all repos — mgba @ b2d406a411b31acce5bbf0246af32a80c22ca834

mGBA Game Boy Advance Emulator

src/third-party/lzma/LzmaDec.c (view raw)

   1/* LzmaDec.c -- LZMA Decoder
   22018-07-04 : Igor Pavlov : Public domain */
   3
   4#include "Precomp.h"
   5
   6#include <string.h>
   7
   8/* #include "CpuArch.h" */
   9#include "LzmaDec.h"
  10
  11#define kNumTopBits 24
  12#define kTopValue ((UInt32)1 << kNumTopBits)
  13
  14#define kNumBitModelTotalBits 11
  15#define kBitModelTotal (1 << kNumBitModelTotalBits)
  16#define kNumMoveBits 5
  17
  18#define RC_INIT_SIZE 5
  19
  20#define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); }
  21
  22#define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * (UInt32)ttt; if (code < bound)
  23#define UPDATE_0(p) range = bound; *(p) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
  24#define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits));
  25#define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \
  26  { UPDATE_0(p); i = (i + i); A0; } else \
  27  { UPDATE_1(p); i = (i + i) + 1; A1; }
  28
  29#define TREE_GET_BIT(probs, i) { GET_BIT2(probs + i, i, ;, ;); }
  30
  31#define REV_BIT(p, i, A0, A1) IF_BIT_0(p + i) \
  32  { UPDATE_0(p + i); A0; } else \
  33  { UPDATE_1(p + i); A1; }
  34#define REV_BIT_VAR(  p, i, m) REV_BIT(p, i, i += m; m += m, m += m; i += m; )
  35#define REV_BIT_CONST(p, i, m) REV_BIT(p, i, i += m;       , i += m * 2; )
  36#define REV_BIT_LAST( p, i, m) REV_BIT(p, i, i -= m        , ; )
  37
  38#define TREE_DECODE(probs, limit, i) \
  39  { i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; }
  40
  41/* #define _LZMA_SIZE_OPT */
  42
  43#ifdef _LZMA_SIZE_OPT
  44#define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i)
  45#else
  46#define TREE_6_DECODE(probs, i) \
  47  { i = 1; \
  48  TREE_GET_BIT(probs, i); \
  49  TREE_GET_BIT(probs, i); \
  50  TREE_GET_BIT(probs, i); \
  51  TREE_GET_BIT(probs, i); \
  52  TREE_GET_BIT(probs, i); \
  53  TREE_GET_BIT(probs, i); \
  54  i -= 0x40; }
  55#endif
  56
  57#define NORMAL_LITER_DEC TREE_GET_BIT(prob, symbol)
  58#define MATCHED_LITER_DEC \
  59  matchByte += matchByte; \
  60  bit = offs; \
  61  offs &= matchByte; \
  62  probLit = prob + (offs + bit + symbol); \
  63  GET_BIT2(probLit, symbol, offs ^= bit; , ;)
  64
  65
  66
  67#define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_ERROR; range <<= 8; code = (code << 8) | (*buf++); }
  68
  69#define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK; bound = (range >> kNumBitModelTotalBits) * (UInt32)ttt; if (code < bound)
  70#define UPDATE_0_CHECK range = bound;
  71#define UPDATE_1_CHECK range -= bound; code -= bound;
  72#define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \
  73  { UPDATE_0_CHECK; i = (i + i); A0; } else \
  74  { UPDATE_1_CHECK; i = (i + i) + 1; A1; }
  75#define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;)
  76#define TREE_DECODE_CHECK(probs, limit, i) \
  77  { i = 1; do { GET_BIT_CHECK(probs + i, i) } while (i < limit); i -= limit; }
  78
  79
  80#define REV_BIT_CHECK(p, i, m) IF_BIT_0_CHECK(p + i) \
  81  { UPDATE_0_CHECK; i += m; m += m; } else \
  82  { UPDATE_1_CHECK; m += m; i += m; }
  83
  84
  85#define kNumPosBitsMax 4
  86#define kNumPosStatesMax (1 << kNumPosBitsMax)
  87
  88#define kLenNumLowBits 3
  89#define kLenNumLowSymbols (1 << kLenNumLowBits)
  90#define kLenNumHighBits 8
  91#define kLenNumHighSymbols (1 << kLenNumHighBits)
  92
  93#define LenLow 0
  94#define LenHigh (LenLow + 2 * (kNumPosStatesMax << kLenNumLowBits))
  95#define kNumLenProbs (LenHigh + kLenNumHighSymbols)
  96
  97#define LenChoice LenLow
  98#define LenChoice2 (LenLow + (1 << kLenNumLowBits))
  99
 100#define kNumStates 12
 101#define kNumStates2 16
 102#define kNumLitStates 7
 103
 104#define kStartPosModelIndex 4
 105#define kEndPosModelIndex 14
 106#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
 107
 108#define kNumPosSlotBits 6
 109#define kNumLenToPosStates 4
 110
 111#define kNumAlignBits 4
 112#define kAlignTableSize (1 << kNumAlignBits)
 113
 114#define kMatchMinLen 2
 115#define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols * 2 + kLenNumHighSymbols)
 116
 117/* External ASM code needs same CLzmaProb array layout. So don't change it. */
 118
 119/* (probs_1664) is faster and better for code size at some platforms */
 120/*
 121#ifdef MY_CPU_X86_OR_AMD64
 122*/
 123#define kStartOffset 1664
 124#define GET_PROBS p->probs_1664
 125/*
 126#define GET_PROBS p->probs + kStartOffset
