all repos — mgba @ c14da05d8dca225010677643c32fea5c0ac8517a

mGBA Game Boy Advance Emulator

src/gba/audio.c (view raw)

  1/* Copyright (c) 2013-2015 Jeffrey Pfau
  2 *
  3 * This Source Code Form is subject to the terms of the Mozilla Public
  4 * License, v. 2.0. If a copy of the MPL was not distributed with this
  5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  6#include "audio.h"
  7
  8#include "gba/gba.h"
  9#include "gba/io.h"
 10#include "gba/serialize.h"
 11#include "gba/supervisor/thread.h"
 12#include "gba/video.h"
 13
 14const unsigned GBA_AUDIO_SAMPLES = 2048;
 15const unsigned BLIP_BUFFER_SIZE = 0x4000;
 16const unsigned GBA_AUDIO_FIFO_SIZE = 8 * sizeof(int32_t);
 17const int GBA_AUDIO_VOLUME_MAX = 0x100;
 18#define SWEEP_CYCLES (GBA_ARM7TDMI_FREQUENCY / 128)
 19
 20#if RESAMPLE_LIBRARY == RESAMPLE_BLIP_BUF
 21static const int CLOCKS_PER_FRAME = 0x400;
 22#endif
 23
 24static bool _writeEnvelope(struct GBAAudioEnvelope* envelope, uint16_t value);
 25static int32_t _updateSquareChannel(struct GBAAudioSquareControl* envelope, int duty);
 26static void _updateEnvelope(struct GBAAudioEnvelope* envelope);
 27static bool _updateSweep(struct GBAAudioChannel1* ch);
 28static int32_t _updateChannel1(struct GBAAudioChannel1* ch);
 29static int32_t _updateChannel2(struct GBAAudioChannel2* ch);
 30static int32_t _updateChannel3(struct GBAAudioChannel3* ch);
 31static int32_t _updateChannel4(struct GBAAudioChannel4* ch);
 32static int _applyBias(struct GBAAudio* audio, int sample);
 33static void _sample(struct GBAAudio* audio);
 34
 35void GBAAudioInit(struct GBAAudio* audio, size_t samples) {
 36	audio->samples = samples;
 37#if RESAMPLE_LIBRARY != RESAMPLE_BLIP_BUF
 38	CircleBufferInit(&audio->left, samples * sizeof(int16_t));
 39	CircleBufferInit(&audio->right, samples * sizeof(int16_t));
 40#else
 41	audio->left = blip_new(BLIP_BUFFER_SIZE);
 42	audio->right = blip_new(BLIP_BUFFER_SIZE);
 43	// Guess too large; we hang producing extra samples if we guess too low
 44	blip_set_rates(audio->left, GBA_ARM7TDMI_FREQUENCY, 96000);
 45	blip_set_rates(audio->right, GBA_ARM7TDMI_FREQUENCY, 96000);
 46#endif
 47	CircleBufferInit(&audio->chA.fifo, GBA_AUDIO_FIFO_SIZE);
 48	CircleBufferInit(&audio->chB.fifo, GBA_AUDIO_FIFO_SIZE);
 49
 50	audio->forceDisableCh[0] = false;
 51	audio->forceDisableCh[1] = false;
 52	audio->forceDisableCh[2] = false;
 53	audio->forceDisableCh[3] = false;
 54	audio->forceDisableChA = false;
 55	audio->forceDisableChB = false;
 56	audio->masterVolume = GBA_AUDIO_VOLUME_MAX;
 57}
 58
 59void GBAAudioReset(struct GBAAudio* audio) {
 60	audio->nextEvent = 0;
 61	audio->nextCh1 = 0;
 62	audio->nextCh2 = 0;
 63	audio->nextCh3 = 0;
 64	audio->nextCh4 = 0;
 65	audio->ch1 = (struct GBAAudioChannel1) { .envelope = { .nextStep = INT_MAX }, .nextSweep = INT_MAX };
 66	audio->ch2 = (struct GBAAudioChannel2) { .envelope = { .nextStep = INT_MAX } };
 67	audio->ch3 = (struct GBAAudioChannel3) { .bank = { .bank = 0 } };
 68	audio->ch4 = (struct GBAAudioChannel4) { .envelope = { .nextStep = INT_MAX } };
 69	audio->chA.dmaSource = 1;
 70	audio->chB.dmaSource = 2;
 71	audio->chA.sample = 0;
 72	audio->chB.sample = 0;
 73	audio->eventDiff = 0;
 74	audio->nextSample = 0;
 75	audio->sampleRate = 0x8000;
 76	audio->soundbias = 0x200;
 77	audio->volumeRight = 0;
 78	audio->volumeLeft = 0;
 79	audio->ch1Right = false;
 80	audio->ch2Right = false;
 81	audio->ch3Right = false;
 82	audio->ch4Right = false;
 83	audio->ch1Left = false;
 84	audio->ch2Left = false;
 85	audio->ch3Left = false;
 86	audio->ch4Left = false;
 87	audio->volume = 0;
 88	audio->volumeChA = false;
 89	audio->volumeChB = false;
 90	audio->chARight = false;
 91	audio->chALeft = false;
 92	audio->chATimer = false;
 93	audio->chBRight = false;
 94	audio->chBLeft = false;
 95	audio->chBTimer = false;
 96	audio->playingCh1 = false;
 97	audio->playingCh2 = false;
 98	audio->playingCh3 = false;
 99	audio->playingCh4 = false;
100	audio->enable = false;
101	audio->sampleInterval = GBA_ARM7TDMI_FREQUENCY / audio->sampleRate;
102
