all repos — mgba @ a3a380d9f551bbc5ad726ef07c11d20c0263d1e5

mGBA Game Boy Advance Emulator

src/gb/memory.c (view raw)

  1/* Copyright (c) 2013-2016 Jeffrey Pfau
  2 *
  3 * This Source Code Form is subject to the terms of the Mozilla Public
  4 * License, v. 2.0. If a copy of the MPL was not distributed with this
  5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  6#include "memory.h"
  7
  8#include "core/interface.h"
  9#include "gb/gb.h"
 10#include "gb/io.h"
 11
 12#include "util/memory.h"
 13
 14#include <time.h>
 15
 16mLOG_DEFINE_CATEGORY(GB_MBC, "GB MBC");
 17mLOG_DEFINE_CATEGORY(GB_MEM, "GB Memory");
 18
 19static void _pristineCow(struct GB* gba);
 20
 21static void _GBMBCNone(struct GBMemory* memory, uint16_t address, uint8_t value) {
 22	UNUSED(memory);
 23	UNUSED(address);
 24	UNUSED(value);
 25
 26	mLOG(GB_MBC, GAME_ERROR, "Wrote to invalid MBC");
 27}
 28
 29static void _GBMBC1(struct GBMemory*, uint16_t address, uint8_t value);
 30static void _GBMBC2(struct GBMemory*, uint16_t address, uint8_t value);
 31static void _GBMBC3(struct GBMemory*, uint16_t address, uint8_t value);
 32static void _GBMBC5(struct GBMemory*, uint16_t address, uint8_t value);
 33static void _GBMBC6(struct GBMemory*, uint16_t address, uint8_t value);
 34static void _GBMBC7(struct GBMemory*, uint16_t address, uint8_t value);
 35static uint8_t _GBMBC7Read(struct GBMemory*, uint16_t address);
 36static void _GBMBC7Write(struct GBMemory*, uint16_t address, uint8_t value);
 37
 38static uint8_t GBFastLoad8(struct LR35902Core* cpu, uint16_t address) {
 39	if (UNLIKELY(address > cpu->memory.activeRegionEnd)) {
 40		cpu->memory.setActiveRegion(cpu, address);
 41		return cpu->memory.cpuLoad8(cpu, address);
 42	}
 43	return cpu->memory.activeRegion[address & cpu->memory.activeMask];
 44}
 45
 46static void GBSetActiveRegion(struct LR35902Core* cpu, uint16_t address) {
 47	struct GB* gb = (struct GB*) cpu->master;
 48	struct GBMemory* memory = &gb->memory;
 49	switch (address >> 12) {
 50	case GB_REGION_CART_BANK0:
 51	case GB_REGION_CART_BANK0 + 1:
 52	case GB_REGION_CART_BANK0 + 2:
 53	case GB_REGION_CART_BANK0 + 3:
 54		cpu->memory.cpuLoad8 = GBFastLoad8;
 55		cpu->memory.activeRegion = memory->romBase;
 56		cpu->memory.activeRegionEnd = GB_BASE_CART_BANK1;
 57		cpu->memory.activeMask = GB_SIZE_CART_BANK0 - 1;
 58		break;
 59	case GB_REGION_CART_BANK1:
 60	case GB_REGION_CART_BANK1 + 1:
 61	case GB_REGION_CART_BANK1 + 2:
 62	case GB_REGION_CART_BANK1 + 3:
 63		cpu->memory.cpuLoad8 = GBFastLoad8;
 64		cpu->memory.activeRegion = memory->romBank;
 65		cpu->memory.activeRegionEnd = GB_BASE_VRAM;
 66		cpu->memory.activeMask = GB_SIZE_CART_BANK0 - 1;
 67		break;
 68	default:
 69		cpu->memory.cpuLoad8 = GBLoad8;
 70		break;
 71	}
 72}
 73
 74static void _GBMemoryDMAService(struct GB* gb);
 75static void _GBMemoryHDMAService(struct GB* gb);
 76
 77void GBMemoryInit(struct GB* gb) {
 78	struct LR35902Core* cpu = gb->cpu;
 79	cpu->memory.cpuLoad8 = GBLoad8;
 80	cpu->memory.load8 = GBLoad8;
 81	cpu->memory.store8 = GBStore8;
 82	cpu->memory.setActiveRegion = GBSetActiveRegion;
 83
 84	gb->memory.wram = 0;
 85	gb->memory.wramBank = 0;
 86	gb->memory.rom = 0;
 87	gb->memory.romBank = 0;
 88	gb->memory.romSize = 0;
 89	gb->memory.sram = 0;
 90	gb->memory.mbcType = GB_MBC_NONE;
 91	gb->memory.mbc = 0;
 92
 93	gb->memory.rtc = NULL;
 94
 95	GBIOInit(gb);
 96}
 97
 98void GBMemoryDeinit(struct GB* gb) {
 99	mappedMemoryFree(gb->memory.wram, GB_SIZE_WORKING_RAM);
100	if (gb->memory.rom) {
101		mappedMemoryFree(gb->memory.rom, gb->memory.romSize);