 127#else
 128#define kStartOffset 0
 129#define GET_PROBS p->probs
 130#endif
 131*/
 132
 133#define SpecPos (-kStartOffset)
 134#define IsRep0Long (SpecPos + kNumFullDistances)
 135#define RepLenCoder (IsRep0Long + (kNumStates2 << kNumPosBitsMax))
 136#define LenCoder (RepLenCoder + kNumLenProbs)
 137#define IsMatch (LenCoder + kNumLenProbs)
 138#define Align (IsMatch + (kNumStates2 << kNumPosBitsMax))
 139#define IsRep (Align + kAlignTableSize)
 140#define IsRepG0 (IsRep + kNumStates)
 141#define IsRepG1 (IsRepG0 + kNumStates)
 142#define IsRepG2 (IsRepG1 + kNumStates)
 143#define PosSlot (IsRepG2 + kNumStates)
 144#define Literal (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
 145#define NUM_BASE_PROBS (Literal + kStartOffset)
 146
 147#if Align != 0 && kStartOffset != 0
 148  #error Stop_Compiling_Bad_LZMA_kAlign
 149#endif
 150
 151#if NUM_BASE_PROBS != 1984
 152  #error Stop_Compiling_Bad_LZMA_PROBS
 153#endif
 154
 155
 156#define LZMA_LIT_SIZE 0x300
 157
 158#define LzmaProps_GetNumProbs(p) (NUM_BASE_PROBS + ((UInt32)LZMA_LIT_SIZE << ((p)->lc + (p)->lp)))
 159
 160
 161#define CALC_POS_STATE(processedPos, pbMask) (((processedPos) & (pbMask)) << 4)
 162#define COMBINED_PS_STATE (posState + state)
 163#define GET_LEN_STATE (posState)
 164
 165#define LZMA_DIC_MIN (1 << 12)
 166
 167/*
 168p->remainLen : shows status of LZMA decoder:
 169    < kMatchSpecLenStart : normal remain
 170    = kMatchSpecLenStart : finished
 171    = kMatchSpecLenStart + 1 : need init range coder
 172    = kMatchSpecLenStart + 2 : need init range coder and state
 173*/
 174
 175/* ---------- LZMA_DECODE_REAL ---------- */
 176/*
 177LzmaDec_DecodeReal_3() can be implemented in external ASM file.
 1783 - is the code compatibility version of that function for check at link time.
 179*/
 180
 181#define LZMA_DECODE_REAL LzmaDec_DecodeReal_3
 182
 183/*
 184LZMA_DECODE_REAL()
 185In:
 186  RangeCoder is normalized
 187  if (p->dicPos == limit)
 188  {
 189    LzmaDec_TryDummy() was called before to exclude LITERAL and MATCH-REP cases.
 190    So first symbol can be only MATCH-NON-REP. And if that MATCH-NON-REP symbol
 191    is not END_OF_PAYALOAD_MARKER, then function returns error code.
 192  }
 193
 194Processing:
 195  first LZMA symbol will be decoded in any case
 196  All checks for limits are at the end of main loop,
 197  It will decode new LZMA-symbols while (p->buf < bufLimit && dicPos < limit),
 198  RangeCoder is still without last normalization when (p->buf < bufLimit) is being checked.
 199
 200Out:
 201  RangeCoder is normalized
 202  Result:
 203    SZ_OK - OK
 204    SZ_ERROR_DATA - Error
 205  p->remainLen:
 206    < kMatchSpecLenStart : normal remain
 207    = kMatchSpecLenStart : finished
 208*/
 209
 210
 211#ifdef _LZMA_DEC_OPT
 212
 213int MY_FAST_CALL LZMA_DECODE_REAL(CLzmaDec *p, SizeT limit, const Byte *bufLimit);
 214
 215#else
 216
 217static
 218int MY_FAST_CALL LZMA_DECODE_REAL(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
 219{
 220  CLzmaProb *probs = GET_PROBS;
 221  unsigned state = (unsigned)p->state;
 222  UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3];
 223  unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1;
 224  unsigned lc = p->prop.lc;
 225  unsigned lpMask = ((unsigned)0x100 << p->prop.lp) - ((unsigned)0x100 >> lc);
 226
 227  Byte *dic = p->dic;
 228  SizeT dicBufSize = p->dicBufSize;
 229  SizeT dicPos = p->dicPos;
 230  
 231  UInt32 processedPos = p->processedPos;
 232  UInt32 checkDicSize = p->checkDicSize;
 233  unsigned len = 0;
 234
 235  const Byte *buf = p->buf;
 236  UInt32 range = p->range;
 237  UInt32 code = p->code;
 238
 239  do
 240  {
 241    CLzmaProb *prob;
 242    UInt32 bound;
 243    unsigned ttt;
 244    unsigned posState = CALC_POS_STATE(processedPos, pbMask);
 245
 246    prob = probs + IsMatch + COMBINED_PS_STATE;
 247    IF_BIT_0(prob)
 248    {
 249      unsigned symbol;
 250      UPDATE_0(prob);
 251      prob = probs + Literal;
 252      if (processedPos != 0 || checkDicSize != 0)
 253        prob += (UInt32)3 * ((((processedPos << 8) + dic[(dicPos == 0 ? dicBufSize : dicPos) - 1]) & lpMask) << lc);
 254      processedPos++;
 255
 256      if (state < kNumLitStates)
 257      {
 258        state -= (state < 4) ? state : 3;
 259        symbol = 1;
 260        #ifdef _LZMA_SIZE_OPT
 261        do { NORMAL_LITER_DEC } while (symbol < 0x100);
 262        #else
 263        NORMAL_LITER_DEC
 264        NORMAL_LITER_DEC
 265        NORMAL_LITER_DEC
 266        NORMAL_LITER_DEC
