all repos — mgba @ b6f863be26089bf01fd8cc7277e2cee360556549

mGBA Game Boy Advance Emulator

src/gb/audio.c (view raw)

   1/* Copyright (c) 2013-2016 Jeffrey Pfau
   2 *
   3 * This Source Code Form is subject to the terms of the Mozilla Public
   4 * License, v. 2.0. If a copy of the MPL was not distributed with this
   5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
   6#include <mgba/internal/gb/audio.h>
   7
   8#include <mgba/core/blip_buf.h>
   9#include <mgba/core/interface.h>
  10#include <mgba/core/sync.h>
  11#include <mgba/internal/gb/gb.h>
  12#include <mgba/internal/gb/serialize.h>
  13#include <mgba/internal/gb/io.h>
  14
  15#ifdef _3DS
  16#define blip_add_delta blip_add_delta_fast
  17#endif
  18
  19#define FRAME_CYCLES (DMG_LR35902_FREQUENCY >> 9)
  20
  21const uint32_t DMG_LR35902_FREQUENCY = 0x400000;
  22static const int CLOCKS_PER_BLIP_FRAME = 0x1000;
  23static const unsigned BLIP_BUFFER_SIZE = 0x4000;
  24const int GB_AUDIO_VOLUME_MAX = 0x100;
  25
  26static bool _writeSweep(struct GBAudioSweep* sweep, uint8_t value);
  27static void _writeDuty(struct GBAudioEnvelope* envelope, uint8_t value);
  28static bool _writeEnvelope(struct GBAudioEnvelope* envelope, uint8_t value, enum GBAudioStyle style);
  29
  30static void _resetSweep(struct GBAudioSweep* sweep);
  31static bool _resetEnvelope(struct GBAudioEnvelope* sweep);
  32
  33static void _updateEnvelope(struct GBAudioEnvelope* envelope);
  34static void _updateEnvelopeDead(struct GBAudioEnvelope* envelope);
  35static bool _updateSweep(struct GBAudioSquareChannel* sweep, bool initial);
  36
  37static void _updateSquareSample(struct GBAudioSquareChannel* ch);
  38static int32_t _updateSquareChannel(struct GBAudioSquareChannel* ch);
  39
  40static int16_t _coalesceNoiseChannel(struct GBAudioNoiseChannel* ch);
  41
  42static void _updateFrame(struct mTiming* timing, void* user, uint32_t cyclesLate);
  43static void _updateChannel1(struct mTiming* timing, void* user, uint32_t cyclesLate);
  44static void _updateChannel2(struct mTiming* timing, void* user, uint32_t cyclesLate);
  45static void _updateChannel3(struct mTiming* timing, void* user, uint32_t cyclesLate);
  46static void _fadeChannel3(struct mTiming* timing, void* user, uint32_t cyclesLate);
  47static void _updateChannel4(struct mTiming* timing, void* user, uint32_t cyclesLate);
  48static void _sample(struct mTiming* timing, void* user, uint32_t cyclesLate);
  49
  50void GBAudioInit(struct GBAudio* audio, size_t samples, uint8_t* nr52, enum GBAudioStyle style) {
  51	audio->samples = samples;
  52	audio->left = blip_new(BLIP_BUFFER_SIZE);
  53	audio->right = blip_new(BLIP_BUFFER_SIZE);
  54	audio->clockRate = DMG_LR35902_FREQUENCY;
  55	// Guess too large; we hang producing extra samples if we guess too low
  56	blip_set_rates(audio->left, DMG_LR35902_FREQUENCY, 96000);
  57	blip_set_rates(audio->right, DMG_LR35902_FREQUENCY, 96000);
  58	audio->forceDisableCh[0] = false;
  59	audio->forceDisableCh[1] = false;
  60	audio->forceDisableCh[2] = false;
  61	audio->forceDisableCh[3] = false;
  62	audio->masterVolume = GB_AUDIO_VOLUME_MAX;
  63	audio->nr52 = nr52;
  64	audio->style = style;
  65	if (style == GB_AUDIO_GBA) {
  66		audio->timingFactor = 4;
  67	} else {
  68		audio->timingFactor = 1;
  69	}
  70
  71	audio->frameEvent.context = audio;
  72	audio->frameEvent.name = "GB Audio Frame Sequencer";
  73	audio->frameEvent.callback = _updateFrame;
  74	audio->frameEvent.priority = 0x10;
  75	audio->ch1Event.context = audio;
  76	audio->ch1Event.name = "GB Audio Channel 1";
  77	audio->ch1Event.callback = _updateChannel1;
  78	audio->ch1Event.priority = 0x11;
  79	audio->ch2Event.context = audio;
  80	audio->ch2Event.name = "GB Audio Channel 2";
  81	audio->ch2Event.callback = _updateChannel2;
  82	audio->ch2Event.priority = 0x12;
  83	audio->ch3Event.context = audio;
  84	audio->ch3Event.name = "GB Audio Channel 3";
  85	audio->ch3Event.callback = _updateChannel3;
  86	audio->ch3Event.priority = 0x13;
  87	audio->ch3Fade.context = audio;
  88	audio->ch3Fade.name = "GB Audio Channel 3 Memory";
  89	audio->ch3Fade.callback = _fadeChannel3;
  90	audio->ch3Fade.priority = 0x14;
  91	audio->ch4Event.context = audio;
  92	audio->ch4Event.name = "GB Audio Channel 4";
  93	audio->ch4Event.callback = _updateChannel4;
  94	audio->ch4Event.priority = 0x15;
  95	audio->sampleEvent.context = audio;
  96	audio->sampleEvent.name = "GB Audio Sample";
  97	audio->sampleEvent.callback = _sample;
  98	audio->sampleEvent.priority = 0x18;
  99}
 100
 101void GBAudioDeinit(struct GBAudio* audio) {
 102	blip_delete(audio->left);
 103	blip_delete(audio->right);
 104}
 105
 106void GBAudioReset(struct GBAudio* audio) {
 107	mTimingDeschedule(audio->timing, &audio->frameEvent);
 108	mTimingDeschedule(audio->timing, &audio->ch1Event);
 109	mTimingDeschedule(audio->timing, &audio->ch2Event);
 110	mTimingDeschedule(audio->timing, &audio->ch3Event);
 111	mTimingDeschedule(audio->timing, &audio->ch3Fade);
 112	mTimingDeschedule(audio->timing, &audio->ch4Event);
 113	mTimingDeschedule(audio->timing, &audio->sampleEvent);