103#if RESAMPLE_LIBRARY != RESAMPLE_BLIP_BUF
104	CircleBufferClear(&audio->left);
105	CircleBufferClear(&audio->right);
106#else
107	blip_clear(audio->left);
108	blip_clear(audio->right);
109	audio->clock = 0;
110#endif
111	CircleBufferClear(&audio->chA.fifo);
112	CircleBufferClear(&audio->chB.fifo);
113}
114
115void GBAAudioDeinit(struct GBAAudio* audio) {
116#if RESAMPLE_LIBRARY != RESAMPLE_BLIP_BUF
117	CircleBufferDeinit(&audio->left);
118	CircleBufferDeinit(&audio->right);
119#else
120	blip_delete(audio->left);
121	blip_delete(audio->right);
122#endif
123	CircleBufferDeinit(&audio->chA.fifo);
124	CircleBufferDeinit(&audio->chB.fifo);
125}
126
127void GBAAudioResizeBuffer(struct GBAAudio* audio, size_t samples) {
128	GBASyncLockAudio(audio->p->sync);
129	audio->samples = samples;
130#if RESAMPLE_LIBRARY != RESAMPLE_BLIP_BUF
131	size_t oldCapacity = audio->left.capacity;
132	int16_t* buffer = malloc(oldCapacity);
133	int16_t dummy;
134	size_t read;
135	size_t i;
136
137	read = CircleBufferDump(&audio->left, buffer, oldCapacity);
138	CircleBufferDeinit(&audio->left);
139	CircleBufferInit(&audio->left, samples * sizeof(int16_t));
140	for (i = 0; i * sizeof(int16_t) < read; ++i) {
141		if (!CircleBufferWrite16(&audio->left, buffer[i])) {
142			CircleBufferRead16(&audio->left, &dummy);
143			CircleBufferWrite16(&audio->left, buffer[i]);
144		}
145	}
146
147	read = CircleBufferDump(&audio->right, buffer, oldCapacity);
148	CircleBufferDeinit(&audio->right);
149	CircleBufferInit(&audio->right, samples * sizeof(int16_t));
150	for (i = 0; i * sizeof(int16_t) < read; ++i) {
151		if (!CircleBufferWrite16(&audio->right, buffer[i])) {
152			CircleBufferRead16(&audio->right, &dummy);
153			CircleBufferWrite16(&audio->right, buffer[i]);
154		}
155	}
156
157	free(buffer);
158#else
159	blip_clear(audio->left);
160	blip_clear(audio->right);
161	audio->clock = 0;
162#endif
163
164	GBASyncConsumeAudio(audio->p->sync);
165}
166
167int32_t GBAAudioProcessEvents(struct GBAAudio* audio, int32_t cycles) {
168	audio->nextEvent -= cycles;
169	audio->eventDiff += cycles;
170	while (audio->nextEvent <= 0) {
171		audio->nextEvent = INT_MAX;
172		if (audio->enable) {
173			if (audio->playingCh1 && !audio->ch1.envelope.dead) {
174				audio->nextCh1 -= audio->eventDiff;
175				if (audio->ch1.envelope.nextStep != INT_MAX) {
176					audio->ch1.envelope.nextStep -= audio->eventDiff;
177					if (audio->ch1.envelope.nextStep <= 0) {
178						int8_t sample = audio->ch1.control.hi * 0x10 - 0x8;
179						_updateEnvelope(&audio->ch1.envelope);
180						if (audio->ch1.envelope.nextStep < audio->nextEvent) {
181							audio->nextEvent = audio->ch1.envelope.nextStep;
182						}
183						audio->ch1.sample = sample * audio->ch1.envelope.currentVolume;
184					}
185				}
186
187				if (audio->ch1.nextSweep != INT_MAX) {
188					audio->ch1.nextSweep -= audio->eventDiff;
189					if (audio->ch1.nextSweep <= 0) {
190						audio->playingCh1 = _updateSweep(&audio->ch1);
191						if (audio->ch1.nextSweep < audio->nextEvent) {
192							audio->nextEvent = audio->ch1.nextSweep;
193						}
194					}
195				}
196
197				if (audio->nextCh1 <= 0) {
198					audio->nextCh1 += _updateChannel1(&audio->ch1);
199					if (audio->nextCh1 < audio->nextEvent) {
200						audio->nextEvent = audio->nextCh1;
201					}
202				}
203
204				if (audio->ch1.control.stop) {
205					audio->ch1.control.endTime -= audio->eventDiff;
206					if (audio->ch1.control.endTime <= 0) {
207						audio->playingCh1 = 0;
208					}
209				}
210			}
211
212			if (audio->playingCh2 && !audio->ch2.envelope.dead) {
213				audio->nextCh2 -= audio->eventDiff;
214				if (audio->ch2.envelope.nextStep != INT_MAX) {
215					audio->ch2.envelope.nextStep -= audio->eventDiff;
216					if (audio->ch2.envelope.nextStep <= 0) {
217						int8_t sample = audio->ch2.control.hi * 0x10 - 0x8;
218						_updateEnvelope(&audio->ch2.envelope);
219						if (audio->ch2.envelope.nextStep < audio->nextEvent) {
220							audio->nextEvent = audio->ch2.envelope.nextStep;
221						}
222						audio->ch2.sample = sample * audio->ch2.envelope.currentVolume;