 267        NORMAL_LITER_DEC
 268        NORMAL_LITER_DEC
 269        NORMAL_LITER_DEC
 270        NORMAL_LITER_DEC
 271        #endif
 272      }
 273      else
 274      {
 275        unsigned matchByte = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
 276        unsigned offs = 0x100;
 277        state -= (state < 10) ? 3 : 6;
 278        symbol = 1;
 279        #ifdef _LZMA_SIZE_OPT
 280        do
 281        {
 282          unsigned bit;
 283          CLzmaProb *probLit;
 284          MATCHED_LITER_DEC
 285        }
 286        while (symbol < 0x100);
 287        #else
 288        {
 289          unsigned bit;
 290          CLzmaProb *probLit;
 291          MATCHED_LITER_DEC
 292          MATCHED_LITER_DEC
 293          MATCHED_LITER_DEC
 294          MATCHED_LITER_DEC
 295          MATCHED_LITER_DEC
 296          MATCHED_LITER_DEC
 297          MATCHED_LITER_DEC
 298          MATCHED_LITER_DEC
 299        }
 300        #endif
 301      }
 302
 303      dic[dicPos++] = (Byte)symbol;
 304      continue;
 305    }
 306    
 307    {
 308      UPDATE_1(prob);
 309      prob = probs + IsRep + state;
 310      IF_BIT_0(prob)
 311      {
 312        UPDATE_0(prob);
 313        state += kNumStates;
 314        prob = probs + LenCoder;
 315      }
 316      else
 317      {
 318        UPDATE_1(prob);
 319        /*
 320        // that case was checked before with kBadRepCode
 321        if (checkDicSize == 0 && processedPos == 0)
 322          return SZ_ERROR_DATA;
 323        */
 324        prob = probs + IsRepG0 + state;
 325        IF_BIT_0(prob)
 326        {
 327          UPDATE_0(prob);
 328          prob = probs + IsRep0Long + COMBINED_PS_STATE;
 329          IF_BIT_0(prob)
 330          {
 331            UPDATE_0(prob);
 332            dic[dicPos] = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
 333            dicPos++;
 334            processedPos++;
 335            state = state < kNumLitStates ? 9 : 11;
 336            continue;
 337          }
 338          UPDATE_1(prob);
 339        }
 340        else
 341        {
 342          UInt32 distance;
 343          UPDATE_1(prob);
 344          prob = probs + IsRepG1 + state;
 345          IF_BIT_0(prob)
 346          {
 347            UPDATE_0(prob);
 348            distance = rep1;
 349          }
 350          else
 351          {
 352            UPDATE_1(prob);
 353            prob = probs + IsRepG2 + state;
 354            IF_BIT_0(prob)
 355            {
 356              UPDATE_0(prob);
 357              distance = rep2;
 358            }
 359            else
 360            {
 361              UPDATE_1(prob);
 362              distance = rep3;
 363              rep3 = rep2;
 364            }
 365            rep2 = rep1;
 366          }
 367          rep1 = rep0;
 368          rep0 = distance;
 369        }
 370        state = state < kNumLitStates ? 8 : 11;
 371        prob = probs + RepLenCoder;
 372      }
 373      
 374      #ifdef _LZMA_SIZE_OPT
 375      {
 376        unsigned lim, offset;
 377        CLzmaProb *probLen = prob + LenChoice;
 378        IF_BIT_0(probLen)
 379        {
 380          UPDATE_0(probLen);
 381          probLen = prob + LenLow + GET_LEN_STATE;
 382          offset = 0;
 383          lim = (1 << kLenNumLowBits);
 384        }
 385        else
 386        {
 387          UPDATE_1(probLen);
 388          probLen = prob + LenChoice2;
 389          IF_BIT_0(probLen)
 390          {
 391            UPDATE_0(probLen);
 392            probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
 393            offset = kLenNumLowSymbols;
 394            lim = (1 << kLenNumLowBits);
 395          }
 396          else
 397          {
 398            UPDATE_1(probLen);
 399            probLen = prob + LenHigh;
 400            offset = kLenNumLowSymbols * 2;
 401            lim = (1 << kLenNumHighBits);
 402          }
 403        }
 404        TREE_DECODE(probLen, lim, len);
 405        len += offset;
 406      }
 407      #else
 408      {
 409        CLzmaProb *probLen = prob + LenChoice;
 410        IF_BIT_0(probLen)
 411        {
 412          UPDATE_0(probLen);
 413          probLen = prob + LenLow + GET_LEN_STATE;
 414          len = 1;
 415          TREE_GET_BIT(probLen, len);
 416          TREE_GET_BIT(probLen, len);
 417          TREE_GET_BIT(probLen, len);
 418          len -= 8;
 419        }
 420        else
 421        {
 422          UPDATE_1(probLen);
 423          probLen = prob + LenChoice2;
 424          IF_BIT_0(probLen)
 425          {