102	}
103}
104
105void GBMemoryReset(struct GB* gb) {
106	if (gb->memory.wram) {
107		mappedMemoryFree(gb->memory.wram, GB_SIZE_WORKING_RAM);
108	}
109	gb->memory.wram = anonymousMemoryMap(GB_SIZE_WORKING_RAM);
110	GBMemorySwitchWramBank(&gb->memory, 1);
111	gb->memory.romBank = &gb->memory.rom[GB_SIZE_CART_BANK0];
112	gb->memory.currentBank = 1;
113	if (!gb->memory.sram) {
114		gb->memory.sram = anonymousMemoryMap(0x20000);
115	}
116	gb->memory.sramCurrentBank = 0;
117	gb->memory.sramBank = gb->memory.sram;
118
119	gb->memory.ime = false;
120	gb->memory.ie = 0;
121
122	gb->memory.dmaNext = INT_MAX;
123	gb->memory.dmaRemaining = 0;
124	gb->memory.dmaSource = 0;
125	gb->memory.dmaDest = 0;
126	gb->memory.hdmaNext = INT_MAX;
127	gb->memory.hdmaRemaining = 0;
128	gb->memory.hdmaSource = 0;
129	gb->memory.hdmaDest = 0;
130	gb->memory.isHdma = false;
131
132	gb->memory.sramAccess = false;
133	gb->memory.rtcAccess = false;
134	gb->memory.activeRtcReg = 0;
135	gb->memory.rtcLatched = false;
136	memset(&gb->memory.rtcRegs, 0, sizeof(gb->memory.rtcRegs));
137
138	memset(&gb->memory.hram, 0, sizeof(gb->memory.hram));
139	memset(&gb->memory.mbcState, 0, sizeof(gb->memory.mbcState));
140
141	const struct GBCartridge* cart = (const struct GBCartridge*) &gb->memory.rom[0x100];
142	switch (cart->type) {
143	case 0:
144	case 8:
145	case 9:
146		gb->memory.mbc = _GBMBCNone;
147		gb->memory.mbcType = GB_MBC_NONE;
148		break;
149	case 1:
150	case 2:
151	case 3:
152		gb->memory.mbc = _GBMBC1;
153		gb->memory.mbcType = GB_MBC1;
154		break;
155	case 5:
156	case 6:
157		gb->memory.mbc = _GBMBC2;
158		gb->memory.mbcType = GB_MBC2;
159		break;
160	case 0x0F:
161	case 0x10:
162	case 0x11:
163	case 0x12:
164	case 0x13:
165		gb->memory.mbc = _GBMBC3;
166		gb->memory.mbcType = GB_MBC3;
167		break;
168	default:
169		mLOG(GB_MBC, WARN, "Unknown MBC type: %02X", cart->type);
170	case 0x19:
171	case 0x1A:
172	case 0x1B:
173		gb->memory.mbc = _GBMBC5;
174		gb->memory.mbcType = GB_MBC5;
175		break;
176	case 0x1C:
177	case 0x1D:
178	case 0x1E:
179		gb->memory.mbc = _GBMBC5;
180		gb->memory.mbcType = GB_MBC5_RUMBLE;
181		break;
182	case 0x20:
183		gb->memory.mbc = _GBMBC6;
184		gb->memory.mbcType = GB_MBC6;
185		break;
186	case 0x22:
187		gb->memory.mbc = _GBMBC7;
188		gb->memory.mbcType = GB_MBC7;
189		break;
190	}
191
192	if (!gb->memory.wram) {
193		GBMemoryDeinit(gb);
194	}
195}
196
197void GBMemorySwitchWramBank(struct GBMemory* memory, int bank) {
198	bank &= 7;
199	if (!bank) {
200		bank = 1;
201	}
202	memory->wramBank = &memory->wram[GB_SIZE_WORKING_RAM_BANK0 * bank];
203	memory->wramCurrentBank = bank;
204}
205
206uint8_t GBLoad8(struct LR35902Core* cpu, uint16_t address) {
207	struct GB* gb = (struct GB*) cpu->master;
208	struct GBMemory* memory = &gb->memory;
209	switch (address >> 12) {
210	case GB_REGION_CART_BANK0:
211	case GB_REGION_CART_BANK0 + 1:
212	case GB_REGION_CART_BANK0 + 2:
213	case GB_REGION_CART_BANK0 + 3:
214		return memory->romBase[address & (GB_SIZE_CART_BANK0 - 1)];
215	case GB_REGION_CART_BANK1:
216	case GB_REGION_CART_BANK1 + 1:
217	case GB_REGION_CART_BANK1 + 2:
218	case GB_REGION_CART_BANK1 + 3:
219		return memory->romBank[address & (GB_SIZE_CART_BANK0 - 1)];
220	case GB_REGION_VRAM:
221	case GB_REGION_VRAM + 1:
222		return gb->video.vramBank[address & (GB_SIZE_VRAM_BANK0 - 1)];
223	case GB_REGION_EXTERNAL_RAM:
224	case GB_REGION_EXTERNAL_RAM + 1:
225		if (memory->rtcAccess) {
226			return gb->memory.rtcRegs[memory->activeRtcReg];
227		} else if (memory->sramAccess) {