223					}
224				}
225
226				if (audio->nextCh2 <= 0) {
227					audio->nextCh2 += _updateChannel2(&audio->ch2);
228					if (audio->nextCh2 < audio->nextEvent) {
229						audio->nextEvent = audio->nextCh2;
230					}
231				}
232
233				if (audio->ch2.control.stop) {
234					audio->ch2.control.endTime -= audio->eventDiff;
235					if (audio->ch2.control.endTime <= 0) {
236						audio->playingCh2 = 0;
237					}
238				}
239			}
240
241			if (audio->playingCh3) {
242				audio->nextCh3 -= audio->eventDiff;
243				if (audio->nextCh3 <= 0) {
244					audio->nextCh3 += _updateChannel3(&audio->ch3);
245					if (audio->nextCh3 < audio->nextEvent) {
246						audio->nextEvent = audio->nextCh3;
247					}
248				}
249
250				if (audio->ch3.control.stop) {
251					audio->ch3.control.endTime -= audio->eventDiff;
252					if (audio->ch3.control.endTime <= 0) {
253						audio->playingCh3 = 0;
254					}
255				}
256			}
257
258			if (audio->playingCh4 && !audio->ch4.envelope.dead) {
259				audio->nextCh4 -= audio->eventDiff;
260				if (audio->ch4.envelope.nextStep != INT_MAX) {
261					audio->ch4.envelope.nextStep -= audio->eventDiff;
262					if (audio->ch4.envelope.nextStep <= 0) {
263						int8_t sample = (audio->ch4.sample >> 31) * 0x8;
264						_updateEnvelope(&audio->ch4.envelope);
265						if (audio->ch4.envelope.nextStep < audio->nextEvent) {
266							audio->nextEvent = audio->ch4.envelope.nextStep;
267						}
268						audio->ch4.sample = sample * audio->ch4.envelope.currentVolume;
269					}
270				}
271
272				if (audio->nextCh4 <= 0) {
273					audio->nextCh4 += _updateChannel4(&audio->ch4);
274					if (audio->nextCh4 < audio->nextEvent) {
275						audio->nextEvent = audio->nextCh4;
276					}
277				}
278
279				if (audio->ch4.control.stop) {
280					audio->ch4.control.endTime -= audio->eventDiff;
281					if (audio->ch4.control.endTime <= 0) {
282						audio->playingCh4 = 0;
283					}
284				}
285			}
286		}
287
288		audio->nextSample -= audio->eventDiff;
289		if (audio->nextSample <= 0) {
290			_sample(audio);
291			audio->nextSample += audio->sampleInterval;
292		}
293
294		if (audio->nextSample < audio->nextEvent) {
295			audio->nextEvent = audio->nextSample;
296		}
297		audio->eventDiff = 0;
298	}
299	return audio->nextEvent;
300}
301
302void GBAAudioScheduleFifoDma(struct GBAAudio* audio, int number, struct GBADMA* info) {
303	switch (info->dest) {
304	case BASE_IO | REG_FIFO_A_LO:
305		audio->chA.dmaSource = number;
306		break;
307	case BASE_IO | REG_FIFO_B_LO:
308		audio->chB.dmaSource = number;
309		break;
310	default:
311		GBALog(audio->p, GBA_LOG_GAME_ERROR, "Invalid FIFO destination: 0x%08X", info->dest);
312		return;
313	}
314	info->reg = GBADMARegisterSetDestControl(info->reg, DMA_FIXED);
315}
316
317void GBAAudioWriteSOUND1CNT_LO(struct GBAAudio* audio, uint16_t value) {
318	audio->ch1.sweep.shift = GBAAudioRegisterSquareSweepGetShift(value);
319	audio->ch1.sweep.direction = GBAAudioRegisterSquareSweepGetDirection(value);
320	audio->ch1.sweep.time = GBAAudioRegisterSquareSweepGetTime(value);
321	if (audio->ch1.sweep.time) {
322		audio->ch1.nextSweep = audio->ch1.sweep.time * SWEEP_CYCLES;
323	} else {
324		audio->ch1.nextSweep = INT_MAX;
325	}
326}
327
328void GBAAudioWriteSOUND1CNT_HI(struct GBAAudio* audio, uint16_t value) {
329	if (!_writeEnvelope(&audio->ch1.envelope, value)) {
330		audio->ch1.sample = 0;
331	}
332}
333
334void GBAAudioWriteSOUND1CNT_X(struct GBAAudio* audio, uint16_t value) {
335	audio->ch1.control.frequency = GBAAudioRegisterControlGetFrequency(value);
336	audio->ch1.control.stop = GBAAudioRegisterControlGetStop(value);
337	audio->ch1.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch1.envelope.length)) >> 8;
338	if (GBAAudioRegisterControlIsRestart(value)) {
339		if (audio->ch1.sweep.time) {
340			audio->ch1.nextSweep = audio->ch1.sweep.time * SWEEP_CYCLES;
341		} else {
342			audio->ch1.nextSweep = INT_MAX;
343		}
344		if (!audio->playingCh1) {
345			audio->nextCh1 = 0;
346		}
347		audio->playingCh1 = 1;
348		if (audio->ch1.envelope.stepTime) {