 114	if (audio->style != GB_AUDIO_GBA) {
 115		mTimingSchedule(audio->timing, &audio->sampleEvent, 0);
 116	}
 117	if (audio->style == GB_AUDIO_GBA) {
 118		mTimingSchedule(audio->timing, &audio->frameEvent, 0);
 119	}
 120	audio->ch1 = (struct GBAudioSquareChannel) { .envelope = { .dead = 2 } };
 121	audio->ch2 = (struct GBAudioSquareChannel) { .envelope = { .dead = 2 } };
 122	audio->ch3 = (struct GBAudioWaveChannel) { .bank = 0 };
 123	audio->ch4 = (struct GBAudioNoiseChannel) { .nSamples = 0 };
 124	// TODO: DMG randomness
 125	audio->ch3.wavedata8[0] = 0x00;
 126	audio->ch3.wavedata8[1] = 0xFF;
 127	audio->ch3.wavedata8[2] = 0x00;
 128	audio->ch3.wavedata8[3] = 0xFF;
 129	audio->ch3.wavedata8[4] = 0x00;
 130	audio->ch3.wavedata8[5] = 0xFF;
 131	audio->ch3.wavedata8[6] = 0x00;
 132	audio->ch3.wavedata8[7] = 0xFF;
 133	audio->ch3.wavedata8[8] = 0x00;
 134	audio->ch3.wavedata8[9] = 0xFF;
 135	audio->ch3.wavedata8[10] = 0x00;
 136	audio->ch3.wavedata8[11] = 0xFF;
 137	audio->ch3.wavedata8[12] = 0x00;
 138	audio->ch3.wavedata8[13] = 0xFF;
 139	audio->ch3.wavedata8[14] = 0x00;
 140	audio->ch3.wavedata8[15] = 0xFF;
 141	audio->ch4 = (struct GBAudioNoiseChannel) { .envelope = { .dead = 2 } };
 142	audio->frame = 0;
 143	audio->sampleInterval = 128;
 144	audio->lastLeft = 0;
 145	audio->lastRight = 0;
 146	audio->capLeft = 0;
 147	audio->capRight = 0;
 148	audio->clock = 0;
 149	audio->playingCh1 = false;
 150	audio->playingCh2 = false;
 151	audio->playingCh3 = false;
 152	audio->playingCh4 = false;
 153	if (audio->p && !(audio->p->model & GB_MODEL_SGB)) {
 154		audio->playingCh1 = true;
 155		audio->enable = true;
 156		*audio->nr52 |= 0x01;
 157	}
 158}
 159
 160void GBAudioResizeBuffer(struct GBAudio* audio, size_t samples) {
 161	mCoreSyncLockAudio(audio->p->sync);
 162	audio->samples = samples;
 163	blip_clear(audio->left);
 164	blip_clear(audio->right);
 165	audio->clock = 0;
 166	mCoreSyncConsumeAudio(audio->p->sync);
 167}
 168
 169void GBAudioWriteNR10(struct GBAudio* audio, uint8_t value) {
 170	if (!_writeSweep(&audio->ch1.sweep, value)) {
 171		mTimingDeschedule(audio->timing, &audio->ch1Event);
 172		audio->playingCh1 = false;
 173		*audio->nr52 &= ~0x0001;
 174	}
 175}
 176
 177void GBAudioWriteNR11(struct GBAudio* audio, uint8_t value) {
 178	_writeDuty(&audio->ch1.envelope, value);
 179	audio->ch1.control.length = 64 - audio->ch1.envelope.length;
 180}
 181
 182void GBAudioWriteNR12(struct GBAudio* audio, uint8_t value) {
 183	if (!_writeEnvelope(&audio->ch1.envelope, value, audio->style)) {
 184		mTimingDeschedule(audio->timing, &audio->ch1Event);
 185		audio->playingCh1 = false;
 186		*audio->nr52 &= ~0x0001;
 187	}
 188}
 189
 190void GBAudioWriteNR13(struct GBAudio* audio, uint8_t value) {
 191	audio->ch1.control.frequency &= 0x700;
 192	audio->ch1.control.frequency |= GBAudioRegisterControlGetFrequency(value);
 193}
 194
 195void GBAudioWriteNR14(struct GBAudio* audio, uint8_t value) {
 196	audio->ch1.control.frequency &= 0xFF;
 197	audio->ch1.control.frequency |= GBAudioRegisterControlGetFrequency(value << 8);
 198	bool wasStop = audio->ch1.control.stop;
 199	audio->ch1.control.stop = GBAudioRegisterControlGetStop(value << 8);
 200	if (!wasStop && audio->ch1.control.stop && audio->ch1.control.length && !(audio->frame & 1)) {
 201		--audio->ch1.control.length;
 202		if (audio->ch1.control.length == 0) {
 203			mTimingDeschedule(audio->timing, &audio->ch1Event);
 204			audio->playingCh1 = false;
 205		}
 206	}
 207	if (GBAudioRegisterControlIsRestart(value << 8)) {
 208		audio->playingCh1 = _resetEnvelope(&audio->ch1.envelope);
 209		audio->ch1.sweep.realFrequency = audio->ch1.control.frequency;
 210		_resetSweep(&audio->ch1.sweep);
 211		if (audio->playingCh1 && audio->ch1.sweep.shift) {
 212			audio->playingCh1 = _updateSweep(&audio->ch1, true);
 213		}
 214		if (!audio->ch1.control.length) {
 215			audio->ch1.control.length = 64;
 216			if (audio->ch1.control.stop && !(audio->frame & 1)) {
 217				--audio->ch1.control.length;
 218			}
 219		}
 220		if (audio->playingCh1 && audio->ch1.envelope.dead != 2) {
 221			_updateSquareChannel(&audio->ch1);
 222			mTimingDeschedule(audio->timing, &audio->ch1Event);
 223			mTimingSchedule(audio->timing, &audio->ch1Event, 0);
 224		}
 225	}
 226	*audio->nr52 &= ~0x0001;
 227	*audio->nr52 |= audio->playingCh1;
 228}
 229
 230void GBAudioWriteNR21(struct GBAudio* audio, uint8_t value) {
 231	_writeDuty(&audio->ch2.envelope, value);
 232	audio->ch2.control.length = 64 - audio->ch2.envelope.length;
 233}
 234
 235void GBAudioWriteNR22(struct GBAudio* audio, uint8_t value) {
 236	if (!_writeEnvelope(&audio->ch2.envelope, value, audio->style)) {
 237		mTimingDeschedule(audio->timing, &audio->ch2Event);
 238		audio->playingCh2 = false;
 239		*audio->nr52 &= ~0x0002;
 240	}
 241}
 242
 243void GBAudioWriteNR23(struct GBAudio* audio, uint8_t value) {
 244	audio->ch2.control.frequency &= 0x700;
 245	audio->ch2.control.frequency |= GBAudioRegisterControlGetFrequency(value);
 246}
 247
 248void GBAudioWriteNR24(struct GBAudio* audio, uint8_t value) {
 249	audio->ch2.control.frequency &= 0xFF;