 426            UPDATE_0(probLen);
 427            probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
 428            len = 1;
 429            TREE_GET_BIT(probLen, len);
 430            TREE_GET_BIT(probLen, len);
 431            TREE_GET_BIT(probLen, len);
 432          }
 433          else
 434          {
 435            UPDATE_1(probLen);
 436            probLen = prob + LenHigh;
 437            TREE_DECODE(probLen, (1 << kLenNumHighBits), len);
 438            len += kLenNumLowSymbols * 2;
 439          }
 440        }
 441      }
 442      #endif
 443
 444      if (state >= kNumStates)
 445      {
 446        UInt32 distance;
 447        prob = probs + PosSlot +
 448            ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits);
 449        TREE_6_DECODE(prob, distance);
 450        if (distance >= kStartPosModelIndex)
 451        {
 452          unsigned posSlot = (unsigned)distance;
 453          unsigned numDirectBits = (unsigned)(((distance >> 1) - 1));
 454          distance = (2 | (distance & 1));
 455          if (posSlot < kEndPosModelIndex)
 456          {
 457            distance <<= numDirectBits;
 458            prob = probs + SpecPos;
 459            {
 460              UInt32 m = 1;
 461              distance++;
 462              do
 463              {
 464                REV_BIT_VAR(prob, distance, m);
 465              }
 466              while (--numDirectBits);
 467              distance -= m;
 468            }
 469          }
 470          else
 471          {
 472            numDirectBits -= kNumAlignBits;
 473            do
 474            {
 475              NORMALIZE
 476              range >>= 1;
 477              
 478              {
 479                UInt32 t;
 480                code -= range;
 481                t = (0 - ((UInt32)code >> 31)); /* (UInt32)((Int32)code >> 31) */
 482                distance = (distance << 1) + (t + 1);
 483                code += range & t;
 484              }
 485              /*
 486              distance <<= 1;
 487              if (code >= range)
 488              {
 489                code -= range;
 490                distance |= 1;
 491              }
 492              */
 493            }
 494            while (--numDirectBits);
 495            prob = probs + Align;
 496            distance <<= kNumAlignBits;
 497            {
 498              unsigned i = 1;
 499              REV_BIT_CONST(prob, i, 1);
 500              REV_BIT_CONST(prob, i, 2);
 501              REV_BIT_CONST(prob, i, 4);
 502              REV_BIT_LAST (prob, i, 8);
 503              distance |= i;
 504            }
 505            if (distance == (UInt32)0xFFFFFFFF)
 506            {
 507              len = kMatchSpecLenStart;
 508              state -= kNumStates;
 509              break;
 510            }
 511          }
 512        }
 513        
 514        rep3 = rep2;
 515        rep2 = rep1;
 516        rep1 = rep0;
 517        rep0 = distance + 1;
 518        state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3;
 519        if (distance >= (checkDicSize == 0 ? processedPos: checkDicSize))
 520        {
 521          p->dicPos = dicPos;
 522          return SZ_ERROR_DATA;
 523        }
 524      }
 525
 526      len += kMatchMinLen;
 527
 528      {
 529        SizeT rem;
 530        unsigned curLen;
 531        SizeT pos;
 532        
 533        if ((rem = limit - dicPos) == 0)
 534        {
 535          p->dicPos = dicPos;
 536          return SZ_ERROR_DATA;
 537        }
 538        
 539        curLen = ((rem < len) ? (unsigned)rem : len);
 540        pos = dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0);
 541
 542        processedPos += (UInt32)curLen;
 543
 544        len -= curLen;
 545        if (curLen <= dicBufSize - pos)
 546        {
 547          Byte *dest = dic + dicPos;
 548          ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos;
 549          const Byte *lim = dest + curLen;
 550          dicPos += (SizeT)curLen;
 551          do
 552            *(dest) = (Byte)*(dest + src);
 553          while (++dest != lim);
 554        }
 555        else
 556        {
 557          do
 558          {
 559            dic[dicPos++] = dic[pos];
 560            if (++pos == dicBufSize)
 561              pos = 0;
 562          }
 563          while (--curLen != 0);
 564        }
 565      }
 566    }
 567  }
 568  while (dicPos < limit && buf < bufLimit);
 569
 570  NORMALIZE;
 571  
 572  p->buf = buf;
 573  p->range = range;
 574  p->code = code;