349			audio->ch1.envelope.nextStep = 0;
350		} else {
351			audio->ch1.envelope.nextStep = INT_MAX;
352		}
353		audio->ch1.envelope.currentVolume = audio->ch1.envelope.initialVolume;
354		if (audio->ch1.envelope.stepTime) {
355			audio->ch1.envelope.nextStep = 0;
356		} else {
357			audio->ch1.envelope.nextStep = INT_MAX;
358		}
359	}
360}
361
362void GBAAudioWriteSOUND2CNT_LO(struct GBAAudio* audio, uint16_t value) {
363	if (!_writeEnvelope(&audio->ch2.envelope, value)) {
364		audio->ch2.sample = 0;
365	}
366}
367
368void GBAAudioWriteSOUND2CNT_HI(struct GBAAudio* audio, uint16_t value) {
369	audio->ch2.control.frequency = GBAAudioRegisterControlGetFrequency(value);
370	audio->ch2.control.stop = GBAAudioRegisterControlGetStop(value);
371	audio->ch2.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch2.envelope.length)) >> 8;
372	if (GBAAudioRegisterControlIsRestart(value)) {
373		audio->playingCh2 = 1;
374		audio->ch2.envelope.currentVolume = audio->ch2.envelope.initialVolume;
375		if (audio->ch2.envelope.stepTime) {
376			audio->ch2.envelope.nextStep = 0;
377		} else {
378			audio->ch2.envelope.nextStep = INT_MAX;
379		}
380		audio->nextCh2 = 0;
381	}
382}
383
384void GBAAudioWriteSOUND3CNT_LO(struct GBAAudio* audio, uint16_t value) {
385	audio->ch3.bank.size = GBAAudioRegisterBankGetSize(value);
386	audio->ch3.bank.bank = GBAAudioRegisterBankGetBank(value);
387	audio->ch3.bank.enable = GBAAudioRegisterBankGetEnable(value);
388	if (audio->ch3.control.endTime >= 0) {
389		audio->playingCh3 = audio->ch3.bank.enable;
390	}
391}
392
393void GBAAudioWriteSOUND3CNT_HI(struct GBAAudio* audio, uint16_t value) {
394	audio->ch3.wave.length = GBAAudioRegisterBankWaveGetLength(value);
395	audio->ch3.wave.volume = GBAAudioRegisterBankWaveGetVolume(value);
396}
397
398void GBAAudioWriteSOUND3CNT_X(struct GBAAudio* audio, uint16_t value) {
399	audio->ch3.control.rate = GBAAudioRegisterControlGetRate(value);
400	audio->ch3.control.stop = GBAAudioRegisterControlGetStop(value);
401	audio->ch3.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (256 - audio->ch3.wave.length)) >> 8;
402	if (GBAAudioRegisterControlIsRestart(value)) {
403		audio->playingCh3 = audio->ch3.bank.enable;
404	}
405}
406
407void GBAAudioWriteSOUND4CNT_LO(struct GBAAudio* audio, uint16_t value) {
408	if (!_writeEnvelope(&audio->ch4.envelope, value)) {
409		audio->ch4.sample = 0;
410	}
411}
412
413void GBAAudioWriteSOUND4CNT_HI(struct GBAAudio* audio, uint16_t value) {
414	audio->ch4.control.ratio = GBAAudioRegisterCh4ControlGetRatio(value);
415	audio->ch4.control.frequency = GBAAudioRegisterCh4ControlGetFrequency(value);
416	audio->ch4.control.power = GBAAudioRegisterCh4ControlGetPower(value);
417	audio->ch4.control.stop = GBAAudioRegisterCh4ControlGetStop(value);
418	audio->ch4.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch4.envelope.length)) >> 8;
419	if (GBAAudioRegisterCh4ControlIsRestart(value)) {
420		audio->playingCh4 = 1;
421		audio->ch4.envelope.currentVolume = audio->ch4.envelope.initialVolume;
422		if (audio->ch4.envelope.stepTime) {
423			audio->ch4.envelope.nextStep = 0;
424		} else {
425			audio->ch4.envelope.nextStep = INT_MAX;
426		}
427		if (audio->ch4.control.power) {
428			audio->ch4.lfsr = 0x40;
429		} else {
430			audio->ch4.lfsr = 0x4000;
431		}
432		audio->nextCh4 = 0;
433	}
434}
435
436void GBAAudioWriteSOUNDCNT_LO(struct GBAAudio* audio, uint16_t value) {
437	audio->volumeRight = GBARegisterSOUNDCNT_LOGetVolumeRight(value);
438	audio->volumeLeft = GBARegisterSOUNDCNT_LOGetVolumeLeft(value);
439	audio->ch1Right = GBARegisterSOUNDCNT_LOGetCh1Right(value);
440	audio->ch2Right = GBARegisterSOUNDCNT_LOGetCh2Right(value);
441	audio->ch3Right = GBARegisterSOUNDCNT_LOGetCh3Right(value);
442	audio->ch4Right = GBARegisterSOUNDCNT_LOGetCh4Right(value);
443	audio->ch1Left = GBARegisterSOUNDCNT_LOGetCh1Left(value);
444	audio->ch2Left = GBARegisterSOUNDCNT_LOGetCh2Left(value);
445	audio->ch3Left = GBARegisterSOUNDCNT_LOGetCh3Left(value);
446	audio->ch4Left = GBARegisterSOUNDCNT_LOGetCh4Left(value);
447}
448
