & 0xFF];
685			gb->video.oam.raw[address & 0xFF] = value;
686			gb->video.renderer->writeOAM(gb->video.renderer, address & 0xFF);
687		} else if (address < GB_BASE_HRAM) {
688			mLOG(GB_MEM, STUB, "Unimplemented memory Patch8: 0x%08X", address);
689			return;
690		} else if (address < GB_BASE_IE) {
691			oldValue = memory->hram[address & GB_SIZE_HRAM];
692			memory->hram[address & GB_SIZE_HRAM] = value;
693		} else {
694			mLOG(GB_MEM, STUB, "Unimplemented memory Patch8: 0x%08X", address);
695			return;
696		}
697	}
698	if (old) {
699		*old = oldValue;
700	}
701}
702
703void GBMemorySerialize(const struct GB* gb, struct GBSerializedState* state) {
704	const struct GBMemory* memory = &gb->memory;
705	memcpy(state->wram, memory->wram, GB_SIZE_WORKING_RAM);
706	memcpy(state->hram, memory->hram, GB_SIZE_HRAM);
707	STORE_16LE(memory->currentBank, 0, &state->memory.currentBank);
708	state->memory.wramCurrentBank = memory->wramCurrentBank;
709	state->memory.sramCurrentBank = memory->sramCurrentBank;
710
711	STORE_16LE(memory->dmaSource, 0, &state->memory.dmaSource);
712	STORE_16LE(memory->dmaDest, 0, &state->memory.dmaDest);
713
714	STORE_16LE(memory->hdmaSource, 0, &state->memory.hdmaSource);
715	STORE_16LE(memory->hdmaDest, 0, &state->memory.hdmaDest);
716
717	STORE_16LE(memory->hdmaRemaining, 0, &state->memory.hdmaRemaining);
718	state->memory.dmaRemaining = memory->dmaRemaining;
719	memcpy(state->memory.rtcRegs, memory->rtcRegs, sizeof(state->memory.rtcRegs));
720
721	STORE_32LE(memory->dmaEvent.when - mTimingCurrentTime(&gb->timing), 0, &state->memory.dmaNext);
722	STORE_32LE(memory->hdmaEvent.when - mTimingCurrentTime(&gb->timing), 0, &state->memory.hdmaNext);
723
724	GBSerializedMemoryFlags flags = 0;
725	flags = GBSerializedMemoryFlagsSetSramAccess(flags, memory->sramAccess);
726	flags = GBSerializedMemoryFlagsSetRtcAccess(flags, memory->rtcAccess);
727	flags = GBSerializedMemoryFlagsSetRtcLatched(flags, memory->rtcLatched);
728	flags = GBSerializedMemoryFlagsSetIme(flags, memory->ime);
729	flags = GBSerializedMemoryFlagsSetIsHdma(flags, memory->isHdma);
730	flags = GBSerializedMemoryFlagsSetActiveRtcReg(flags, memory->activeRtcReg);
731	STORE_16LE(flags, 0, &state->memory.flags);
732
733	switch (memory->mbcType) {
734	case GB_MBC1:
735		state->memory.mbc1.mode = memory->mbcState.mbc1.mode;
736		state->memory.mbc1.multicartStride = memory->mbcState.mbc1.multicartStride;
737		state->memory.mbc1.bankLo = memory->mbcState.mbc1.bankLo;
738		state->memory.mbc1.bankHi = memory->mbcState.mbc1.bankHi;
739		break;
740	case GB_MBC3_RTC:
741		STORE_64LE(gb->memory.rtcLastLatch, 0, &state->memory.rtc.lastLatch);
742		break;
743	case GB_MBC7:
744		state->memory.mbc7.state = memory->mbcState.mbc7.state;
745		state->memory.mbc7.eeprom = memory->mbcState.mbc7.eeprom;
746		state->memory.mbc7.address = memory->mbcState.mbc7.address;
747		state->memory.mbc7.access = memory->mbcState.mbc7.access;
748		state->memory.mbc7.latch = memory->mbcState.mbc7.latch;
749		state->memory.mbc7.srBits = memory->mbcState.mbc7.srBits;
750		STORE_16LE(memory->mbcState.mbc7.sr, 0, &state->memory.mbc7.sr);
751		STORE_32LE(memory->mbcState.mbc7.writable, 0, &state->memory.mbc7.writable);
752		break;
753	case GB_MMM01:
754		state->memory.mmm01.locked = memory->mbcState.mmm01.locked;
755		state->memory.mmm01.bank0 = memory->mbcState.mmm01.currentBank0;
756		break;
757	default:
758		break;
759	}
760}
761
762void GBMemoryDeserialize(struct GB* gb, const struct GBSerializedState* state) {
763	struct GBMemory* memory = &gb->memory;
764	memcpy(memory->wram, state->wram, GB_SIZE_WORKING_RAM);
765	memcpy(memory->hram, state->hram, GB_SIZE_HRAM);
766	LOAD_16LE(memory->currentBank, 0, &state->memory.currentBank);
767	memory->wramCurrentBank = state->memory.wramCurrentBank;
768	memory->sramCurrentBank = state->memory.sramCurrentBank;
769
770	GBMBCSwitchBank(gb, memory->currentBank);