228			return gb->memory.sramBank[address & (GB_SIZE_EXTERNAL_RAM - 1)];
229		} else if (memory->mbcType == GB_MBC7) {
230			return _GBMBC7Read(memory, address);
231		}
232		return 0xFF;
233	case GB_REGION_WORKING_RAM_BANK0:
234	case GB_REGION_WORKING_RAM_BANK0 + 2:
235		return memory->wram[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
236	case GB_REGION_WORKING_RAM_BANK1:
237		return memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
238	default:
239		if (address < GB_BASE_OAM) {
240			return memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
241		}
242		if (address < GB_BASE_UNUSABLE) {
243			if (gb->video.mode < 2) {
244				return gb->video.oam.raw[address & 0xFF];
245			}
246			return 0xFF;
247		}
248		if (address < GB_BASE_IO) {
249			mLOG(GB_MEM, GAME_ERROR, "Attempt to read from unusable memory: %04X", address);
250			return 0xFF;
251		}
252		if (address < GB_BASE_HRAM) {
253			return GBIORead(gb, address & (GB_SIZE_IO - 1));
254		}
255		if (address < GB_BASE_IE) {
256			return memory->hram[address & GB_SIZE_HRAM];
257		}
258		return GBIORead(gb, REG_IE);
259	}
260}
261
262void GBStore8(struct LR35902Core* cpu, uint16_t address, int8_t value) {
263	struct GB* gb = (struct GB*) cpu->master;
264	struct GBMemory* memory = &gb->memory;
265	switch (address >> 12) {
266	case GB_REGION_CART_BANK0:
267	case GB_REGION_CART_BANK0 + 1:
268	case GB_REGION_CART_BANK0 + 2:
269	case GB_REGION_CART_BANK0 + 3:
270	case GB_REGION_CART_BANK1:
271	case GB_REGION_CART_BANK1 + 1:
272	case GB_REGION_CART_BANK1 + 2:
273	case GB_REGION_CART_BANK1 + 3:
274		memory->mbc(memory, address, value);
275		cpu->memory.setActiveRegion(cpu, cpu->pc);
276		return;
277	case GB_REGION_VRAM:
278	case GB_REGION_VRAM + 1:
279		// TODO: Block access in wrong modes
280		gb->video.vramBank[address & (GB_SIZE_VRAM_BANK0 - 1)] = value;
281		return;
282	case GB_REGION_EXTERNAL_RAM:
283	case GB_REGION_EXTERNAL_RAM + 1:
284		if (memory->rtcAccess) {
285			gb->memory.rtcRegs[memory->activeRtcReg] = value;
286		} else if (memory->sramAccess) {
287			gb->memory.sramBank[address & (GB_SIZE_EXTERNAL_RAM - 1)] = value;
288		} else if (gb->memory.mbcType == GB_MBC7) {
289			_GBMBC7Write(&gb->memory, address, value);
290		}
291		return;
292	case GB_REGION_WORKING_RAM_BANK0:
293	case GB_REGION_WORKING_RAM_BANK0 + 2:
294		memory->wram[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)] = value;
295		return;
296	case GB_REGION_WORKING_RAM_BANK1:
297		memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)] = value;
298		return;
299	default:
300		if (address < GB_BASE_OAM) {
301			memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)] = value;
302		} else if (address < GB_BASE_UNUSABLE) {
303			if (gb->video.mode < 2) {
304				gb->video.oam.raw[address & 0xFF] = value;
305			}
306		} else if (address < GB_BASE_IO) {
307			mLOG(GB_MEM, GAME_ERROR, "Attempt to write to unusable memory: %04X:%02X", address, value);
308		} else if (address < GB_BASE_HRAM) {
309			GBIOWrite(gb, address & (GB_SIZE_IO - 1), value);
310		} else if (address < GB_BASE_IE) {
311			memory->hram[address & GB_SIZE_HRAM] = value;
312		} else {
313			GBIOWrite(gb, REG_IE, value);
314		}
315	}
316}
317
318int32_t GBMemoryProcessEvents(struct GB* gb, int32_t cycles) {
319	int nextEvent = INT_MAX;
320	if (gb->memory.dmaRemaining) {
321		gb->memory.dmaNext -= cycles;
322		if (gb->memory.dmaNext <= 0) {
323			_GBMemoryDMAService(gb);
324		}
325		nextEvent = gb->memory.dmaNext;
326	}
327	if (gb->memory.hdmaRemaining) {
328		gb->memory.hdmaNext -= cycles;
329		if (gb->memory.hdmaNext <= 0) {
