all repos — mgba @ c312a0f5fe70db951c5612918be2c5b4347b9287

mGBA Game Boy Advance Emulator

src/gba/gba-audio.c (view raw)

  1#include "gba-audio.h"
  2
  3#include "gba.h"
  4#include "gba-io.h"
  5#include "gba-serialize.h"
  6#include "gba-thread.h"
  7
  8#include <limits.h>
  9#include <math.h>
 10
 11const unsigned GBA_AUDIO_SAMPLES = 512;
 12const unsigned GBA_AUDIO_FIFO_SIZE = 8 * sizeof(int32_t);
 13#define SWEEP_CYCLES (GBA_ARM7TDMI_FREQUENCY / 128)
 14
 15static int32_t _updateSquareChannel(struct GBAAudioSquareControl* envelope, int duty);
 16static void _updateEnvelope(struct GBAAudioEnvelope* envelope);
 17static int _updateSweep(struct GBAAudioChannel1* ch);
 18static int32_t _updateChannel1(struct GBAAudioChannel1* ch);
 19static int32_t _updateChannel2(struct GBAAudioChannel2* ch);
 20static int32_t _updateChannel3(struct GBAAudioChannel3* ch);
 21static int32_t _updateChannel4(struct GBAAudioChannel4* ch);
 22static void _sample(struct GBAAudio* audio);
 23
 24void GBAAudioInit(struct GBAAudio* audio) {
 25	audio->nextEvent = 0;
 26	audio->nextCh1 = 0;
 27	audio->nextCh2 = 0;
 28	audio->nextCh3 = 0;
 29	audio->nextCh4 = 0;
 30	audio->ch1.sweep.time = 0;
 31	audio->ch1.envelope.nextStep = INT_MAX;
 32	audio->ch1.control.nextStep = 0;
 33	audio->ch1.control.endTime = 0;
 34	audio->ch1.nextSweep = INT_MAX;
 35	audio->ch1.sample = 0;
 36	audio->ch2.envelope.nextStep = INT_MAX;
 37	audio->ch2.control.nextStep = 0;
 38	audio->ch2.control.endTime = 0;
 39	audio->ch2.sample = 0;
 40	audio->ch3.bank.packed = 0;
 41	audio->ch3.control.endTime = 0;
 42	audio->ch3.sample = 0;
 43	audio->ch4.sample = 0;
 44	audio->ch4.envelope.nextStep = INT_MAX;
 45	audio->eventDiff = 0;
 46	audio->nextSample = 0;
 47	audio->sampleRate = 0x8000;
 48	audio->soundcntLo = 0;
 49	audio->soundcntHi = 0;
 50	audio->soundcntX = 0;
 51	audio->sampleInterval = GBA_ARM7TDMI_FREQUENCY / audio->sampleRate;
 52
 53	CircleBufferInit(&audio->left, GBA_AUDIO_SAMPLES * sizeof(int32_t));
 54	CircleBufferInit(&audio->right, GBA_AUDIO_SAMPLES * sizeof(int32_t));
 55	CircleBufferInit(&audio->chA.fifo, GBA_AUDIO_FIFO_SIZE);
 56	CircleBufferInit(&audio->chB.fifo, GBA_AUDIO_FIFO_SIZE);
 57}
 58
 59void GBAAudioDeinit(struct GBAAudio* audio) {
 60	CircleBufferDeinit(&audio->left);
 61	CircleBufferDeinit(&audio->right);
 62	CircleBufferDeinit(&audio->chA.fifo);
 63	CircleBufferDeinit(&audio->chB.fifo);
 64}
 65
 66int32_t GBAAudioProcessEvents(struct GBAAudio* audio, int32_t cycles) {
 67	audio->nextEvent -= cycles;
 68	audio->eventDiff += cycles;
 69	while (audio->nextEvent <= 0) {
 70		audio->nextEvent = INT_MAX;
 71		if (audio->enable) {
 72			if (audio->playingCh1 && !audio->ch1.envelope.dead) {
 73				audio->nextCh1 -= audio->eventDiff;
 74				if (audio->ch1.envelope.nextStep != INT_MAX) {
 75					audio->ch1.envelope.nextStep -= audio->eventDiff;
 76					if (audio->ch1.envelope.nextStep <= 0) {
 77						int8_t sample = audio->ch1.control.hi * 0x10 - 0x8;
 78						_updateEnvelope(&audio->ch1.envelope);