 575  p->remainLen = (UInt32)len;
 576  p->dicPos = dicPos;
 577  p->processedPos = processedPos;
 578  p->reps[0] = rep0;
 579  p->reps[1] = rep1;
 580  p->reps[2] = rep2;
 581  p->reps[3] = rep3;
 582  p->state = (UInt32)state;
 583
 584  return SZ_OK;
 585}
 586#endif
 587
 588static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit)
 589{
 590  if (p->remainLen != 0 && p->remainLen < kMatchSpecLenStart)
 591  {
 592    Byte *dic = p->dic;
 593    SizeT dicPos = p->dicPos;
 594    SizeT dicBufSize = p->dicBufSize;
 595    unsigned len = (unsigned)p->remainLen;
 596    SizeT rep0 = p->reps[0]; /* we use SizeT to avoid the BUG of VC14 for AMD64 */
 597    SizeT rem = limit - dicPos;
 598    if (rem < len)
 599      len = (unsigned)(rem);
 600
 601    if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= len)
 602      p->checkDicSize = p->prop.dicSize;
 603
 604    p->processedPos += (UInt32)len;
 605    p->remainLen -= (UInt32)len;
 606    while (len != 0)
 607    {
 608      len--;
 609      dic[dicPos] = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
 610      dicPos++;
 611    }
 612    p->dicPos = dicPos;
 613  }
 614}
 615
 616
 617#define kRange0 0xFFFFFFFF
 618#define kBound0 ((kRange0 >> kNumBitModelTotalBits) << (kNumBitModelTotalBits - 1))
 619#define kBadRepCode (kBound0 + (((kRange0 - kBound0) >> kNumBitModelTotalBits) << (kNumBitModelTotalBits - 1)))
 620#if kBadRepCode != (0xC0000000 - 0x400)
 621  #error Stop_Compiling_Bad_LZMA_Check
 622#endif
 623
 624static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
 625{
 626  do
 627  {
 628    SizeT limit2 = limit;
 629    if (p->checkDicSize == 0)
 630    {
 631      UInt32 rem = p->prop.dicSize - p->processedPos;
 632      if (limit - p->dicPos > rem)
 633        limit2 = p->dicPos + rem;
 634
 635      if (p->processedPos == 0)
 636        if (p->code >= kBadRepCode)
 637          return SZ_ERROR_DATA;
 638    }
 639
 640    RINOK(LZMA_DECODE_REAL(p, limit2, bufLimit));
 641    
 642    if (p->checkDicSize == 0 && p->processedPos >= p->prop.dicSize)
 643      p->checkDicSize = p->prop.dicSize;
 644    
 645    LzmaDec_WriteRem(p, limit);
 646  }
 647  while (p->dicPos < limit && p->buf < bufLimit && p->remainLen < kMatchSpecLenStart);
 648
 649  return 0;
 650}
 651
 652typedef enum
 653{
 654  DUMMY_ERROR, /* unexpected end of input stream */
 655  DUMMY_LIT,
 656  DUMMY_MATCH,
 657  DUMMY_REP
 658} ELzmaDummy;
 659
 660static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inSize)
 661{
 662  UInt32 range = p->range;
 663  UInt32 code = p->code;
 664  const Byte *bufLimit = buf + inSize;
 665  const CLzmaProb *probs = GET_PROBS;
 666  unsigned state = (unsigned)p->state;
 667  ELzmaDummy res;
 668
 669  {
 670    const CLzmaProb *prob;
 671    UInt32 bound;
 672    unsigned ttt;
 673    unsigned posState = CALC_POS_STATE(p->processedPos, (1 << p->prop.pb) - 1);
 674
 675    prob = probs + IsMatch + COMBINED_PS_STATE;
 676    IF_BIT_0_CHECK(prob)
 677    {
 678      UPDATE_0_CHECK
 679
 680      /* if (bufLimit - buf >= 7) return DUMMY_LIT; */
 681
 682      prob = probs + Literal;
 683      if (p->checkDicSize != 0 || p->processedPos != 0)
 684        prob += ((UInt32)LZMA_LIT_SIZE *
 685            ((((p->processedPos) & ((1 << (p->prop.lp)) - 1)) << p->prop.lc) +
 686            (p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->prop.lc))));
 687
 688      if (state < kNumLitStates)
 689      {
 690        unsigned symbol = 1;
 691        do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100);
 692      }
 693      else
 694      {
 695        unsigned matchByte = p->dic[p->dicPos - p->reps[0] +
 696            (p->dicPos < p->reps[0] ? p->dicBufSize : 0)];
 697        unsigned offs = 0x100;
 698        unsigned symbol = 1;
 699        do
 700        {
 701          unsigned bit;
 702          const CLzmaProb *probLit;
 703          matchByte += matchByte;
 704          bit = offs;
 705          offs &= matchByte;
 706          probLit = prob + (offs + bit + symbol);
 707          GET_BIT2_CHECK(probLit, symbol, offs ^= bit; , ; )
 708        }
 709        while (symbol < 0x100);
 710      }
 711      res = DUMMY_LIT;
 712    }
 713    else
 714    {
 715      unsigned len;
 716      UPDATE_1_CHECK;
 717
 718      prob = probs + IsRep + state;
 719      IF_BIT_0_CHECK(prob)
 720      {
 721        UPDATE_0_CHECK;
 722        state = 0;
 723        prob = probs + LenCoder;
 724        res = DUMMY_MATCH;
 725      }
 726      else
 727      {
 728        UPDATE_1_CHECK;