330			_GBMemoryHDMAService(gb);
331		}
332		if (gb->memory.hdmaNext < nextEvent) {
333			nextEvent = gb->memory.hdmaNext;
334		}
335	}
336	return nextEvent;
337}
338
339void GBMemoryDMA(struct GB* gb, uint16_t base) {
340	if (base > 0xF100) {
341		return;
342	}
343	gb->cpu->memory.store8 = GBDMAStore8;
344	gb->cpu->memory.load8 = GBDMALoad8;
345	gb->cpu->memory.cpuLoad8 = GBDMALoad8;
346	gb->memory.dmaNext = gb->cpu->cycles + 8;
347	if (gb->memory.dmaNext < gb->cpu->nextEvent) {
348		gb->cpu->nextEvent = gb->memory.dmaNext;
349	}
350	gb->memory.dmaSource = base;
351	gb->memory.dmaDest = 0;
352	gb->memory.dmaRemaining = 0xA0;
353}
354
355void GBMemoryWriteHDMA5(struct GB* gb, uint8_t value) {
356	gb->memory.hdmaSource = gb->memory.io[REG_HDMA1] << 8;
357	gb->memory.hdmaSource |= gb->memory.io[REG_HDMA2];
358	gb->memory.hdmaDest = gb->memory.io[REG_HDMA3] << 8;
359	gb->memory.hdmaDest |= gb->memory.io[REG_HDMA4];
360	gb->memory.hdmaSource &= 0xFFF0;
361	if (gb->memory.hdmaSource >= 0x8000 && gb->memory.hdmaSource < 0xA000) {
362		mLOG(GB_MEM, GAME_ERROR, "Invalid HDMA source: %04X", gb->memory.hdmaSource);
363		return;
364	}
365	gb->memory.hdmaDest &= 0x1FF0;
366	gb->memory.hdmaDest |= 0x8000;
367	bool wasHdma = gb->memory.isHdma;
368	gb->memory.isHdma = value & 0x80;
369	if (!wasHdma && !gb->memory.isHdma) {
370		gb->memory.hdmaRemaining = ((value & 0x7F) + 1) * 0x10;
371		gb->memory.hdmaNext = gb->cpu->cycles;
372		gb->cpu->nextEvent = gb->cpu->cycles;
373	}
374}
375
376void _GBMemoryDMAService(struct GB* gb) {
377	uint8_t b = GBLoad8(gb->cpu, gb->memory.dmaSource);
378	// TODO: Can DMA write OAM during modes 2-3?
379	gb->video.oam.raw[gb->memory.dmaDest] = b;
380	++gb->memory.dmaSource;
381	++gb->memory.dmaDest;
382	--gb->memory.dmaRemaining;
383	if (gb->memory.dmaRemaining) {
384		gb->memory.dmaNext += 4;
385	} else {
386		gb->memory.dmaNext = INT_MAX;
387		gb->cpu->memory.store8 = GBStore8;
388		gb->cpu->memory.load8 = GBLoad8;
389	}
390}
391
392void _GBMemoryHDMAService(struct GB* gb) {
393	uint8_t b = gb->cpu->memory.load8(gb->cpu, gb->memory.hdmaSource);
394	gb->cpu->memory.store8(gb->cpu, gb->memory.hdmaDest, b);
395	++gb->memory.hdmaSource;
396	++gb->memory.hdmaDest;
397	--gb->memory.hdmaRemaining;
398	gb->cpu->cycles += 2;
399	if (gb->memory.hdmaRemaining) {
400		gb->memory.hdmaNext += 2;
401	} else {
402		gb->memory.io[REG_HDMA1] = gb->memory.hdmaSource >> 8;
403		gb->memory.io[REG_HDMA2] = gb->memory.hdmaSource;
404		gb->memory.io[REG_HDMA3] = gb->memory.hdmaDest >> 8;
405		gb->memory.io[REG_HDMA4] = gb->memory.hdmaDest;
406		if (gb->memory.isHdma) {
407			--gb->memory.io[REG_HDMA5];
408			if (gb->memory.io[REG_HDMA5] == 0xFF) {
409				gb->memory.isHdma = false;
410			}
411		} else {
412			gb->memory.io[REG_HDMA5] |= 0x80;
413		}
414	}
415}
416
417struct OAMBlock {
418	uint16_t low;
419	uint16_t high;
420};
421
422static const struct OAMBlock _oamBlockDMG[] = {
423	{ 0xA000, 0xFE00 },
424	{ 0xA000, 0xFE00 },
425	{ 0xA000, 0xFE00 },
426	{ 0xA000, 0xFE00 },
427	{ 0x8000, 0xA000 },
428	{ 0xA000, 0xFE00 },
429	{ 0xA000, 0xFE00 },
430	{ 0xA000, 0xFE00 },
431};
432
433static const struct OAMBlock _oamBlockCGB[] = {
434	{ 0xA000, 0xC000 },
435	{ 0xA000, 0xC000 },
436	{ 0xA000, 0xC000 },
437	{ 0xA000, 0xC000 },
438	{ 0x8000, 0xA000 },
439	{ 0xA000, 0xC000 },
440	{ 0xC000, 0xFE00 },
441	{ 0xA000, 0xC000 },
442};
443
444uint8_t GBDMALoad8(struct LR35902Core* cpu, uint16_t address) {
445	struct GB* gb = (struct GB*) cpu->master;
446	struct GBMemory* memory = &gb->memory;