 250	audio->ch2.control.frequency |= GBAudioRegisterControlGetFrequency(value << 8);
 251	bool wasStop = audio->ch2.control.stop;
 252	audio->ch2.control.stop = GBAudioRegisterControlGetStop(value << 8);
 253	if (!wasStop && audio->ch2.control.stop && audio->ch2.control.length && !(audio->frame & 1)) {
 254		--audio->ch2.control.length;
 255		if (audio->ch2.control.length == 0) {
 256			mTimingDeschedule(audio->timing, &audio->ch2Event);
 257			audio->playingCh2 = false;
 258		}
 259	}
 260	if (GBAudioRegisterControlIsRestart(value << 8)) {
 261		audio->playingCh2 = _resetEnvelope(&audio->ch2.envelope);
 262
 263		if (!audio->ch2.control.length) {
 264			audio->ch2.control.length = 64;
 265			if (audio->ch2.control.stop && !(audio->frame & 1)) {
 266				--audio->ch2.control.length;
 267			}
 268		}
 269		if (audio->playingCh2 && audio->ch2.envelope.dead != 2) {
 270			_updateSquareChannel(&audio->ch2);
 271			mTimingDeschedule(audio->timing, &audio->ch2Event);
 272			mTimingSchedule(audio->timing, &audio->ch2Event, 0);
 273		}
 274	}
 275	*audio->nr52 &= ~0x0002;
 276	*audio->nr52 |= audio->playingCh2 << 1;
 277}
 278
 279void GBAudioWriteNR30(struct GBAudio* audio, uint8_t value) {
 280	audio->ch3.enable = GBAudioRegisterBankGetEnable(value);
 281	if (!audio->ch3.enable) {
 282		mTimingDeschedule(audio->timing, &audio->ch3Event);
 283		audio->playingCh3 = false;
 284		*audio->nr52 &= ~0x0004;
 285	}
 286}
 287
 288void GBAudioWriteNR31(struct GBAudio* audio, uint8_t value) {
 289	audio->ch3.length = 256 - value;
 290}
 291
 292void GBAudioWriteNR32(struct GBAudio* audio, uint8_t value) {
 293	audio->ch3.volume = GBAudioRegisterBankVolumeGetVolumeGB(value);
 294}
 295
 296void GBAudioWriteNR33(struct GBAudio* audio, uint8_t value) {
 297	audio->ch3.rate &= 0x700;
 298	audio->ch3.rate |= GBAudioRegisterControlGetRate(value);
 299}
 300
 301void GBAudioWriteNR34(struct GBAudio* audio, uint8_t value) {
 302	audio->ch3.rate &= 0xFF;
 303	audio->ch3.rate |= GBAudioRegisterControlGetRate(value << 8);
 304	bool wasStop = audio->ch3.stop;
 305	audio->ch3.stop = GBAudioRegisterControlGetStop(value << 8);
 306	if (!wasStop && audio->ch3.stop && audio->ch3.length && !(audio->frame & 1)) {
 307		--audio->ch3.length;
 308		if (audio->ch3.length == 0) {
 309			audio->playingCh3 = false;
 310		}
 311	}
 312	bool wasEnable = audio->playingCh3;
 313	if (GBAudioRegisterControlIsRestart(value << 8)) {
 314		audio->playingCh3 = audio->ch3.enable;
 315		if (!audio->ch3.length) {
 316			audio->ch3.length = 256;
 317			if (audio->ch3.stop && !(audio->frame & 1)) {
 318				--audio->ch3.length;
 319			}
 320		}
 321
 322		if (audio->style == GB_AUDIO_DMG && wasEnable && audio->playingCh3 && audio->ch3.readable) {
 323			if (audio->ch3.window < 8) {
 324				audio->ch3.wavedata8[0] = audio->ch3.wavedata8[audio->ch3.window >> 1];
 325			} else {
 326				audio->ch3.wavedata8[0] = audio->ch3.wavedata8[((audio->ch3.window >> 1) & ~3)];
 327				audio->ch3.wavedata8[1] = audio->ch3.wavedata8[((audio->ch3.window >> 1) & ~3) + 1];
 328				audio->ch3.wavedata8[2] = audio->ch3.wavedata8[((audio->ch3.window >> 1) & ~3) + 2];
 329				audio->ch3.wavedata8[3] = audio->ch3.wavedata8[((audio->ch3.window >> 1) & ~3) + 3];
 330			}
 331		}
 332		audio->ch3.window = 0;
 333		if (audio->style == GB_AUDIO_DMG) {
 334			audio->ch3.sample = 0;
 335		}
 336	}
 337	mTimingDeschedule(audio->timing, &audio->ch3Fade);
 338	mTimingDeschedule(audio->timing, &audio->ch3Event);
 339	if (audio->playingCh3) {
 340		audio->ch3.readable = audio->style != GB_AUDIO_DMG;
 341		// TODO: Where does this cycle delay come from?
 342		mTimingSchedule(audio->timing, &audio->ch3Event, audio->timingFactor * 4 + 2 * (2048 - audio->ch3.rate));
 343	}
 344	*audio->nr52 &= ~0x0004;
 345	*audio->nr52 |= audio->playingCh3 << 2;
 346}
 347
 348void GBAudioWriteNR41(struct GBAudio* audio, uint8_t value) {
 349	_writeDuty(&audio->ch4.envelope, value);
 350	audio->ch4.length = 64 - audio->ch4.envelope.length;
 351}
 352
 353void GBAudioWriteNR42(struct GBAudio* audio, uint8_t value) {
 354	if (!_writeEnvelope(&audio->ch4.envelope, value, audio->style)) {
 355		mTimingDeschedule(audio->timing, &audio->ch4Event);
 356		audio->playingCh4 = false;
 357		*audio->nr52 &= ~0x0008;
 358	}
 359}
 360
 361void GBAudioWriteNR43(struct GBAudio* audio, uint8_t value) {
 362	audio->ch4.ratio = GBAudioRegisterNoiseFeedbackGetRatio(value);
 363	audio->ch4.frequency = GBAudioRegisterNoiseFeedbackGetFrequency(value);
 364	audio->ch4.power = GBAudioRegisterNoiseFeedbackGetPower(value);
 365}
 366
 367void GBAudioWriteNR44(struct GBAudio* audio, uint8_t value) {
 368	bool wasStop = audio->ch4.stop;
 369	audio->ch4.stop = GBAudioRegisterNoiseControlGetStop(value);
 370	if (!wasStop && audio->ch4.stop && audio->ch4.length && !(audio->frame & 1)) {
 371		--audio->ch4.length;
 372		if (audio->ch4.length == 0) {
 373			mTimingDeschedule(audio->timing, &audio->ch4Event);
 374			audio->playingCh4 = false;
 375		}
 376	}
 377	if (GBAudioRegisterNoiseControlIsRestart(value)) {
 378		audio->playingCh4 = _resetEnvelope(&audio->ch4.envelope);
 379