449void GBAAudioWriteSOUNDCNT_HI(struct GBAAudio* audio, uint16_t value) {
450	audio->volume = GBARegisterSOUNDCNT_HIGetVolume(value);
451	audio->volumeChA = GBARegisterSOUNDCNT_HIGetVolumeChA(value);
452	audio->volumeChB = GBARegisterSOUNDCNT_HIGetVolumeChB(value);
453	audio->chARight = GBARegisterSOUNDCNT_HIGetChARight(value);
454	audio->chALeft = GBARegisterSOUNDCNT_HIGetChALeft(value);
455	audio->chATimer = GBARegisterSOUNDCNT_HIGetChATimer(value);
456	audio->chBRight = GBARegisterSOUNDCNT_HIGetChBRight(value);
457	audio->chBLeft = GBARegisterSOUNDCNT_HIGetChBLeft(value);
458	audio->chBTimer = GBARegisterSOUNDCNT_HIGetChBTimer(value);
459	if (GBARegisterSOUNDCNT_HIIsChAReset(value)) {
460		CircleBufferClear(&audio->chA.fifo);
461	}
462	if (GBARegisterSOUNDCNT_HIIsChBReset(value)) {
463		CircleBufferClear(&audio->chB.fifo);
464	}
465}
466
467void GBAAudioWriteSOUNDCNT_X(struct GBAAudio* audio, uint16_t value) {
468	audio->enable = GBARegisterSOUNDCNT_XGetEnable(value);
469}
470
471void GBAAudioWriteSOUNDBIAS(struct GBAAudio* audio, uint16_t value) {
472	audio->soundbias = value;
473}
474
475void GBAAudioWriteWaveRAM(struct GBAAudio* audio, int address, uint32_t value) {
476	audio->ch3.wavedata[address | (!audio->ch3.bank.bank * 4)] = value;
477}
478
479void GBAAudioWriteFIFO(struct GBAAudio* audio, int address, uint32_t value) {
480	struct CircleBuffer* fifo;
481	switch (address) {
482	case REG_FIFO_A_LO:
483		fifo = &audio->chA.fifo;
484		break;
485	case REG_FIFO_B_LO:
486		fifo = &audio->chB.fifo;
487		break;
488	default:
489		GBALog(audio->p, GBA_LOG_ERROR, "Bad FIFO write to address 0x%03x", address);
490		return;
491	}
492	int i;
493	for (i = 0; i < 4; ++i) {
494		while (!CircleBufferWrite8(fifo, value >> (8 * i))) {
495			int8_t dummy;
496			CircleBufferRead8(fifo, &dummy);
497		}
498	}
499}
500
501void GBAAudioSampleFIFO(struct GBAAudio* audio, int fifoId, int32_t cycles) {
502	struct GBAAudioFIFO* channel;
503	if (fifoId == 0) {
504		channel = &audio->chA;
505	} else if (fifoId == 1) {
506		channel = &audio->chB;
507	} else {
508		GBALog(audio->p, GBA_LOG_ERROR, "Bad FIFO write to address 0x%03x", fifoId);
509		return;
510	}
511	if (CircleBufferSize(&channel->fifo) <= 4 * sizeof(int32_t) && channel->dmaSource > 0) {
512		struct GBADMA* dma = &audio->p->memory.dma[channel->dmaSource];
513		if (GBADMARegisterGetTiming(dma->reg) == DMA_TIMING_CUSTOM) {
514			dma->nextCount = 4;
515			dma->nextEvent = 0;
516			dma->reg = GBADMARegisterSetWidth(dma->reg, 1);
517			GBAMemoryUpdateDMAs(audio->p, -cycles);
518		} else {
519			channel->dmaSource = 0;
520		}
521	}
522	CircleBufferRead8(&channel->fifo, &channel->sample);
523}
524
525#if RESAMPLE_LIBRARY != RESAMPLE_BLIP_BUF
526unsigned GBAAudioCopy(struct GBAAudio* audio, void* left, void* right, unsigned nSamples) {
527	GBASyncLockAudio(audio->p->sync);
528	unsigned read = 0;
529	if (left) {
530		unsigned readL = CircleBufferRead(&audio->left, left, nSamples * sizeof(int16_t)) >> 1;
531		if (readL < nSamples) {
532			memset((int16_t*) left + readL, 0, nSamples - readL);
533		}
534		read = readL;
535	}
536	if (right) {
537		unsigned readR = CircleBufferRead(&audio->right, right, nSamples * sizeof(int16_t)) >> 1;
538		if (readR < nSamples) {
539			memset((int16_t*) right + readR, 0, nSamples - readR);
540		}
541		read = read >= readR ? read : readR;
542	}
543	GBASyncConsumeAudio(audio->p->sync);
544	return read;
545}
546
547unsigned GBAAudioResampleNN(struct GBAAudio* audio, float ratio, float* drift, struct GBAStereoSample* output, unsigned nSamples) {
548	int16_t left[GBA_AUDIO_SAMPLES];
549	int16_t right[GBA_AUDIO_SAMPLES];
550
551	// toRead is in GBA samples
552	// TODO: Do this with fixed-point math
553	unsigned toRead = ceilf(nSamples / ratio);
554	unsigned totalRead = 0;
555	while (nSamples) {
556		unsigned currentRead = GBA_AUDIO_SAMPLES;
557		if (currentRead > toRead) {
558			currentRead = toRead;
559		}
560		unsigned read = GBAAudioCopy(audio, left, right, currentRead);
561		toRead -= read;
562		unsigned i;
563		for (i = 0; i < read; ++i) {
564			*drift += ratio;