 79						if (audio->ch1.envelope.nextStep < audio->nextEvent) {
 80							audio->nextEvent = audio->ch1.envelope.nextStep;
 81						}
 82						audio->ch1.sample = sample * audio->ch1.envelope.currentVolume;
 83					}
 84				}
 85
 86				if (audio->ch1.nextSweep != INT_MAX) {
 87					audio->ch1.nextSweep -= audio->eventDiff;
 88					if (audio->ch1.nextSweep <= 0) {
 89						audio->playingCh1 = _updateSweep(&audio->ch1);
 90						if (audio->ch1.nextSweep < audio->nextEvent) {
 91							audio->nextEvent = audio->ch1.nextSweep;
 92						}
 93					}
 94				}
 95
 96				if (audio->nextCh1 <= 0) {
 97					audio->nextCh1 += _updateChannel1(&audio->ch1);
 98					if (audio->nextCh1 < audio->nextEvent) {
 99						audio->nextEvent = audio->nextCh1;
100					}
101				}
102
103				if (audio->ch1.control.stop) {
104					audio->ch1.control.endTime -= audio->eventDiff;
105					if (audio->ch1.control.endTime <= 0) {
106						audio->playingCh1 = 0;
107					}
108				}
109			}
110
111			if (audio->playingCh2 && !audio->ch2.envelope.dead) {
112				audio->nextCh2 -= audio->eventDiff;
113				if (audio->ch2.envelope.nextStep != INT_MAX) {
114					audio->ch2.envelope.nextStep -= audio->eventDiff;
115					if (audio->ch2.envelope.nextStep <= 0) {
116						int8_t sample = audio->ch2.control.hi * 0x10 - 0x8;
117						_updateEnvelope(&audio->ch2.envelope);
118						if (audio->ch2.envelope.nextStep < audio->nextEvent) {
119							audio->nextEvent = audio->ch2.envelope.nextStep;
120						}
121						audio->ch2.sample = sample * audio->ch2.envelope.currentVolume;
122					}
123				}
124
125				if (audio->nextCh2 <= 0) {
126					audio->nextCh2 += _updateChannel2(&audio->ch2);
127					if (audio->nextCh2 < audio->nextEvent) {
128						audio->nextEvent = audio->nextCh2;
129					}
130				}
131
132				if (audio->ch2.control.stop) {
133					audio->ch2.control.endTime -= audio->eventDiff;
134					if (audio->ch2.control.endTime <= 0) {
135						audio->playingCh2 = 0;
136					}
137				}
138			}
139
140			if (audio->playingCh3) {
141				audio->nextCh3 -= audio->eventDiff;
142				if (audio->nextCh3 <= 0) {
143					audio->nextCh3 += _updateChannel3(&audio->ch3);
144					if (audio->nextCh3 < audio->nextEvent) {
145						audio->nextEvent = audio->nextCh3;
146					}
147				}
148
149				if (audio->ch3.control.stop) {
150					audio->ch3.control.endTime -= audio->eventDiff;
151					if (audio->ch3.control.endTime <= 0) {
152						audio->playingCh3 = 0;
153					}
154				}
155			}
156
157			if (audio->playingCh4 && !audio->ch4.envelope.dead) {
158				audio->nextCh4 -= audio->eventDiff;
159				if (audio->ch4.envelope.nextStep != INT_MAX) {
160					audio->ch4.envelope.nextStep -= audio->eventDiff;
161					if (audio->ch4.envelope.nextStep <= 0) {
162						int8_t sample = (audio->ch4.sample >> 31) * 0x8;
163						_updateEnvelope(&audio->ch4.envelope);
164						if (audio->ch4.envelope.nextStep < audio->nextEvent) {
165							audio->nextEvent = audio->ch4.envelope.nextStep;
166						}
167						audio->ch4.sample = sample * audio->ch4.envelope.currentVolume;