447	const struct OAMBlock* block = gb->model < GB_MODEL_CGB ? _oamBlockDMG : _oamBlockCGB;
448	block = &block[memory->dmaSource >> 13];
449	if (address >= block->low && address < block->high) {
450		return 0xFF;
451	}
452	if (address >= GB_BASE_OAM && address < GB_BASE_UNUSABLE) {
453		return 0xFF;
454	}
455	return GBLoad8(cpu, address);
456}
457
458void GBDMAStore8(struct LR35902Core* cpu, uint16_t address, int8_t value) {
459	struct GB* gb = (struct GB*) cpu->master;
460	struct GBMemory* memory = &gb->memory;
461	const struct OAMBlock* block = gb->model < GB_MODEL_CGB ? _oamBlockDMG : _oamBlockCGB;
462	block = &block[memory->dmaSource >> 13];
463	if (address >= block->low && address < block->high) {
464		return;
465	}
466	if (address >= GB_BASE_OAM && address < GB_BASE_UNUSABLE) {
467		return;
468	}
469	GBStore8(cpu, address, value);
470}
471
472void GBPatch8(struct LR35902Core* cpu, uint16_t address, int8_t value, int8_t* old) {
473	struct GB* gb = (struct GB*) cpu->master;
474	struct GBMemory* memory = &gb->memory;
475	int8_t oldValue = -1;
476
477	switch (address >> 12) {
478	case GB_REGION_CART_BANK0:
479	case GB_REGION_CART_BANK0 + 1:
480	case GB_REGION_CART_BANK0 + 2:
481	case GB_REGION_CART_BANK0 + 3:
482		_pristineCow(gb);
483		oldValue = memory->rom[address & (GB_SIZE_CART_BANK0 - 1)];
484		memory->rom[address & (GB_SIZE_CART_BANK0 - 1)] =  value;
485		break;
486	case GB_REGION_CART_BANK1:
487	case GB_REGION_CART_BANK1 + 1:
488	case GB_REGION_CART_BANK1 + 2:
489	case GB_REGION_CART_BANK1 + 3:
490		_pristineCow(gb);
491		oldValue = memory->romBank[address & (GB_SIZE_CART_BANK0 - 1)];
492		memory->romBank[address & (GB_SIZE_CART_BANK0 - 1)] =  value;
493		break;
494	case GB_REGION_VRAM:
495	case GB_REGION_VRAM + 1:
496		oldValue = gb->video.vramBank[address & (GB_SIZE_VRAM_BANK0 - 1)];
497		gb->video.vramBank[address & (GB_SIZE_VRAM_BANK0 - 1)] = value;
498		break;
499	case GB_REGION_EXTERNAL_RAM:
500	case GB_REGION_EXTERNAL_RAM + 1:
501		mLOG(GB_MEM, STUB, "Unimplemented memory Patch8: 0x%08X", address);
502		return;
503	case GB_REGION_WORKING_RAM_BANK0:
504	case GB_REGION_WORKING_RAM_BANK0 + 2:
505		oldValue = memory->wram[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
506		memory->wram[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)] = value;
507		break;
508	case GB_REGION_WORKING_RAM_BANK1:
509		oldValue = memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
510		memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)] = value;
511		break;
512	default:
513		if (address < GB_BASE_OAM) {
514			oldValue = memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)];
515			memory->wramBank[address & (GB_SIZE_WORKING_RAM_BANK0 - 1)] = value;
516		} else if (address < GB_BASE_UNUSABLE) {
517			oldValue = gb->video.oam.raw[address & 0xFF];
518			gb->video.oam.raw[address & 0xFF] = value;
519		} else if (address < GB_BASE_HRAM) {
520			mLOG(GB_MEM, STUB, "Unimplemented memory Patch8: 0x%08X", address);
521			return;
522		} else if (address < GB_BASE_IE) {
523			oldValue = memory->hram[address & GB_SIZE_HRAM];
524			memory->hram[address & GB_SIZE_HRAM] = value;
525		} else {
526			mLOG(GB_MEM, STUB, "Unimplemented memory Patch8: 0x%08X", address);
527			return;
528		}
529	}
530	if (old) {
531		*old = oldValue;
532	}
533}
534
535static void _switchBank(struct GBMemory* memory, int bank) {
536	size_t bankStart = bank * GB_SIZE_CART_BANK0;
537	if (bankStart + GB_SIZE_CART_BANK0 > memory->romSize) {
538		mLOG(GB_MBC, GAME_ERROR, "Attempting to switch to an invalid ROM bank: %0X", bank);