565			while (*drift >= 1.f) {
566				output->left = left[i];
567				output->right = right[i];
568				++output;
569				++totalRead;
570				--nSamples;
571				*drift -= 1.f;
572				if (!nSamples) {
573					return totalRead;
574				}
575			}
576		}
577		if (read < currentRead) {
578			memset(output, 0, nSamples * sizeof(struct GBAStereoSample));
579			break;
580		}
581	}
582	return totalRead;
583}
584#endif
585
586bool _writeEnvelope(struct GBAAudioEnvelope* envelope, uint16_t value) {
587	envelope->length = GBAAudioRegisterEnvelopeGetLength(value);
588	envelope->duty = GBAAudioRegisterEnvelopeGetDuty(value);
589	envelope->stepTime = GBAAudioRegisterEnvelopeGetStepTime(value);
590	envelope->direction = GBAAudioRegisterEnvelopeGetDirection(value);
591	envelope->initialVolume = GBAAudioRegisterEnvelopeGetInitialVolume(value);
592	envelope->dead = 0;
593	if (envelope->stepTime) {
594		envelope->nextStep = 0;
595	} else {
596		envelope->nextStep = INT_MAX;
597		if (envelope->initialVolume == 0) {
598			envelope->dead = 1;
599			return false;
600		}
601	}
602	return true;
603}
604
605static int32_t _updateSquareChannel(struct GBAAudioSquareControl* control, int duty) {
606	control->hi = !control->hi;
607	int period = 16 * (2048 - control->frequency);
608	switch (duty) {
609	case 0:
610		return control->hi ? period : period * 7;
611	case 1:
612		return control->hi ? period * 2 : period * 6;
613	case 2:
614		return period * 4;
615	case 3:
616		return control->hi ? period * 6 : period * 2;
617	default:
618		// This should never be hit
619		return period * 4;
620	}
621}
622
623static void _updateEnvelope(struct GBAAudioEnvelope* envelope) {
624	if (envelope->direction) {
625		++envelope->currentVolume;
626	} else {
627		--envelope->currentVolume;
628	}
629	if (envelope->currentVolume >= 15) {
630		envelope->currentVolume = 15;
631		envelope->nextStep = INT_MAX;
632	} else if (envelope->currentVolume <= 0) {
633		envelope->currentVolume = 0;
634		envelope->dead = 1;
635		envelope->nextStep = INT_MAX;
636	} else {
637		envelope->nextStep += envelope->stepTime * (GBA_ARM7TDMI_FREQUENCY >> 6);
638	}
639}
640
641static bool _updateSweep(struct GBAAudioChannel1* ch) {
642	if (ch->sweep.direction) {
643		int frequency = ch->control.frequency;
644		frequency -= frequency >> ch->sweep.shift;
645		if (frequency >= 0) {
646			ch->control.frequency = frequency;
647		}
648	} else {
649		int frequency = ch->control.frequency;
650		frequency += frequency >> ch->sweep.shift;
651		if (frequency < 2048) {
652			ch->control.frequency = frequency;
653		} else {
654			return false;
655		}
656	}
657	ch->nextSweep += ch->sweep.time * SWEEP_CYCLES;
658	return true;
659}
660
661static int32_t _updateChannel1(struct GBAAudioChannel1* ch) {
662	int timing = _updateSquareChannel(&ch->control, ch->envelope.duty);
663	ch->sample = ch->control.hi * 0x10 - 0x8;
664	ch->sample *= ch->envelope.currentVolume;
665	return timing;
666}
667
668static int32_t _updateChannel2(struct GBAAudioChannel2* ch) {
669	int timing = _updateSquareChannel(&ch->control, ch->envelope.duty);
670	ch->sample = ch->control.hi * 0x10 - 0x8;
671	ch->sample *= ch->envelope.currentVolume;
672	return timing;
673}
674
675static int32_t _updateChannel3(struct GBAAudioChannel3* ch) {
676	int i;
677	int start;
678	int end;
679	int volume;
680	switch (ch->wave.volume) {
681	case 0:
682		volume = 0;
683		break;
684	case 1:
685		volume = 4;
686		break;
687	case 2:
688		volume = 2;
689		break;
690	case 3:
691		volume = 1;
692		break;
693	default:
694		volume = 3;
695		break;
696	}
697	if (ch->bank.size) {
698		start = 7;
699		end = 0;
700	} else if (ch->bank.bank) {
701		start = 7;
702		end = 4;
703	} else {
704		start = 3;
705		end = 0;
706	}
707	uint32_t bitsCarry = ch->wavedata[end] & 0x000000F0;
708	uint32_t bits;
709	for (i = start; i >= end; --i) {
710		bits = ch->wavedata[i] & 0x000000F0;
711		ch->wavedata[i] = ((ch->wavedata[i] & 0x0F0F0F0F) << 4) | ((ch->wavedata[i] & 0xF0F0F000) >> 12);
712		ch->wavedata[i] |= bitsCarry << 20;
713		bitsCarry = bits;
714	}
715	ch->sample = bitsCarry >> 4;