771	GBMemorySwitchWramBank(memory, memory->wramCurrentBank);
772	GBMBCSwitchSramBank(gb, memory->sramCurrentBank);
773
774	LOAD_16LE(memory->dmaSource, 0, &state->memory.dmaSource);
775	LOAD_16LE(memory->dmaDest, 0, &state->memory.dmaDest);
776
777	LOAD_16LE(memory->hdmaSource, 0, &state->memory.hdmaSource);
778	LOAD_16LE(memory->hdmaDest, 0, &state->memory.hdmaDest);
779
780	LOAD_16LE(memory->hdmaRemaining, 0, &state->memory.hdmaRemaining);
781	memory->dmaRemaining = state->memory.dmaRemaining;
782	memcpy(memory->rtcRegs, state->memory.rtcRegs, sizeof(state->memory.rtcRegs));
783
784	uint32_t when;
785	LOAD_32LE(when, 0, &state->memory.dmaNext);
786	if (memory->dmaRemaining) {
787		mTimingSchedule(&gb->timing, &memory->dmaEvent, when);
788	} else {
789		memory->dmaEvent.when = when + mTimingCurrentTime(&gb->timing);
790	}
791	LOAD_32LE(when, 0, &state->memory.hdmaNext);
792	if (memory->hdmaRemaining) {
793		mTimingSchedule(&gb->timing, &memory->hdmaEvent, when);
794	} else {
795		memory->hdmaEvent.when = when + mTimingCurrentTime(&gb->timing);
796	}
797
798	GBSerializedMemoryFlags flags;
799	LOAD_16LE(flags, 0, &state->memory.flags);
800	memory->sramAccess = GBSerializedMemoryFlagsGetSramAccess(flags);
801	memory->rtcAccess = GBSerializedMemoryFlagsGetRtcAccess(flags);
802	memory->rtcLatched = GBSerializedMemoryFlagsGetRtcLatched(flags);
803	memory->ime = GBSerializedMemoryFlagsGetIme(flags);
804	memory->isHdma = GBSerializedMemoryFlagsGetIsHdma(flags);
805	memory->activeRtcReg = GBSerializedMemoryFlagsGetActiveRtcReg(flags);
806
807	switch (memory->mbcType) {
808	case GB_MBC1:
809		memory->mbcState.mbc1.mode = state->memory.mbc1.mode;
810		memory->mbcState.mbc1.multicartStride = state->memory.mbc1.multicartStride;
811		memory->mbcState.mbc1.bankLo = state->memory.mbc1.bankLo;
812		memory->mbcState.mbc1.bankHi = state->memory.mbc1.bankHi;
813		if (!(memory->mbcState.mbc1.bankLo || memory->mbcState.mbc1.bankHi)) {
814			// Backwards compat
815			memory->mbcState.mbc1.bankLo = memory->currentBank & ((1 << memory->mbcState.mbc1.multicartStride) - 1);
816			memory->mbcState.mbc1.bankHi = memory->currentBank >> memory->mbcState.mbc1.multicartStride;
817		}
818		if (memory->mbcState.mbc1.mode) {
819			GBMBCSwitchBank0(gb, memory->mbcState.mbc1.bankHi);
820		}
821		break;
822	case GB_MBC3_RTC:
823		LOAD_64LE(gb->memory.rtcLastLatch, 0, &state->memory.rtc.lastLatch);
824		break;
825	case GB_MBC7:
826		memory->mbcState.mbc7.state = state->memory.mbc7.state;
827		memory->mbcState.mbc7.eeprom = state->memory.mbc7.eeprom;
828		memory->mbcState.mbc7.address = state->memory.mbc7.address & 0x7F;
829		memory->mbcState.mbc7.access = state->memory.mbc7.access;
830		memory->mbcState.mbc7.latch = state->memory.mbc7.latch;
831		memory->mbcState.mbc7.srBits = state->memory.mbc7.srBits;
832		LOAD_16LE(memory->mbcState.mbc7.sr, 0, &state->memory.mbc7.sr);
833		LOAD_32LE(memory->mbcState.mbc7.writable, 0, &state->memory.mbc7.writable);
834		break;
835	case GB_MMM01:
836		memory->mbcState.mmm01.locked = state->memory.mmm01.locked;
837		memory->mbcState.mmm01.currentBank0 = state->memory.mmm01.bank0;
838		if (memory->mbcState.mmm01.locked) {
839			GBMBCSwitchBank0(gb, memory->mbcState.mmm01.currentBank0);
840		} else {
841			GBMBCSwitchBank0(gb, gb->memory.romSize / GB_SIZE_CART_BANK0 - 2);
842		}
843		break;
844	default:
845		break;
846	}
847}
848
849void _pristineCow(struct GB* gb) {
850	if (!gb->isPristine) {
851		return;
852	}
853	void* newRom = anonymousMemoryMap(GB_SIZE_CART_MAX);
854	memcpy(newRom, gb->memory.rom, gb->memory.romSize);
855	memset(((uint8_t*) newRom) + gb->memory.romSize, 0xFF, GB_SIZE_CART_MAX - gb->memory.romSize);
856	if (gb->memory.rom == gb->memory.romBase) {
857		gb->memory.romBase = newRom;
858	}
859	gb->memory.rom = newRom;
860	GBMBCSwitchBank(gb, gb->memory.currentBank);
861	gb->isPristine = false;
862}