539		bankStart &= (memory->romSize - 1);
540		bank = bankStart / GB_SIZE_CART_BANK0;
541	}
542	memory->romBank = &memory->rom[bankStart];
543	memory->currentBank = bank;
544}
545
546static void _switchSramBank(struct GBMemory* memory, int bank) {
547	size_t bankStart = bank * GB_SIZE_EXTERNAL_RAM;
548	memory->sramBank = &memory->sram[bankStart];
549	memory->sramCurrentBank = bank;
550}
551
552static void _latchRtc(struct GBMemory* memory) {
553	time_t t;
554	struct mRTCSource* rtc = memory->rtc;
555	if (rtc) {
556		if (rtc->sample) {
557			rtc->sample(rtc);
558		}
559		t = rtc->unixTime(rtc);
560	} else {
561		t = time(0);
562	}
563	struct tm date;
564	localtime_r(&t, &date);
565	memory->rtcRegs[0] = date.tm_sec;
566	memory->rtcRegs[1] = date.tm_min;
567	memory->rtcRegs[2] = date.tm_hour;
568	memory->rtcRegs[3] = date.tm_yday; // TODO: Persist day counter
569	memory->rtcRegs[4] &= 0xF0;
570	memory->rtcRegs[4] |= date.tm_yday >> 8;
571}
572
573void _GBMBC1(struct GBMemory* memory, uint16_t address, uint8_t value) {
574	int bank = value & 0x1F;
575	switch (address >> 13) {
576	case 0x0:
577		switch (value) {
578		case 0:
579			memory->sramAccess = false;
580			break;
581		case 0xA:
582			memory->sramAccess = true;
583			_switchSramBank(memory, memory->sramCurrentBank);
584			break;
585		default:
586			// TODO
587			mLOG(GB_MBC, STUB, "MBC1 unknown value %02X", value);
588			break;
589		}
590		break;
591	case 0x1:
592		if (!bank) {
593			++bank;
594		}
595		_switchBank(memory, bank | (memory->currentBank & 0x60));
596		break;
597	case 0x2:
598		bank &= 3;
599		if (!memory->mbcState.mbc1.mode) {
600			_switchBank(memory, (bank << 5) | (memory->currentBank & 0x1F));
601		} else {
602			_switchSramBank(memory, bank);
603		}
604		break;
605	case 0x3:
606		memory->mbcState.mbc1.mode = value & 1;
607		if (memory->mbcState.mbc1.mode) {
608			_switchBank(memory, memory->currentBank & 0x1F);
609		} else {
610			_switchSramBank(memory, 0);
611		}
612		break;
613	default:
614		// TODO
615		mLOG(GB_MBC, STUB, "MBC1 unknown address: %04X:%02X", address, value);
616		break;
617	}
618}
619
620void _GBMBC2(struct GBMemory* memory, uint16_t address, uint8_t value) {
621	int bank = value & 0xF;
622	switch (address >> 13) {
623	case 0x0:
624		switch (value) {
625		case 0:
626			memory->sramAccess = false;
627			break;
628		case 0xA:
629			memory->sramAccess = true;
630			_switchSramBank(memory, memory->sramCurrentBank);
631			break;
632		default:
633			// TODO
634			mLOG(GB_MBC, STUB, "MBC1 unknown value %02X", value);
635			break;
636		}
637		break;
638	case 0x1:
639		if (!bank) {
640			++bank;
641		}
642		_switchBank(memory, bank);
643		break;
644	default:
645		// TODO
646		mLOG(GB_MBC, STUB, "MBC2 unknown address: %04X:%02X", address, value);
647		break;
648	}}
649
650void _GBMBC3(struct GBMemory* memory, uint16_t address, uint8_t value) {
651	int bank = value & 0x7F;
652	switch (address >> 13) {
653	case 0x0:
654		switch (value) {
655		case 0:
656			memory->sramAccess = false;
657			break;
658		case 0xA:
659			memory->sramAccess = true;
660			_switchSramBank(memory, memory->sramCurrentBank);
661			break;
662		default:
663			// TODO
664			mLOG(GB_MBC, STUB, "MBC3 unknown value %02X", value);
665			break;
666		}
667		break;
668	case 0x1:
669		if (!bank) {
670			++bank;
671		}
672		_switchBank(memory, bank);
673		break;
674	case 0x2:
675		if (value < 4) {
676			_switchSramBank(memory, value);
677			memory->rtcAccess = false;
678		} else if (value >= 8 && value <= 0xC) {
679			memory->activeRtcReg = value - 8;