716	ch->sample -= 8;
717	ch->sample *= volume * 4;
718	return 8 * (2048 - ch->control.rate);
719}
720
721static int32_t _updateChannel4(struct GBAAudioChannel4* ch) {
722	int lsb = ch->lfsr & 1;
723	ch->sample = lsb * 0x10 - 0x8;
724	ch->sample *= ch->envelope.currentVolume;
725	ch->lfsr >>= 1;
726	ch->lfsr ^= (lsb * 0x60) << (ch->control.power ? 0 : 8);
727	int timing = ch->control.ratio ? 2 * ch->control.ratio : 1;
728	timing <<= ch->control.frequency;
729	timing *= 32;
730	return timing;
731}
732
733static int _applyBias(struct GBAAudio* audio, int sample) {
734	sample += GBARegisterSOUNDBIASGetBias(audio->soundbias);
735	if (sample >= 0x400) {
736		sample = 0x3FF;
737	} else if (sample < 0) {
738		sample = 0;
739	}
740	return ((sample - GBARegisterSOUNDBIASGetBias(audio->soundbias)) * audio->masterVolume) >> 3;
741}
742
743static void _sample(struct GBAAudio* audio) {
744	int16_t sampleLeft = 0;
745	int16_t sampleRight = 0;
746	int psgShift = 5 - audio->volume;
747
748	if (audio->playingCh1 && !audio->forceDisableCh[0]) {
749		if (audio->ch1Left) {
750			sampleLeft += audio->ch1.sample;
751		}
752
753		if (audio->ch1Right) {
754			sampleRight += audio->ch1.sample;
755		}
756	}
757
758	if (audio->playingCh2 && !audio->forceDisableCh[1]) {
759		if (audio->ch2Left) {
760			sampleLeft += audio->ch2.sample;
761		}
762
763		if (audio->ch2Right) {
764			sampleRight += audio->ch2.sample;
765		}
766	}
767
768	if (audio->playingCh3 && !audio->forceDisableCh[2]) {
769		if (audio->ch3Left) {
770			sampleLeft += audio->ch3.sample;
771		}
772
773		if (audio->ch3Right) {
774			sampleRight += audio->ch3.sample;
775		}
776	}
777
778	if (audio->playingCh4 && !audio->forceDisableCh[3]) {
779		if (audio->ch4Left) {
780			sampleLeft += audio->ch4.sample;
781		}
782
783		if (audio->ch4Right) {
784			sampleRight += audio->ch4.sample;
785		}
786	}
787
788	sampleLeft = (sampleLeft * (1 + audio->volumeLeft)) >> psgShift;
789	sampleRight = (sampleRight * (1 + audio->volumeRight)) >> psgShift;
790
791	if (!audio->forceDisableChA) {
792		if (audio->chALeft) {
793			sampleLeft += (audio->chA.sample << 2) >> !audio->volumeChA;
794		}
795
796		if (audio->chARight) {
797			sampleRight += (audio->chA.sample << 2) >> !audio->volumeChA;
798		}
799	}
800
801	if (!audio->forceDisableChB) {
802		if (audio->chBLeft) {
803			sampleLeft += (audio->chB.sample << 2) >> !audio->volumeChB;
804		}
805
806		if (audio->chBRight) {
807			sampleRight += (audio->chB.sample << 2) >> !audio->volumeChB;
808		}
809	}
810
811	sampleLeft = _applyBias(audio, sampleLeft);
812	sampleRight = _applyBias(audio, sampleRight);
813
814	GBASyncLockAudio(audio->p->sync);
815	unsigned produced;
816#if RESAMPLE_LIBRARY != RESAMPLE_BLIP_BUF
817	CircleBufferWrite16(&audio->left, sampleLeft);
818	CircleBufferWrite16(&audio->right, sampleRight);
819	produced = CircleBufferSize(&audio->left) / 2;
820#else
821	if ((size_t) blip_samples_avail(audio->left) < audio->samples) {
822		blip_add_delta(audio->left, audio->clock, sampleLeft - audio->lastLeft);
823		blip_add_delta(audio->right, audio->clock, sampleRight - audio->lastRight);
824		audio->lastLeft = sampleLeft;
825		audio->lastRight = sampleRight;
826		audio->clock += audio->sampleInterval;
827		if (audio->clock >= CLOCKS_PER_FRAME) {
828			blip_end_frame(audio->left, audio->clock);
829			blip_end_frame(audio->right, audio->clock);
830			audio->clock -= CLOCKS_PER_FRAME;
831		}
832	}
833	produced = blip_samples_avail(audio->left);
834#endif
835	if (audio->p->stream && audio->p->stream->postAudioFrame) {
836		audio->p->stream->postAudioFrame(audio->p->stream, sampleLeft, sampleRight);
837	}
838	bool wait = produced >= audio->samples;
839	GBASyncProduceAudio(audio->p->sync, wait);
840
841	if (wait && audio->p->stream && audio->p->stream->postAudioBuffer) {
842		audio->p->stream->postAudioBuffer(audio->p->stream, audio);
843	}
844}
845
846void GBAAudioSerialize(const struct GBAAudio* audio, struct GBASerializedState* state) {
847	state->audio.ch1Volume = audio->ch1.envelope.currentVolume;
848	state->audio.ch1Dead = audio->ch1.envelope.dead;