 729        res = DUMMY_REP;
 730        prob = probs + IsRepG0 + state;
 731        IF_BIT_0_CHECK(prob)
 732        {
 733          UPDATE_0_CHECK;
 734          prob = probs + IsRep0Long + COMBINED_PS_STATE;
 735          IF_BIT_0_CHECK(prob)
 736          {
 737            UPDATE_0_CHECK;
 738            NORMALIZE_CHECK;
 739            return DUMMY_REP;
 740          }
 741          else
 742          {
 743            UPDATE_1_CHECK;
 744          }
 745        }
 746        else
 747        {
 748          UPDATE_1_CHECK;
 749          prob = probs + IsRepG1 + state;
 750          IF_BIT_0_CHECK(prob)
 751          {
 752            UPDATE_0_CHECK;
 753          }
 754          else
 755          {
 756            UPDATE_1_CHECK;
 757            prob = probs + IsRepG2 + state;
 758            IF_BIT_0_CHECK(prob)
 759            {
 760              UPDATE_0_CHECK;
 761            }
 762            else
 763            {
 764              UPDATE_1_CHECK;
 765            }
 766          }
 767        }
 768        state = kNumStates;
 769        prob = probs + RepLenCoder;
 770      }
 771      {
 772        unsigned limit, offset;
 773        const CLzmaProb *probLen = prob + LenChoice;
 774        IF_BIT_0_CHECK(probLen)
 775        {
 776          UPDATE_0_CHECK;
 777          probLen = prob + LenLow + GET_LEN_STATE;
 778          offset = 0;
 779          limit = 1 << kLenNumLowBits;
 780        }
 781        else
 782        {
 783          UPDATE_1_CHECK;
 784          probLen = prob + LenChoice2;
 785          IF_BIT_0_CHECK(probLen)
 786          {
 787            UPDATE_0_CHECK;
 788            probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
 789            offset = kLenNumLowSymbols;
 790            limit = 1 << kLenNumLowBits;
 791          }
 792          else
 793          {
 794            UPDATE_1_CHECK;
 795            probLen = prob + LenHigh;
 796            offset = kLenNumLowSymbols * 2;
 797            limit = 1 << kLenNumHighBits;
 798          }
 799        }
 800        TREE_DECODE_CHECK(probLen, limit, len);
 801        len += offset;
 802      }
 803
 804      if (state < 4)
 805      {
 806        unsigned posSlot;
 807        prob = probs + PosSlot +
 808            ((len < kNumLenToPosStates - 1 ? len : kNumLenToPosStates - 1) <<
 809            kNumPosSlotBits);
 810        TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot);
 811        if (posSlot >= kStartPosModelIndex)
 812        {
 813          unsigned numDirectBits = ((posSlot >> 1) - 1);
 814
 815          /* if (bufLimit - buf >= 8) return DUMMY_MATCH; */
 816
 817          if (posSlot < kEndPosModelIndex)
 818          {
 819            prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits);
 820          }
 821          else
 822          {
 823            numDirectBits -= kNumAlignBits;
 824            do
 825            {
 826              NORMALIZE_CHECK
 827              range >>= 1;
 828              code -= range & (((code - range) >> 31) - 1);
 829              /* if (code >= range) code -= range; */
 830            }
 831            while (--numDirectBits);
 832            prob = probs + Align;
 833            numDirectBits = kNumAlignBits;
 834          }
 835          {
 836            unsigned i = 1;
 837            unsigned m = 1;
 838            do
 839            {
 840              REV_BIT_CHECK(prob, i, m);
 841            }
 842            while (--numDirectBits);
 843          }
 844        }
 845      }
 846    }
 847  }
 848  NORMALIZE_CHECK;
 849  return res;
 850}
 851
 852
 853void LzmaDec_InitDicAndState(CLzmaDec *p, BoolInt initDic, BoolInt initState)
 854{
 855  p->remainLen = kMatchSpecLenStart + 1;
 856  p->tempBufSize = 0;
 857
 858  if (initDic)
 859  {
 860    p->processedPos = 0;
 861    p->checkDicSize = 0;
 862    p->remainLen = kMatchSpecLenStart + 2;
 863  }
 864  if (initState)
 865    p->remainLen = kMatchSpecLenStart + 2;
 866}
 867
 868void LzmaDec_Init(CLzmaDec *p)
 869{
 870  p->dicPos = 0;
 871  LzmaDec_InitDicAndState(p, True, True);
 872}
 873
 874
 875SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
 876    ELzmaFinishMode finishMode, ELzmaStatus *status)
 877{
 878  SizeT inSize = *srcLen;
 879  (*srcLen) = 0;
 880  
 881  *status = LZMA_STATUS_NOT_SPECIFIED;
 882
 883  if (p->remainLen > kMatchSpecLenStart)
 884  {
 885    for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--)
 886      p->tempBuf[p->tempBufSize++] = *src++;
 887    if (p->tempBufSize != 0 && p->tempBuf[0] != 0)