680			memory->rtcAccess = true;
681		}
682		break;
683	case 0x3:
684		if (memory->rtcLatched && value == 0) {
685			memory->rtcLatched = false;
686		} else if (!memory->rtcLatched && value == 1) {
687			_latchRtc(memory);
688			memory->rtcLatched = true;
689		}
690		break;
691	}
692}
693
694void _GBMBC5(struct GBMemory* memory, uint16_t address, uint8_t value) {
695	int bank;
696	switch (address >> 12) {
697	case 0x0:
698	case 0x1:
699		switch (value) {
700		case 0:
701			memory->sramAccess = false;
702			break;
703		case 0xA:
704			memory->sramAccess = true;
705			_switchSramBank(memory, memory->sramCurrentBank);
706			break;
707		default:
708			// TODO
709			mLOG(GB_MBC, STUB, "MBC5 unknown value %02X", value);
710			break;
711		}
712		break;
713	case 0x2:
714		bank = (memory->currentBank & 0x100) | value;
715		_switchBank(memory, bank);
716		break;
717	case 0x3:
718		bank = (memory->currentBank & 0xFF) | ((value & 1) << 8);
719		_switchBank(memory, bank);
720		break;
721	case 0x4:
722	case 0x5:
723		if (memory->mbcType == GB_MBC5_RUMBLE) {
724			memory->rumble->setRumble(memory->rumble, (value >> 3) & 1);
725			value &= ~8;
726		}
727		_switchSramBank(memory, value & 0xF);
728		break;
729	default:
730		// TODO
731		mLOG(GB_MBC, STUB, "MBC5 unknown address: %04X:%02X", address, value);
732		break;
733	}
734}
735
736void _GBMBC6(struct GBMemory* memory, uint16_t address, uint8_t value) {
737	// TODO
738	mLOG(GB_MBC, STUB, "MBC6 unimplemented");
739}
740
741void _GBMBC7(struct GBMemory* memory, uint16_t address, uint8_t value) {
742	int bank = value & 0x7F;
743	switch (address >> 13) {
744	case 0x1:
745		_switchBank(memory, bank);
746		break;
747	case 0x2:
748		if (value < 0x10) {
749			_switchSramBank(memory, value);
750		}
751		break;
752	default:
753		// TODO
754		mLOG(GB_MBC, STUB, "MBC7 unknown address: %04X:%02X", address, value);
755		break;
756	}
757}
758
759uint8_t _GBMBC7Read(struct GBMemory* memory, uint16_t address) {
760	struct GBMBC7State* mbc7 = &memory->mbcState.mbc7;
761	switch (address & 0xF0) {
762	case 0x00:
763	case 0x10:
764	case 0x60:
765	case 0x70:
766		return 0;
767	case 0x20:
768		if (memory->rotation && memory->rotation->readTiltX) {
769			int32_t x = -memory->rotation->readTiltX(memory->rotation);
770			x >>= 21;
771			x += 2047;
772			return x;
773		}
774		return 0xFF;
775	case 0x30:
776		if (memory->rotation && memory->rotation->readTiltX) {
777			int32_t x = -memory->rotation->readTiltX(memory->rotation);
778			x >>= 21;
779			x += 2047;
780			return x >> 8;
781		}
782		return 7;
783	case 0x40:
784		if (memory->rotation && memory->rotation->readTiltY) {
785			int32_t y = -memory->rotation->readTiltY(memory->rotation);
786			y >>= 21;
787			y += 2047;
788			return y;
789		}
790		return 0xFF;
791	case 0x50:
792		if (memory->rotation && memory->rotation->readTiltY) {
793			int32_t y = -memory->rotation->readTiltY(memory->rotation);
794			y >>= 21;
795			y += 2047;
796			return y >> 8;
797		}
798		return 7;
799	case 0x80:
800		return (mbc7->sr >> 16) & 1;
801	default:
802		return 0xFF;
803	}
804}
805
806void _GBMBC7Write(struct GBMemory* memory, uint16_t address, uint8_t value) {
807	if ((address & 0xF0) != 0x80) {
808		return;
809	}
810	struct GBMBC7State* mbc7 = &memory->mbcState.mbc7;
811	GBMBC7Field old = memory->mbcState.mbc7.field;
812	mbc7->field = GBMBC7FieldClearIO(value);
813	if (!GBMBC7FieldIsCS(old) && GBMBC7FieldIsCS(value)) {
814		if (mbc7->state == GBMBC7_STATE_WRITE) {
815			if (mbc7->writable) {
816				memory->sramBank[mbc7->address * 2] = mbc7->sr >> 8;