168					}
169				}
170
171				if (audio->nextCh4 <= 0) {
172					audio->nextCh4 += _updateChannel4(&audio->ch4);
173					if (audio->nextCh4 < audio->nextEvent) {
174						audio->nextEvent = audio->nextCh4;
175					}
176				}
177
178				if (audio->ch4.control.stop) {
179					audio->ch4.control.endTime -= audio->eventDiff;
180					if (audio->ch4.control.endTime <= 0) {
181						audio->playingCh4 = 0;
182					}
183				}
184			}
185		}
186
187		audio->nextSample -= audio->eventDiff;
188		if (audio->nextSample <= 0) {
189			_sample(audio);
190			audio->nextSample += audio->sampleInterval;
191		}
192
193		if (audio->nextSample < audio->nextEvent) {
194			audio->nextEvent = audio->nextSample;
195		}
196		audio->eventDiff = 0;
197	}
198	return audio->nextEvent;
199}
200
201void GBAAudioScheduleFifoDma(struct GBAAudio* audio, int number, struct GBADMA* info) {
202	switch (info->dest) {
203	case BASE_IO | REG_FIFO_A_LO:
204		audio->chA.dmaSource = number;
205		break;
206	case BASE_IO | REG_FIFO_B_LO:
207		audio->chB.dmaSource = number;
208		break;
209	default:
210		GBALog(audio->p, GBA_LOG_GAME_ERROR, "Invalid FIFO destination: 0x%08X", info->dest);
211		return;
212	}
213	info->dstControl = DMA_FIXED;
214}
215
216void GBAAudioWriteSOUND1CNT_LO(struct GBAAudio* audio, uint16_t value) {
217	audio->ch1.sweep.packed = value;
218	if (audio->ch1.sweep.time) {
219		audio->ch1.nextSweep = audio->ch1.sweep.time * SWEEP_CYCLES;
220	} else {
221		audio->ch1.nextSweep = INT_MAX;
222	}
223}
224
225void GBAAudioWriteSOUND1CNT_HI(struct GBAAudio* audio, uint16_t value) {
226	audio->ch1.envelope.packed = value;
227	audio->ch1.envelope.dead = 0;
228	if (audio->ch1.envelope.stepTime) {
229		audio->ch1.envelope.nextStep = 0;
230	} else {
231		audio->ch1.envelope.nextStep = INT_MAX;
232		if (audio->ch1.envelope.initialVolume == 0) {
233			audio->ch1.envelope.dead = 1;
234			audio->ch1.sample = 0;
235		}
236	}
237}
238
239void GBAAudioWriteSOUND1CNT_X(struct GBAAudio* audio, uint16_t value) {
240	audio->ch1.control.packed = value;
241	audio->ch1.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch1.envelope.length)) >> 8;
242	if (audio->ch1.control.restart) {
243		if (audio->ch1.sweep.time) {
244			audio->ch1.nextSweep = audio->ch1.sweep.time * SWEEP_CYCLES;
245		} else {
246			audio->ch1.nextSweep = INT_MAX;
247		}
248		if (!audio->playingCh1) {
249			audio->nextCh1 = 0;
250		}
251		audio->playingCh1 = 1;
252		if (audio->ch1.envelope.stepTime) {
253			audio->ch1.envelope.nextStep = 0;
254		} else {
255			audio->ch1.envelope.nextStep = INT_MAX;
256		}
257		audio->ch1.envelope.currentVolume = audio->ch1.envelope.initialVolume;
258		if (audio->ch1.envelope.stepTime) {
259			audio->ch1.envelope.nextStep = 0;
260		} else {
261			audio->ch1.envelope.nextStep = INT_MAX;
262		}
263	}
264}
265
266void GBAAudioWriteSOUND2CNT_LO(struct GBAAudio* audio, uint16_t value) {
267	audio->ch2.envelope.packed = value;
268	audio->ch2.envelope.dead = 0;
269	if (audio->ch2.envelope.stepTime) {
270		audio->ch2.envelope.nextStep = 0;