 380		if (audio->ch4.power) {
 381			audio->ch4.lfsr = 0x7F;
 382		} else {
 383			audio->ch4.lfsr = 0x7FFF;
 384		}
 385		if (!audio->ch4.length) {
 386			audio->ch4.length = 64;
 387			if (audio->ch4.stop && !(audio->frame & 1)) {
 388				--audio->ch4.length;
 389			}
 390		}
 391		if (audio->playingCh4 && audio->ch4.envelope.dead != 2) {
 392			mTimingDeschedule(audio->timing, &audio->ch4Event);
 393			mTimingSchedule(audio->timing, &audio->ch4Event, 0);
 394		}
 395	}
 396	*audio->nr52 &= ~0x0008;
 397	*audio->nr52 |= audio->playingCh4 << 3;
 398}
 399
 400void GBAudioWriteNR50(struct GBAudio* audio, uint8_t value) {
 401	audio->volumeRight = GBRegisterNR50GetVolumeRight(value);
 402	audio->volumeLeft = GBRegisterNR50GetVolumeLeft(value);
 403}
 404
 405void GBAudioWriteNR51(struct GBAudio* audio, uint8_t value) {
 406	audio->ch1Right = GBRegisterNR51GetCh1Right(value);
 407	audio->ch2Right = GBRegisterNR51GetCh2Right(value);
 408	audio->ch3Right = GBRegisterNR51GetCh3Right(value);
 409	audio->ch4Right = GBRegisterNR51GetCh4Right(value);
 410	audio->ch1Left = GBRegisterNR51GetCh1Left(value);
 411	audio->ch2Left = GBRegisterNR51GetCh2Left(value);
 412	audio->ch3Left = GBRegisterNR51GetCh3Left(value);
 413	audio->ch4Left = GBRegisterNR51GetCh4Left(value);
 414}
 415
 416void GBAudioWriteNR52(struct GBAudio* audio, uint8_t value) {
 417	bool wasEnable = audio->enable;
 418	audio->enable = GBAudioEnableGetEnable(value);
 419	if (!audio->enable) {
 420		audio->playingCh1 = 0;
 421		audio->playingCh2 = 0;
 422		audio->playingCh3 = 0;
 423		audio->playingCh4 = 0;
 424		GBAudioWriteNR10(audio, 0);
 425		GBAudioWriteNR12(audio, 0);
 426		GBAudioWriteNR13(audio, 0);
 427		GBAudioWriteNR14(audio, 0);
 428		GBAudioWriteNR22(audio, 0);
 429		GBAudioWriteNR23(audio, 0);
 430		GBAudioWriteNR24(audio, 0);
 431		GBAudioWriteNR30(audio, 0);
 432		GBAudioWriteNR32(audio, 0);
 433		GBAudioWriteNR33(audio, 0);
 434		GBAudioWriteNR34(audio, 0);
 435		GBAudioWriteNR42(audio, 0);
 436		GBAudioWriteNR43(audio, 0);
 437		GBAudioWriteNR44(audio, 0);
 438		GBAudioWriteNR50(audio, 0);
 439		GBAudioWriteNR51(audio, 0);
 440		if (audio->style != GB_AUDIO_DMG) {
 441			GBAudioWriteNR11(audio, 0);
 442			GBAudioWriteNR21(audio, 0);
 443			GBAudioWriteNR31(audio, 0);
 444			GBAudioWriteNR41(audio, 0);
 445		}
 446
 447		if (audio->p) {
 448			audio->p->memory.io[REG_NR10] = 0;
 449			audio->p->memory.io[REG_NR11] = 0;
 450			audio->p->memory.io[REG_NR12] = 0;
 451			audio->p->memory.io[REG_NR13] = 0;
 452			audio->p->memory.io[REG_NR14] = 0;
 453			audio->p->memory.io[REG_NR21] = 0;
 454			audio->p->memory.io[REG_NR22] = 0;
 455			audio->p->memory.io[REG_NR23] = 0;
 456			audio->p->memory.io[REG_NR24] = 0;
 457			audio->p->memory.io[REG_NR30] = 0;
 458			audio->p->memory.io[REG_NR31] = 0;
 459			audio->p->memory.io[REG_NR32] = 0;
 460			audio->p->memory.io[REG_NR33] = 0;
 461			audio->p->memory.io[REG_NR34] = 0;
 462			audio->p->memory.io[REG_NR42] = 0;
 463			audio->p->memory.io[REG_NR43] = 0;
 464			audio->p->memory.io[REG_NR44] = 0;
 465			audio->p->memory.io[REG_NR50] = 0;
 466			audio->p->memory.io[REG_NR51] = 0;
 467			if (audio->style != GB_AUDIO_DMG) {
 468				audio->p->memory.io[REG_NR11] = 0;
 469				audio->p->memory.io[REG_NR21] = 0;
 470				audio->p->memory.io[REG_NR31] = 0;
 471				audio->p->memory.io[REG_NR41] = 0;
 472			}
 473		}
 474		*audio->nr52 &= ~0x000F;
 475	} else if (!wasEnable) {
 476		audio->skipFrame = false;
 477		audio->frame = 7;
 478
 479		if (audio->p) {
 480			unsigned timingFactor = 0x400 >> !audio->p->doubleSpeed;
 481			if (audio->p->timer.internalDiv & timingFactor) {
 482				audio->skipFrame = true;
 483			}
 484		}
 485	}
 486}
 487
 488void _updateFrame(struct mTiming* timing, void* user, uint32_t cyclesLate) {
 489	struct GBAudio* audio = user;
 490	GBAudioUpdateFrame(audio, timing);
 491	if (audio->style == GB_AUDIO_GBA) {
 492		mTimingSchedule(timing, &audio->frameEvent, audio->timingFactor * FRAME_CYCLES - cyclesLate);
 493	}
 494}
 495
 496void GBAudioUpdateFrame(struct GBAudio* audio, struct mTiming* timing) {
 497	if (!audio->enable) {
 498		return;
 499	}
 500	if (audio->skipFrame) {
 501		audio->skipFrame = false;
 502		return;
 503	}
 504	int frame = (audio->frame + 1) & 7;
 505	audio->frame = frame;
 506
 507	switch (frame) {
 508	case 2:
 509	case 6:
 510		if (audio->ch1.sweep.enable) {
 511			--audio->ch1.sweep.step;
 512			if (audio->ch1.sweep.step == 0) {
 513				audio->playingCh1 = _updateSweep(&audio->ch1, false);
 514				*audio->nr52 &= ~0x0001;
 515				*audio->nr52 |= audio->playingCh1;
 516				if (!audio->playingCh1) {
 517					mTimingDeschedule(audio->timing, &audio->ch1Event);
 518				}
 519			}
 520		}
 521		// Fall through
 522	case 0:
 523	case 4:
 524		if (audio->ch1.control.length && audio->ch1.control.stop) {
 525			--audio->ch1.control.length;
 526			if (audio->ch1.control.length == 0) {
 527				mTimingDeschedule(timing, &audio->ch1Event);
 528				audio->playingCh1 = 0;
 529				*audio->nr52 &= ~0x0001;
 530			}
 531		}
 532
 533		if (audio->ch2.control.length && audio->ch2.control.stop) {
 534			--audio->ch2.control.length;