 888      return SZ_ERROR_DATA;
 889    if (p->tempBufSize < RC_INIT_SIZE)
 890    {
 891      *status = LZMA_STATUS_NEEDS_MORE_INPUT;
 892      return SZ_OK;
 893    }
 894    p->code =
 895        ((UInt32)p->tempBuf[1] << 24)
 896      | ((UInt32)p->tempBuf[2] << 16)
 897      | ((UInt32)p->tempBuf[3] << 8)
 898      | ((UInt32)p->tempBuf[4]);
 899    p->range = 0xFFFFFFFF;
 900    p->tempBufSize = 0;
 901
 902    if (p->remainLen > kMatchSpecLenStart + 1)
 903    {
 904      SizeT numProbs = LzmaProps_GetNumProbs(&p->prop);
 905      SizeT i;
 906      CLzmaProb *probs = p->probs;
 907      for (i = 0; i < numProbs; i++)
 908        probs[i] = kBitModelTotal >> 1;
 909      p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1;
 910      p->state = 0;
 911    }
 912
 913    p->remainLen = 0;
 914  }
 915
 916  LzmaDec_WriteRem(p, dicLimit);
 917
 918  while (p->remainLen != kMatchSpecLenStart)
 919  {
 920      int checkEndMarkNow = 0;
 921
 922      if (p->dicPos >= dicLimit)
 923      {
 924        if (p->remainLen == 0 && p->code == 0)
 925        {
 926          *status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK;
 927          return SZ_OK;
 928        }
 929        if (finishMode == LZMA_FINISH_ANY)
 930        {
 931          *status = LZMA_STATUS_NOT_FINISHED;
 932          return SZ_OK;
 933        }
 934        if (p->remainLen != 0)
 935        {
 936          *status = LZMA_STATUS_NOT_FINISHED;
 937          return SZ_ERROR_DATA;
 938        }
 939        checkEndMarkNow = 1;
 940      }
 941
 942      if (p->tempBufSize == 0)
 943      {
 944        SizeT processed;
 945        const Byte *bufLimit;
 946        if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
 947        {
 948          int dummyRes = LzmaDec_TryDummy(p, src, inSize);
 949          if (dummyRes == DUMMY_ERROR)
 950          {
 951            memcpy(p->tempBuf, src, inSize);
 952            p->tempBufSize = (unsigned)inSize;
 953            (*srcLen) += inSize;
 954            *status = LZMA_STATUS_NEEDS_MORE_INPUT;
 955            return SZ_OK;
 956          }
 957          if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
 958          {
 959            *status = LZMA_STATUS_NOT_FINISHED;
 960            return SZ_ERROR_DATA;
 961          }
 962          bufLimit = src;
 963        }
 964        else
 965          bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX;
 966        p->buf = src;
 967        if (LzmaDec_DecodeReal2(p, dicLimit, bufLimit) != 0)
 968          return SZ_ERROR_DATA;
 969        processed = (SizeT)(p->buf - src);
 970        (*srcLen) += processed;
 971        src += processed;
 972        inSize -= processed;
 973      }
 974      else
 975      {
 976        unsigned rem = p->tempBufSize, lookAhead = 0;
 977        while (rem < LZMA_REQUIRED_INPUT_MAX && lookAhead < inSize)
 978          p->tempBuf[rem++] = src[lookAhead++];
 979        p->tempBufSize = rem;
 980        if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
 981        {
 982          int dummyRes = LzmaDec_TryDummy(p, p->tempBuf, (SizeT)rem);
 983          if (dummyRes == DUMMY_ERROR)
 984          {
 985            (*srcLen) += (SizeT)lookAhead;
 986            *status = LZMA_STATUS_NEEDS_MORE_INPUT;
 987            return SZ_OK;
 988          }
 989          if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
 990          {
 991            *status = LZMA_STATUS_NOT_FINISHED;
 992            return SZ_ERROR_DATA;
 993          }
 994        }
 995        p->buf = p->tempBuf;
 996        if (LzmaDec_DecodeReal2(p, dicLimit, p->buf) != 0)
 997          return SZ_ERROR_DATA;
 998        
 999        {
1000          unsigned kkk = (unsigned)(p->buf - p->tempBuf);
1001          if (rem < kkk)
1002            return SZ_ERROR_FAIL; /* some internal error */
1003          rem -= kkk;
1004          if (lookAhead < rem)
1005            return SZ_ERROR_FAIL; /* some internal error */
1006          lookAhead -= rem;
1007        }
1008        (*srcLen) += (SizeT)lookAhead;
1009        src += lookAhead;
1010        inSize -= (SizeT)lookAhead;
1011        p->tempBufSize = 0;
1012      }
1013  }
1014  
1015  if (p->code != 0)
1016    return SZ_ERROR_DATA;
1017  *status = LZMA_STATUS_FINISHED_WITH_MARK;
1018  return SZ_OK;
1019}
1020
1021
1022SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
1023{
1024  SizeT outSize = *destLen;
1025  SizeT inSize = *srcLen;
1026  *srcLen = *destLen = 0;
1027  for (;;)
1028  {
1029    SizeT inSizeCur = inSize, outSizeCur, dicPos;