271	} else {
272		audio->ch2.envelope.nextStep = INT_MAX;
273		if (audio->ch2.envelope.initialVolume == 0) {
274			audio->ch2.envelope.dead = 1;
275			audio->ch2.sample = 0;
276		}
277	}
278}
279
280void GBAAudioWriteSOUND2CNT_HI(struct GBAAudio* audio, uint16_t value) {
281	audio->ch2.control.packed = value;
282	audio->ch1.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch2.envelope.length)) >> 8;
283	if (audio->ch2.control.restart) {
284		audio->playingCh2 = 1;
285		audio->ch2.envelope.currentVolume = audio->ch2.envelope.initialVolume;
286		if (audio->ch2.envelope.stepTime) {
287			audio->ch2.envelope.nextStep = 0;
288		} else {
289			audio->ch2.envelope.nextStep = INT_MAX;
290		}
291		audio->nextCh2 = 0;
292	}
293}
294
295void GBAAudioWriteSOUND3CNT_LO(struct GBAAudio* audio, uint16_t value) {
296	audio->ch3.bank.packed = value;
297	if (audio->ch3.control.endTime >= 0) {
298		audio->playingCh3 = audio->ch3.bank.enable;
299	}
300}
301
302void GBAAudioWriteSOUND3CNT_HI(struct GBAAudio* audio, uint16_t value) {
303	audio->ch3.wave.packed = value;
304}
305
306void GBAAudioWriteSOUND3CNT_X(struct GBAAudio* audio, uint16_t value) {
307	audio->ch3.control.packed = value;
308	audio->ch3.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (256 - audio->ch3.wave.length)) >> 8;
309	if (audio->ch3.control.restart) {
310		audio->playingCh3 = audio->ch3.bank.enable;
311	}
312}
313
314void GBAAudioWriteSOUND4CNT_LO(struct GBAAudio* audio, uint16_t value) {
315	audio->ch4.envelope.packed = value;
316	audio->ch4.envelope.dead = 0;
317	if (audio->ch4.envelope.stepTime) {
318		audio->ch4.envelope.nextStep = 0;
319	} else {
320		audio->ch4.envelope.nextStep = INT_MAX;
321		if (audio->ch4.envelope.initialVolume == 0) {
322			audio->ch4.envelope.dead = 1;
323			audio->ch4.sample = 0;
324		}
325	}
326}
327
328void GBAAudioWriteSOUND4CNT_HI(struct GBAAudio* audio, uint16_t value) {
329	audio->ch4.control.packed = value;
330	audio->ch4.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch4.envelope.length)) >> 8;
331	if (audio->ch4.control.restart) {
332		audio->playingCh4 = 1;
333		audio->ch4.envelope.currentVolume = audio->ch4.envelope.initialVolume;
334		if (audio->ch4.envelope.stepTime) {
335			audio->ch4.envelope.nextStep = 0;
336		} else {
337			audio->ch4.envelope.nextStep = INT_MAX;
338		}
339		if (audio->ch4.control.power) {
340			audio->ch4.lfsr = 0x40;
341		} else {
342			audio->ch4.lfsr = 0x4000;
343		}
344		audio->nextCh4 = 0;
345	}
346}
347
348void GBAAudioWriteSOUNDCNT_LO(struct GBAAudio* audio, uint16_t value) {
349	audio->soundcntLo = value;
350}
351
352void GBAAudioWriteSOUNDCNT_HI(struct GBAAudio* audio, uint16_t value) {
353	audio->soundcntHi = value;
354}
355
356void GBAAudioWriteSOUNDCNT_X(struct GBAAudio* audio, uint16_t value) {
357	audio->soundcntX = (value & 0x80) | (audio->soundcntX & 0x0F);
358}
359
360void GBAAudioWriteWaveRAM(struct GBAAudio* audio, int address, uint32_t value) {
361	audio->ch3.wavedata[address | (!audio->ch3.bank.bank * 4)] = value;
362}