817				memory->sramBank[mbc7->address * 2 + 1] = mbc7->sr;
818			}
819			mbc7->sr = 0x1FFFF;
820			mbc7->state = GBMBC7_STATE_NULL;
821		} else {
822			mbc7->state = GBMBC7_STATE_IDLE;
823		}
824	}
825	if (!GBMBC7FieldIsSK(old) && GBMBC7FieldIsSK(value)) {
826		if (mbc7->state > GBMBC7_STATE_IDLE && mbc7->state != GBMBC7_STATE_READ) {
827			mbc7->sr <<= 1;
828			mbc7->sr |= GBMBC7FieldGetIO(value);
829			++mbc7->srBits;
830		}
831		switch (mbc7->state) {
832		case GBMBC7_STATE_IDLE:
833			if (GBMBC7FieldIsIO(value)) {
834				mbc7->state = GBMBC7_STATE_READ_COMMAND;
835				mbc7->srBits = 0;
836				mbc7->sr = 0;
837			}
838			break;
839		case GBMBC7_STATE_READ_COMMAND:
840			if (mbc7->srBits == 2) {
841				mbc7->state = GBMBC7_STATE_READ_ADDRESS;
842				mbc7->srBits = 0;
843				mbc7->command = mbc7->sr;
844			}
845			break;
846		case GBMBC7_STATE_READ_ADDRESS:
847			if (mbc7->srBits == 8) {
848				mbc7->state = GBMBC7_STATE_COMMAND_0 + mbc7->command;
849				mbc7->srBits = 0;
850				mbc7->address = mbc7->sr;
851				if (mbc7->state == GBMBC7_STATE_COMMAND_0) {
852					switch (mbc7->address >> 6) {
853					case 0:
854						mbc7->writable = false;
855						mbc7->state = GBMBC7_STATE_NULL;
856						break;
857					case 3:
858						mbc7->writable = true;
859						mbc7->state = GBMBC7_STATE_NULL;
860						break;
861					}
862				}
863			}
864			break;
865		case GBMBC7_STATE_COMMAND_0:
866			if (mbc7->srBits == 16) {
867				switch (mbc7->address >> 6) {
868				case 0:
869					mbc7->writable = false;
870					mbc7->state = GBMBC7_STATE_NULL;
871					break;
872				case 1:
873					mbc7->state = GBMBC7_STATE_WRITE;
874					if (mbc7->writable) {
875						int i;
876						for (i = 0; i < 256; ++i) {
877							memory->sramBank[i * 2] = mbc7->sr >> 8;
878							memory->sramBank[i * 2 + 1] = mbc7->sr;
879						}
880					}
881					break;
882				case 2:
883					mbc7->state = GBMBC7_STATE_WRITE;
884					if (mbc7->writable) {
885						int i;
886						for (i = 0; i < 256; ++i) {
887							memory->sramBank[i * 2] = 0xFF;
888							memory->sramBank[i * 2 + 1] = 0xFF;
889						}
890					}
891					break;
892				case 3:
893					mbc7->writable = true;
894					mbc7->state = GBMBC7_STATE_NULL;
895					break;
896				}
897			}
898			break;
899		case GBMBC7_STATE_COMMAND_SR_WRITE:
900			if (mbc7->srBits == 16) {
901				mbc7->srBits = 0;
902				mbc7->state = GBMBC7_STATE_WRITE;
903			}
904			break;
905		case GBMBC7_STATE_COMMAND_SR_READ:
906			if (mbc7->srBits == 1) {
907				mbc7->sr = memory->sramBank[mbc7->address * 2] << 8;
908				mbc7->sr |= memory->sramBank[mbc7->address * 2 + 1];
909				mbc7->srBits = 0;
910				mbc7->state = GBMBC7_STATE_READ;
911			}
912			break;
913		case GBMBC7_STATE_COMMAND_SR_FILL:
914			if (mbc7->srBits == 16) {
915				mbc7->sr = 0xFFFF;
916				mbc7->srBits = 0;
917				mbc7->state = GBMBC7_STATE_WRITE;
918			}
919			break;
920		default:
921			break;
922		}
923	} else if (GBMBC7FieldIsSK(old) && !GBMBC7FieldIsSK(value)) {
924		if (mbc7->state == GBMBC7_STATE_READ) {
925			mbc7->sr <<= 1;
926			++mbc7->srBits;
927			if (mbc7->srBits == 16) {
928				mbc7->srBits = 0;
929				mbc7->state = GBMBC7_STATE_NULL;
930			}
931		}
932	}
933}
934
935void _pristineCow(struct GB* gb) {
936	if (gb->memory.rom != gb->pristineRom) {
937		return;
938	}
939	gb->memory.rom = anonymousMemoryMap(GB_SIZE_CART_MAX);
940	memcpy(gb->memory.rom, gb->pristineRom, gb->memory.romSize);
941	memset(((uint8_t*) gb->memory.rom) + gb->memory.romSize, 0xFF, GB_SIZE_CART_MAX - gb->memory.romSize);
942	_switchBank(&gb->memory, gb->memory.currentBank);
943}