 535			if (audio->ch2.control.length == 0) {
 536				mTimingDeschedule(timing, &audio->ch2Event);
 537				audio->playingCh2 = 0;
 538				*audio->nr52 &= ~0x0002;
 539			}
 540		}
 541
 542		if (audio->ch3.length && audio->ch3.stop) {
 543			--audio->ch3.length;
 544			if (audio->ch3.length == 0) {
 545				mTimingDeschedule(timing, &audio->ch3Event);
 546				audio->playingCh3 = 0;
 547				*audio->nr52 &= ~0x0004;
 548			}
 549		}
 550
 551		if (audio->ch4.length && audio->ch4.stop) {
 552			--audio->ch4.length;
 553			if (audio->ch4.length == 0) {
 554				mTimingDeschedule(timing, &audio->ch4Event);
 555				audio->playingCh4 = 0;
 556				*audio->nr52 &= ~0x0008;
 557			}
 558		}
 559		break;
 560	case 7:
 561		if (audio->playingCh1 && !audio->ch1.envelope.dead) {
 562			--audio->ch1.envelope.nextStep;
 563			if (audio->ch1.envelope.nextStep == 0) {
 564				_updateEnvelope(&audio->ch1.envelope);
 565				if (audio->ch1.envelope.dead == 2) {
 566					mTimingDeschedule(timing, &audio->ch1Event);
 567				}
 568				_updateSquareSample(&audio->ch1);
 569			}
 570		}
 571
 572		if (audio->playingCh2 && !audio->ch2.envelope.dead) {
 573			--audio->ch2.envelope.nextStep;
 574			if (audio->ch2.envelope.nextStep == 0) {
 575				_updateEnvelope(&audio->ch2.envelope);
 576				if (audio->ch2.envelope.dead == 2) {
 577					mTimingDeschedule(timing, &audio->ch2Event);
 578				}
 579				_updateSquareSample(&audio->ch2);
 580			}
 581		}
 582
 583		if (audio->playingCh4 && !audio->ch4.envelope.dead) {
 584			--audio->ch4.envelope.nextStep;
 585			if (audio->ch4.envelope.nextStep == 0) {
 586				int8_t sample = audio->ch4.sample > 0;
 587				audio->ch4.samples -= audio->ch4.sample;
 588				_updateEnvelope(&audio->ch4.envelope);
 589				if (audio->ch4.envelope.dead == 2) {
 590					mTimingDeschedule(timing, &audio->ch4Event);
 591				}
 592				audio->ch4.sample = sample * audio->ch4.envelope.currentVolume;
 593				audio->ch4.samples += audio->ch4.sample;
 594			}
 595		}
 596		break;
 597	}
 598}
 599
 600void GBAudioSamplePSG(struct GBAudio* audio, int16_t* left, int16_t* right) {
 601	int dcOffset = audio->style == GB_AUDIO_GBA ? 0 : -0x8;
 602	int sampleLeft = dcOffset;
 603	int sampleRight = dcOffset;
 604
 605	if (!audio->forceDisableCh[0]) {
 606		if (audio->ch1Left) {
 607			sampleLeft += audio->ch1.sample;
 608		}
 609
 610		if (audio->ch1Right) {
 611			sampleRight += audio->ch1.sample;
 612		}
 613	}
 614
 615	if (!audio->forceDisableCh[1]) {
 616		if (audio->ch2Left) {
 617			sampleLeft +=  audio->ch2.sample;
 618		}
 619
 620		if (audio->ch2Right) {
 621			sampleRight += audio->ch2.sample;
 622		}
 623	}
 624
 625	if (!audio->forceDisableCh[2]) {
 626		if (audio->ch3Left) {
 627			sampleLeft += audio->ch3.sample;
 628		}
 629
 630		if (audio->ch3Right) {
 631			sampleRight += audio->ch3.sample;
 632		}
 633	}
 634
 635	sampleLeft <<= 3;
 636	sampleRight <<= 3;
 637
 638	if (!audio->forceDisableCh[3]) {
 639		int16_t sample = audio->style == GB_AUDIO_GBA ? (audio->ch4.sample << 3) : _coalesceNoiseChannel(&audio->ch4);
 640		if (audio->ch4Left) {
 641			sampleLeft += sample;
 642		}
 643
 644		if (audio->ch4Right) {
 645			sampleRight += sample;
 646		}
 647	}
 648
 649	*left = sampleLeft * (1 + audio->volumeLeft);
 650	*right = sampleRight * (1 + audio->volumeRight);
 651}
 652
 653static void _sample(struct mTiming* timing, void* user, uint32_t cyclesLate) {
 654	struct GBAudio* audio = user;
 655	int16_t sampleLeft = 0;
 656	int16_t sampleRight = 0;
 657	GBAudioSamplePSG(audio, &sampleLeft, &sampleRight);
 658	sampleLeft = (sampleLeft * audio->masterVolume * 6) >> 7;
 659	sampleRight = (sampleRight * audio->masterVolume * 6) >> 7;
 660
 661	mCoreSyncLockAudio(audio->p->sync);
 662	unsigned produced;
 663
 664	int16_t degradedLeft = sampleLeft - (audio->capLeft >> 16);
 665	int16_t degradedRight = sampleRight - (audio->capRight >> 16);
 666	audio->capLeft = (sampleLeft << 16) - degradedLeft * 65184;
 667	audio->capRight = (sampleRight << 16) - degradedRight * 65184;
 668	sampleLeft = degradedLeft;
 669	sampleRight = degradedRight;
 670
 671	if ((size_t) blip_samples_avail(audio->left) < audio->samples) {
 672		blip_add_delta(audio->left, audio->clock, sampleLeft - audio->lastLeft);
 673		blip_add_delta(audio->right, audio->clock, sampleRight - audio->lastRight);
 674		audio->lastLeft = sampleLeft;
 675		audio->lastRight = sampleRight;
 676		audio->clock += audio->sampleInterval;
 677		if (audio->clock >= CLOCKS_PER_BLIP_FRAME) {
 678			blip_end_frame(audio->left, CLOCKS_PER_BLIP_FRAME);
 679			blip_end_frame(audio->right, CLOCKS_PER_BLIP_FRAME);
 680			audio->clock -= CLOCKS_PER_BLIP_FRAME;
 681		}
 682	}
 683	produced = blip_samples_avail(audio->left);
 684	if (audio->p->stream && audio->p->stream->postAudioFrame) {
 685		audio->p->stream->postAudioFrame(audio->p->stream, sampleLeft, sampleRight);
 686	}
 687	bool wait = produced >= audio->samples;
 688	if (!mCoreSyncProduceAudio(audio->p->sync, audio->left, audio->samples)) {
 689		// Interrupted
 690		audio->p->earlyExit = true;
 691	}
 692
 693	if (wait && audio->p->stream && audio->p->stream->postAudioBuffer) {