1030    ELzmaFinishMode curFinishMode;
1031    SRes res;
1032    if (p->dicPos == p->dicBufSize)
1033      p->dicPos = 0;
1034    dicPos = p->dicPos;
1035    if (outSize > p->dicBufSize - dicPos)
1036    {
1037      outSizeCur = p->dicBufSize;
1038      curFinishMode = LZMA_FINISH_ANY;
1039    }
1040    else
1041    {
1042      outSizeCur = dicPos + outSize;
1043      curFinishMode = finishMode;
1044    }
1045
1046    res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status);
1047    src += inSizeCur;
1048    inSize -= inSizeCur;
1049    *srcLen += inSizeCur;
1050    outSizeCur = p->dicPos - dicPos;
1051    memcpy(dest, p->dic + dicPos, outSizeCur);
1052    dest += outSizeCur;
1053    outSize -= outSizeCur;
1054    *destLen += outSizeCur;
1055    if (res != 0)
1056      return res;
1057    if (outSizeCur == 0 || outSize == 0)
1058      return SZ_OK;
1059  }
1060}
1061
1062void LzmaDec_FreeProbs(CLzmaDec *p, ISzAllocPtr alloc)
1063{
1064  ISzAlloc_Free(alloc, p->probs);
1065  p->probs = NULL;
1066}
1067
1068static void LzmaDec_FreeDict(CLzmaDec *p, ISzAllocPtr alloc)
1069{
1070  ISzAlloc_Free(alloc, p->dic);
1071  p->dic = NULL;
1072}
1073
1074void LzmaDec_Free(CLzmaDec *p, ISzAllocPtr alloc)
1075{
1076  LzmaDec_FreeProbs(p, alloc);
1077  LzmaDec_FreeDict(p, alloc);
1078}
1079
1080SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size)
1081{
1082  UInt32 dicSize;
1083  Byte d;
1084  
1085  if (size < LZMA_PROPS_SIZE)
1086    return SZ_ERROR_UNSUPPORTED;
1087  else
1088    dicSize = data[1] | ((UInt32)data[2] << 8) | ((UInt32)data[3] << 16) | ((UInt32)data[4] << 24);
1089 
1090  if (dicSize < LZMA_DIC_MIN)
1091    dicSize = LZMA_DIC_MIN;
1092  p->dicSize = dicSize;
1093
1094  d = data[0];
1095  if (d >= (9 * 5 * 5))
1096    return SZ_ERROR_UNSUPPORTED;
1097
1098  p->lc = (Byte)(d % 9);
1099  d /= 9;
1100  p->pb = (Byte)(d / 5);
1101  p->lp = (Byte)(d % 5);
1102
1103  return SZ_OK;
1104}
1105
1106static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAllocPtr alloc)
1107{
1108  UInt32 numProbs = LzmaProps_GetNumProbs(propNew);
1109  if (!p->probs || numProbs != p->numProbs)
1110  {
1111    LzmaDec_FreeProbs(p, alloc);
1112    p->probs = (CLzmaProb *)ISzAlloc_Alloc(alloc, numProbs * sizeof(CLzmaProb));
1113    if (!p->probs)
1114      return SZ_ERROR_MEM;
1115    p->probs_1664 = p->probs + 1664;
1116    p->numProbs = numProbs;
1117  }
1118  return SZ_OK;
1119}
1120
1121SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc)
1122{
1123  CLzmaProps propNew;
1124  RINOK(LzmaProps_Decode(&propNew, props, propsSize));
1125  RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
1126  p->prop = propNew;
1127  return SZ_OK;
1128}
1129
1130SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc)
1131{
1132  CLzmaProps propNew;
1133  SizeT dicBufSize;
1134  RINOK(LzmaProps_Decode(&propNew, props, propsSize));
1135  RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
1136
1137  {
1138    UInt32 dictSize = propNew.dicSize;
1139    SizeT mask = ((UInt32)1 << 12) - 1;
1140         if (dictSize >= ((UInt32)1 << 30)) mask = ((UInt32)1 << 22) - 1;
1141    else if (dictSize >= ((UInt32)1 << 22)) mask = ((UInt32)1 << 20) - 1;;
1142    dicBufSize = ((SizeT)dictSize + mask) & ~mask;
1143    if (dicBufSize < dictSize)
1144      dicBufSize = dictSize;
1145  }
1146
1147  if (!p->dic || dicBufSize != p->dicBufSize)
1148  {
1149    LzmaDec_FreeDict(p, alloc);
1150    p->dic = (Byte *)ISzAlloc_Alloc(alloc, dicBufSize);
1151    if (!p->dic)
1152    {
1153      LzmaDec_FreeProbs(p, alloc);
1154      return SZ_ERROR_MEM;
1155    }
1156  }
1157  p->dicBufSize = dicBufSize;
1158  p->prop = propNew;
1159  return SZ_OK;
1160}
1161
1162SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
1163    const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
1164    ELzmaStatus *status, ISzAllocPtr alloc)
1165{
1166  CLzmaDec p;
1167  SRes res;
1168  SizeT outSize = *destLen, inSize = *srcLen;
1169  *destLen = *srcLen = 0;
1170  *status = LZMA_STATUS_NOT_SPECIFIED;
1171  if (inSize < RC_INIT_SIZE)
1172    return SZ_ERROR_INPUT_EOF;
1173  LzmaDec_Construct(&p);
1174  RINOK(LzmaDec_AllocateProbs(&p, propData, propSize, alloc));
1175  p.dic = dest;
1176  p.dicBufSize = outSize;
1177  LzmaDec_Init(&p);
1178  *srcLen = inSize;
1179  res = LzmaDec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
1180  *destLen = p.dicPos;
1181  if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
1182    res = SZ_ERROR_INPUT_EOF;
1183  LzmaDec_FreeProbs(&p, alloc);
1184  return res;
1185}