849	state->audio.ch1Hi = audio->ch1.control.hi;
850	state->audio.ch1.envelopeNextStep = audio->ch1.envelope.nextStep;
851	state->audio.ch1.waveNextStep = audio->ch1.control.nextStep;
852	state->audio.ch1.sweepNextStep = audio->ch1.nextSweep;
853	state->audio.ch1.endTime = audio->ch1.control.endTime;
854	state->audio.ch1.nextEvent = audio->nextCh1;
855
856	state->audio.ch2Volume = audio->ch2.envelope.currentVolume;
857	state->audio.ch2Dead = audio->ch2.envelope.dead;
858	state->audio.ch2Hi = audio->ch2.control.hi;
859	state->audio.ch2.envelopeNextStep = audio->ch2.envelope.nextStep;
860	state->audio.ch2.waveNextStep = audio->ch2.control.nextStep;
861	state->audio.ch2.endTime = audio->ch2.control.endTime;
862	state->audio.ch2.nextEvent = audio->nextCh2;
863
864	memcpy(state->audio.ch3.wavebanks, audio->ch3.wavedata, sizeof(state->audio.ch3.wavebanks));
865	state->audio.ch3.endTime = audio->ch3.control.endTime;
866	state->audio.ch3.nextEvent = audio->nextCh3;
867
868	state->audio.ch4Volume = audio->ch4.envelope.currentVolume;
869	state->audio.ch4Dead = audio->ch4.envelope.dead;
870	state->audio.ch4.envelopeNextStep = audio->ch4.envelope.nextStep;
871	state->audio.ch4.lfsr = audio->ch4.lfsr;
872	state->audio.ch4.endTime = audio->ch4.control.endTime;
873	state->audio.ch4.nextEvent = audio->nextCh4;
874
875	CircleBufferDump(&audio->chA.fifo, state->audio.fifoA, sizeof(state->audio.fifoA));
876	CircleBufferDump(&audio->chB.fifo, state->audio.fifoB, sizeof(state->audio.fifoB));
877	state->audio.fifoSize = CircleBufferSize(&audio->chA.fifo);
878
879	state->audio.nextEvent = audio->nextEvent;
880	state->audio.eventDiff = audio->eventDiff;
881	state->audio.nextSample = audio->nextSample;
882}
883
884void GBAAudioDeserialize(struct GBAAudio* audio, const struct GBASerializedState* state) {
885	audio->ch1.envelope.currentVolume = state->audio.ch1Volume;
886	audio->ch1.envelope.dead = state->audio.ch1Dead;
887	audio->ch1.control.hi = state->audio.ch1Hi;
888	audio->ch1.envelope.nextStep = state->audio.ch1.envelopeNextStep;
889	audio->ch1.control.nextStep = state->audio.ch1.waveNextStep;
890	audio->ch1.nextSweep = state->audio.ch1.sweepNextStep;
891	audio->ch1.control.endTime = state->audio.ch1.endTime;
892	audio->nextCh1 = state->audio.ch1.nextEvent;
893
894	audio->ch2.envelope.currentVolume = state->audio.ch2Volume;
895	audio->ch2.envelope.dead = state->audio.ch2Dead;
896	audio->ch2.control.hi = state->audio.ch2Hi;
897	audio->ch2.envelope.nextStep = state->audio.ch2.envelopeNextStep;
898	audio->ch2.control.nextStep = state->audio.ch2.waveNextStep;
899	audio->ch2.control.endTime = state->audio.ch2.endTime;
900	audio->nextCh2 = state->audio.ch2.nextEvent;
901
902	memcpy(audio->ch3.wavedata, state->audio.ch3.wavebanks, sizeof(audio->ch3.wavedata));
903	audio->ch3.control.endTime = state->audio.ch3.endTime;
904	audio->nextCh3 = state->audio.ch3.nextEvent;
905
906	audio->ch4.envelope.currentVolume = state->audio.ch4Volume;
907	audio->ch4.envelope.dead = state->audio.ch4Dead;
908	audio->ch4.envelope.nextStep = state->audio.ch4.envelopeNextStep;
909	audio->ch4.lfsr = state->audio.ch4.lfsr;
910	audio->ch4.control.endTime = state->audio.ch4.endTime;
911	audio->nextCh4 = state->audio.ch4.nextEvent;
912
913	CircleBufferClear(&audio->chA.fifo);
914	CircleBufferClear(&audio->chB.fifo);
915	size_t fifoSize = state->audio.fifoSize;
916	if (state->audio.fifoSize > CircleBufferCapacity(&audio->chA.fifo)) {
917		fifoSize = CircleBufferCapacity(&audio->chA.fifo);
918	}
919	size_t i;
920	for (i = 0; i < fifoSize; ++i) {
921		CircleBufferWrite8(&audio->chA.fifo, state->audio.fifoA[i]);
922		CircleBufferWrite8(&audio->chB.fifo, state->audio.fifoB[i]);
923	}
924
925	audio->nextEvent = state->audio.nextEvent;
926	audio->eventDiff = state->audio.eventDiff;
927	audio->nextSample = state->audio.nextSample;
928}
929
930float GBAAudioCalculateRatio(float inputSampleRate, float desiredFPS, float desiredSampleRate) {
931	return desiredSampleRate * GBA_ARM7TDMI_FREQUENCY / (VIDEO_TOTAL_LENGTH * desiredFPS * inputSampleRate);
932}