 694		audio->p->stream->postAudioBuffer(audio->p->stream, audio->left, audio->right);
 695	}
 696	mTimingSchedule(timing, &audio->sampleEvent, audio->sampleInterval * audio->timingFactor - cyclesLate);
 697}
 698
 699bool _resetEnvelope(struct GBAudioEnvelope* envelope) {
 700	envelope->currentVolume = envelope->initialVolume;
 701	_updateEnvelopeDead(envelope);
 702	if (!envelope->dead) {
 703		envelope->nextStep = envelope->stepTime;
 704	}
 705	return envelope->initialVolume || envelope->direction;
 706}
 707
 708void _resetSweep(struct GBAudioSweep* sweep) {
 709	sweep->step = sweep->time;
 710	sweep->enable = (sweep->step != 8) || sweep->shift;
 711	sweep->occurred = false;
 712}
 713
 714bool _writeSweep(struct GBAudioSweep* sweep, uint8_t value) {
 715	sweep->shift = GBAudioRegisterSquareSweepGetShift(value);
 716	bool oldDirection = sweep->direction;
 717	sweep->direction = GBAudioRegisterSquareSweepGetDirection(value);
 718	bool on = true;
 719	if (sweep->occurred && oldDirection && !sweep->direction) {
 720		on = false;
 721	}
 722	sweep->occurred = false;
 723	sweep->time = GBAudioRegisterSquareSweepGetTime(value);
 724	if (!sweep->time) {
 725		sweep->time = 8;
 726	}
 727	return on;
 728}
 729
 730void _writeDuty(struct GBAudioEnvelope* envelope, uint8_t value) {
 731	envelope->length = GBAudioRegisterDutyGetLength(value);
 732	envelope->duty = GBAudioRegisterDutyGetDuty(value);
 733}
 734
 735bool _writeEnvelope(struct GBAudioEnvelope* envelope, uint8_t value, enum GBAudioStyle style) {
 736	envelope->stepTime = GBAudioRegisterSweepGetStepTime(value);
 737	envelope->direction = GBAudioRegisterSweepGetDirection(value);
 738	envelope->initialVolume = GBAudioRegisterSweepGetInitialVolume(value);
 739	if (style == GB_AUDIO_DMG && !envelope->stepTime) {
 740		// TODO: Improve "zombie" mode
 741		++envelope->currentVolume;
 742		envelope->currentVolume &= 0xF;
 743	}
 744	_updateEnvelopeDead(envelope);
 745	return (envelope->initialVolume || envelope->direction) && envelope->dead != 2;
 746}
 747
 748static void _updateSquareSample(struct GBAudioSquareChannel* ch) {
 749	ch->sample = ch->control.hi * ch->envelope.currentVolume;
 750}
 751
 752static int32_t _updateSquareChannel(struct GBAudioSquareChannel* ch) {
 753	ch->control.hi = !ch->control.hi;
 754	_updateSquareSample(ch);
 755	int period = 4 * (2048 - ch->control.frequency);
 756	switch (ch->envelope.duty) {
 757	case 0:
 758		return ch->control.hi ? period : period * 7;
 759	case 1:
 760		return ch->control.hi ? period * 2 : period * 6;
 761	case 2:
 762		return period * 4;
 763	case 3:
 764		return ch->control.hi ? period * 6 : period * 2;
 765	default:
 766		// This should never be hit
 767		return period * 4;
 768	}
 769}
 770
 771static int16_t _coalesceNoiseChannel(struct GBAudioNoiseChannel* ch) {
 772	if (!ch->nSamples) {
 773		return ch->sample << 3;
 774	}
 775	// TODO keep track of timing
 776	int16_t sample = (ch->samples << 3) / ch->nSamples;
 777	ch->nSamples = 0;
 778	ch->samples = 0;
 779	return sample;
 780}
 781
 782static void _updateEnvelope(struct GBAudioEnvelope* envelope) {
 783	if (envelope->direction) {
 784		++envelope->currentVolume;
 785	} else {
 786		--envelope->currentVolume;
 787	}
 788	if (envelope->currentVolume >= 15) {
 789		envelope->currentVolume = 15;
 790		envelope->dead = 1;
 791	} else if (envelope->currentVolume <= 0) {
 792		envelope->currentVolume = 0;
 793		envelope->dead = 2;
 794	} else {
 795		envelope->nextStep = envelope->stepTime;
 796	}
 797}
 798
 799static void _updateEnvelopeDead(struct GBAudioEnvelope* envelope) {
 800	if (!envelope->stepTime) {
 801		envelope->dead = envelope->currentVolume ? 1 : 2;
 802	} else if (!envelope->direction && !envelope->currentVolume) {
 803		envelope->dead = 2;
 804	} else if (envelope->direction && envelope->currentVolume == 0xF) {
 805		envelope->dead = 1;
 806	} else {
 807		envelope->dead = 0;
 808	}
 809}
 810
 811static bool _updateSweep(struct GBAudioSquareChannel* ch, bool initial) {
 812	if (initial || ch->sweep.time != 8) {
 813		int frequency = ch->sweep.realFrequency;
 814		if (ch->sweep.direction) {
 815			frequency -= frequency >> ch->sweep.shift;
 816			if (!initial && frequency >= 0) {
 817				ch->control.frequency = frequency;
 818				ch->sweep.realFrequency = frequency;
 819			}
 820		} else {
 821			frequency += frequency >> ch->sweep.shift;
 822			if (frequency < 2048) {
 823				if (!initial && ch->sweep.shift) {
 824					ch->control.frequency = frequency;
 825					ch->sweep.realFrequency = frequency;
 826					if (!_updateSweep(ch, true)) {
 827						return false;
 828					}
 829				}
 830			} else {
 831				return false;
 832			}
 833		}
 834		ch->sweep.occurred = true;
 835	}
 836	ch->sweep.step = ch->sweep.time;
 837	return true;
 838}
 839
 840static void _updateChannel1(struct mTiming* timing, void* user, uint32_t cyclesLate) {
 841	struct GBAudio* audio = user;
 842	struct GBAudioSquareChannel* ch = &audio->ch1;
 843	int cycles = _updateSquareChannel(ch);
 844	mTimingSchedule(timing, &audio->ch1Event, audio->timingFactor * cycles - cyclesLate);
 845}
 846
 847static void _updateChannel2(struct mTiming* timing, void* user, uint32_t cyclesLate) {
 848	struct GBAudio* audio = user;
 849	struct GBAudioSquareChannel* ch = &audio->ch2;
 850	int cycles = _updateSquareChannel(ch);
 851	mTimingSchedule(timing, &audio->ch2Event, audio->timingFactor * cycles - cyclesLate);
 852}
 853
 854static void _updateChannel3(struct mTiming* timing, void* user, uint32_t cyclesLate) {
 855	struct GBAudio* audio = user;
 856	struct GBAudioWaveChannel* ch = &audio->ch3;
 857	int i;
 858	int volume;
 859	switch (ch->volume) {
 860	case 0:
 861		volume = 4;
 862		break;
 863	case 1:
 864		volume = 0;
 865		break;
 866	case 2:
 867		volume = 1;
 868		break;
 869	default:
 870	case 3:
 871		volume = 2;
 872		break;
 873	}
 874	int start;
 875	int end;
 876	switch (audio->style) {
 877	case GB_AUDIO_DMG:
 878	default:
 879		++ch->window;
 880		ch->window &= 0x1F;
 881		ch->sample = ch->wavedata8[ch->window >> 1];
 882		if (!(ch->window & 1)) {
 883			ch->sample >>= 4;
 884		}
 885		ch->sample &= 0xF;
 886		break;
 887	case GB_AUDIO_GBA:
 888		if (ch->size) {
 889			start = 7;
 890			end = 0;
 891		} else if (ch->bank) {
 892			start = 7;
 893			end = 4;
 894		} else {
 895			start = 3;
 896			end = 0;
 897		}
 898		uint32_t bitsCarry = ch->wavedata32[end] & 0x000000F0;
 899		uint32_t bits;
 900		for (i = start; i >= end; --i) {
 901			bits = ch->wavedata32[i] & 0x000000F0;
 902			ch->wavedata32[i] = ((ch->wavedata32[i] & 0x0F0F0F0F) << 4) | ((ch->wavedata32[i] & 0xF0F0F000) >> 12);
 903			ch->wavedata32[i] |= bitsCarry << 20;
 904			bitsCarry = bits;
 905		}
 906		ch->sample = bitsCarry >> 4;
 907		break;
 908	}
 909	if (ch->volume > 3) {
 910		ch->sample += ch->sample << 1;
 911	}
 912	ch->sample >>= volume;
 913	audio->ch3.readable = true;
 914	if (audio->style == GB_AUDIO_DMG) {
 915		mTimingDeschedule(audio->timing, &audio->ch3Fade);
 916		mTimingSchedule(timing, &audio->ch3Fade, 2 - cyclesLate);
 917	}
 918	int cycles = 2 * (2048 - ch->rate);
 919	mTimingSchedule(timing, &audio->ch3Event, audio->timingFactor * cycles - cyclesLate);
 920}
 921static void _fadeChannel3(struct mTiming* timing, void* user, uint32_t cyclesLate) {
 922	UNUSED(timing);
 923	UNUSED(cyclesLate);
 924	struct GBAudio* audio = user;
 925	audio->ch3.readable = false;
 926}
 927
 928static void _updateChannel4(struct mTiming* timing, void* user, uint32_t cyclesLate) {
 929	struct GBAudio* audio = user;
 930	struct GBAudioNoiseChannel* ch = &audio->ch4;
 931
 932	int32_t cycles = ch->ratio ? 2 * ch->ratio : 1;
 933	cycles <<= ch->frequency;
 934	cycles *= 8 * audio->timingFactor;
 935
 936	int lsb = ch->lfsr & 1;
 937	ch->sample = lsb * ch->envelope.currentVolume;
 938	++ch->nSamples;
 939	ch->samples += ch->sample;
 940	ch->lfsr >>= 1;
 941	ch->lfsr ^= (lsb * 0x60) << (ch->power ? 0 : 8);
 942
 943	mTimingSchedule(timing, &audio->ch4Event, cycles - cyclesLate);
 944}
 945
 946void GBAudioPSGSerialize(const struct GBAudio* audio, struct GBSerializedPSGState* state, uint32_t* flagsOut) {
 947	uint32_t flags = 0;
 948	uint32_t ch1Flags = 0;
 949	uint32_t ch2Flags = 0;
 950	uint32_t ch4Flags = 0;
 951
 952	flags = GBSerializedAudioFlagsSetFrame(flags, audio->frame);
 953	flags = GBSerializedAudioFlagsSetSkipFrame(flags, audio->skipFrame);
 954	STORE_32LE(audio->frameEvent.when - mTimingCurrentTime(audio->timing), 0, &state->ch1.nextFrame);
 955
 956	flags = GBSerializedAudioFlagsSetCh1Volume(flags, audio->ch1.envelope.currentVolume);
 957	flags = GBSerializedAudioFlagsSetCh1Dead(flags, audio->ch1.envelope.dead);
 958	flags = GBSerializedAudioFlagsSetCh1Hi(flags, audio->ch1.control.hi);
 959	flags = GBSerializedAudioFlagsSetCh1SweepEnabled(flags, audio->ch1.sweep.enable);
 960	flags = GBSerializedAudioFlagsSetCh1SweepOccurred(flags, audio->ch1.sweep.occurred);
 961	ch1Flags = GBSerializedAudioEnvelopeSetLength(ch1Flags, audio->ch1.control.length);
 962	ch1Flags = GBSerializedAudioEnvelopeSetNextStep(ch1Flags, audio->ch1.envelope.nextStep);
 963	ch1Flags = GBSerializedAudioEnvelopeSetFrequency(ch1Flags, audio->ch1.sweep.realFrequency);
 964	STORE_32LE(ch1Flags, 0, &state->ch1.envelope);
 965	STORE_32LE(audio->ch1Event.when - mTimingCurrentTime(audio->timing), 0, &state->ch1.nextEvent);
 966
 967	flags = GBSerializedAudioFlagsSetCh2Volume(flags, audio->ch2.envelope.currentVolume);
 968	flags = GBSerializedAudioFlagsSetCh2Dead(flags, audio->ch2.envelope.dead);
 969	flags = GBSerializedAudioFlagsSetCh2Hi(flags, audio->ch2.control.hi);
 970	ch2Flags = GBSerializedAudioEnvelopeSetLength(ch2Flags, audio->ch2.control.length);
 971	ch2Flags = GBSerializedAudioEnvelopeSetNextStep(ch2Flags, audio->ch2.envelope.nextStep);
 972	STORE_32LE(ch2Flags, 0, &state->ch2.envelope);
 973	STORE_32LE(audio->ch2Event.when - mTimingCurrentTime(audio->timing), 0, &state->ch2.nextEvent);
 974
 975	flags = GBSerializedAudioFlagsSetCh3Readable(flags, audio->ch3.readable);
 976	memcpy(state->ch3.wavebanks, audio->ch3.wavedata32, sizeof(state->ch3.wavebanks));
 977	STORE_16LE(audio->ch3.length, 0, &state->ch3.length);
 978	STORE_32LE(audio->ch3Event.when - mTimingCurrentTime(audio->timing), 0, &state->ch3.nextEvent);
 979	STORE_32LE(audio->ch3Fade.when - mTimingCurrentTime(audio->timing), 0, &state->ch1.nextCh3Fade);
 980
 981	flags = GBSerializedAudioFlagsSetCh4Volume(flags, audio->ch4.envelope.currentVolume);
 982	flags = GBSerializedAudioFlagsSetCh4Dead(flags, audio->ch4.envelope.dead);
 983	STORE_32LE(audio->ch4.lfsr, 0, &state->ch4.lfsr);
 984	ch4Flags = GBSerializedAudioEnvelopeSetLength(ch4Flags, audio->ch4.length);
 985	ch4Flags = GBSerializedAudioEnvelopeSetNextStep(ch4Flags, audio->ch4.envelope.nextStep);
 986	STORE_32LE(ch4Flags, 0, &state->ch4.envelope);
 987	STORE_32LE(audio->ch4Event.when - mTimingCurrentTime(audio->timing), 0, &state->ch4.nextEvent);
 988
 989	STORE_32LE(flags, 0, flagsOut);
 990}
 991
 992void GBAudioPSGDeserialize(struct GBAudio* audio, const struct GBSerializedPSGState* state, const uint32_t* flagsIn) {
 993	uint32_t flags;
 994	uint32_t ch1Flags = 0;
 995	uint32_t ch2Flags = 0;
 996	uint32_t ch4Flags = 0;
 997	uint32_t when;
 998
 999	audio->playingCh1 = !!(*audio->nr52 & 0x0001);
1000	audio->playingCh2 = !!(*audio->nr52 & 0x0002);
1001	audio->playingCh3 = !!(*audio->nr52 & 0x0004);
1002	audio->playingCh4 = !!(*audio->nr52 & 0x0008);
1003	audio->enable = GBAudioEnableGetEnable(*audio->nr52);
1004
1005	if (audio->style == GB_AUDIO_GBA) {
1006		LOAD_32LE(when, 0, &state->ch1.nextFrame);
1007		mTimingSchedule(audio->timing, &audio->frameEvent, when);
1008	}
1009
1010	LOAD_32LE(flags, 0, flagsIn);
1011	audio->frame = GBSerializedAudioFlagsGetFrame(flags);
1012	audio->skipFrame = GBSerializedAudioFlagsGetSkipFrame(flags);
1013
1014	LOAD_32LE(ch1Flags, 0, &state->ch1.envelope);
1015	audio->ch1.envelope.currentVolume = GBSerializedAudioFlagsGetCh1Volume(flags);
1016	audio->ch1.envelope.dead = GBSerializedAudioFlagsGetCh1Dead(flags);
1017	audio->ch1.control.hi = GBSerializedAudioFlagsGetCh1Hi(flags);
1018	audio->ch1.sweep.enable = GBSerializedAudioFlagsGetCh1SweepEnabled(flags);
1019	audio->ch1.sweep.occurred = GBSerializedAudioFlagsGetCh1SweepOccurred(flags);
1020	audio->ch1.control.length = GBSerializedAudioEnvelopeGetLength(ch1Flags);
1021	audio->ch1.envelope.nextStep = GBSerializedAudioEnvelopeGetNextStep(ch1Flags);
1022	audio->ch1.sweep.realFrequency = GBSerializedAudioEnvelopeGetFrequency(ch1Flags);
1023	LOAD_32LE(when, 0, &state->ch1.nextEvent);
1024	if (audio->ch1.envelope.dead < 2 && audio->playingCh1) {
1025		mTimingSchedule(audio->timing, &audio->ch1Event, when);
1026	}
1027
1028	LOAD_32LE(ch2Flags, 0, &state->ch2.envelope);
1029	audio->ch2.envelope.currentVolume = GBSerializedAudioFlagsGetCh2Volume(flags);
1030	audio->ch2.envelope.dead = GBSerializedAudioFlagsGetCh2Dead(flags);
1031	audio->ch2.control.hi = GBSerializedAudioFlagsGetCh2Hi(flags);
1032	audio->ch2.control.length = GBSerializedAudioEnvelopeGetLength(ch2Flags);
1033	audio->ch2.envelope.nextStep = GBSerializedAudioEnvelopeGetNextStep(ch2Flags);
1034	LOAD_32LE(when, 0, &state->ch2.nextEvent);
1035	if (audio->ch2.envelope.dead < 2 && audio->playingCh2) {
1036		mTimingSchedule(audio->timing, &audio->ch2Event, when);
1037	}
1038
1039	audio->ch3.readable = GBSerializedAudioFlagsGetCh3Readable(flags);
1040	// TODO: Big endian?
1041	memcpy(audio->ch3.wavedata32, state->ch3.wavebanks, sizeof(audio->ch3.wavedata32));
1042	LOAD_16LE(audio->ch3.length, 0, &state->ch3.length);
1043	LOAD_32LE(when, 0, &state->ch3.nextEvent);
1044	if (audio->playingCh3) {
1045		mTimingSchedule(audio->timing, &audio->ch3Event, when);
1046	}
1047	LOAD_32LE(when, 0, &state->ch1.nextCh3Fade);
1048	if (audio->ch3.readable && audio->style == GB_AUDIO_DMG) {
1049		mTimingSchedule(audio->timing, &audio->ch3Fade, when);
1050	}
1051
1052	LOAD_32LE(ch4Flags, 0, &state->ch4.envelope);
1053	audio->ch4.envelope.currentVolume = GBSerializedAudioFlagsGetCh4Volume(flags);
1054	audio->ch4.envelope.dead = GBSerializedAudioFlagsGetCh4Dead(flags);
1055	audio->ch4.length = GBSerializedAudioEnvelopeGetLength(ch4Flags);
1056	audio->ch4.envelope.nextStep = GBSerializedAudioEnvelopeGetNextStep(ch4Flags);
1057	LOAD_32LE(audio->ch4.lfsr, 0, &state->ch4.lfsr);
1058	LOAD_32LE(when, 0, &state->ch4.nextEvent);
1059	if (audio->ch4.envelope.dead < 2 && audio->playingCh4) {
1060		mTimingSchedule(audio->timing, &audio->ch4Event, when);
1061	}
1062}
1063
1064void GBAudioSerialize(const struct GBAudio* audio, struct GBSerializedState* state) {
1065	GBAudioPSGSerialize(audio, &state->audio.psg, &state->audio.flags);
1066	STORE_32LE(audio->capLeft, 0, &state->audio.capLeft);
1067	STORE_32LE(audio->capRight, 0, &state->audio.capRight);
1068	STORE_32LE(audio->sampleEvent.when - mTimingCurrentTime(audio->timing), 0, &state->audio.nextSample);
1069}
1070
1071void GBAudioDeserialize(struct GBAudio* audio, const struct GBSerializedState* state) {
1072	GBAudioPSGDeserialize(audio, &state->audio.psg, &state->audio.flags);
1073	LOAD_32LE(audio->capLeft, 0, &state->audio.capLeft);
1074	LOAD_32LE(audio->capRight, 0, &state->audio.capRight);
1075	uint32_t when;
1076	LOAD_32LE(when, 0, &state->audio.nextSample);
1077	mTimingSchedule(audio->timing, &audio->sampleEvent, when);
1078}