363
364void GBAAudioWriteFIFO(struct GBAAudio* audio, int address, uint32_t value) {
365	struct CircleBuffer* fifo;
366	switch (address) {
367	case REG_FIFO_A_LO:
368		fifo = &audio->chA.fifo;
369		break;
370	case REG_FIFO_B_LO:
371		fifo = &audio->chB.fifo;
372		break;
373	default:
374		GBALog(audio->p, GBA_LOG_ERROR, "Bad FIFO write to address 0x%03x", address);
375		return;
376	}
377	while (!CircleBufferWrite32(fifo, value)) {
378		int32_t dummy;
379		CircleBufferRead32(fifo, &dummy);
380	}
381}
382
383void GBAAudioSampleFIFO(struct GBAAudio* audio, int fifoId, int32_t cycles) {
384	struct GBAAudioFIFO* channel;
385	if (fifoId == 0) {
386		channel = &audio->chA;
387	} else if (fifoId == 1) {
388		channel = &audio->chB;
389	} else {
390		GBALog(audio->p, GBA_LOG_ERROR, "Bad FIFO write to address 0x%03x", fifoId);
391		return;
392	}
393	if (CircleBufferSize(&channel->fifo) <= 4 * sizeof(int32_t)) {
394		struct GBADMA* dma = &audio->p->memory.dma[channel->dmaSource];
395		dma->nextCount = 4;
396		dma->nextEvent = 0;
397		GBAMemoryUpdateDMAs(&audio->p->memory, -cycles);
398	}
399	CircleBufferRead8(&channel->fifo, &channel->sample);
400}
401
402unsigned GBAAudioCopy(struct GBAAudio* audio, void* left, void* right, unsigned nSamples) {
403	GBASyncLockAudio(audio->p->sync);
404	unsigned read = 0;
405	if (left) {
406		unsigned readL = CircleBufferRead(&audio->left, left, nSamples * sizeof(int32_t)) >> 2;
407		if (readL < nSamples) {
408			memset((int32_t*) left + readL, 0, nSamples - readL);
409		}
410		read = readL;
411	}
412	if (right) {
413		unsigned readR = CircleBufferRead(&audio->right, right, nSamples * sizeof(int32_t)) >> 2;
414		if (readR < nSamples) {
415			memset((int32_t*) right + readR, 0, nSamples - readR);
416		}
417		read = read >= readR ? read : readR;
418	}
419	GBASyncConsumeAudio(audio->p->sync);
420	return read;
421}
422
423unsigned GBAAudioResampleNN(struct GBAAudio* audio, float ratio, float* drift, struct GBAStereoSample* output, unsigned nSamples) {
424	int32_t left[GBA_AUDIO_SAMPLES];
425	int32_t right[GBA_AUDIO_SAMPLES];
426
427	// toRead is in GBA samples
428	// TODO: Do this with fixed-point math
429	unsigned toRead = ceilf(nSamples / ratio);
430	unsigned totalRead = 0;
431	while (nSamples) {
432		unsigned currentRead = GBA_AUDIO_SAMPLES;
433		if (currentRead > toRead) {
434			currentRead = toRead;
435		}
436		unsigned read = GBAAudioCopy(audio, left, right, currentRead);
437		toRead -= read;
438		unsigned i;
439		for (i = 0; i < read; ++i) {
440			*drift += ratio;
441			while (*drift >= 1.f) {
442				output->left = left[i];
443				output->right = right[i];
444				++output;
445				++totalRead;
446				--nSamples;
447				*drift -= 1.f;
448				if (!nSamples) {
449					return totalRead;
450				}
451			}
452		}
453		if (read < currentRead) {
454			memset(output, 0, nSamples * sizeof(struct GBAStereoSample));
455			break;
456		}
457	}
458	return totalRead;
459}
460
461static int32_t _updateSquareChannel(struct GBAAudioSquareControl* control, int duty) {
462	control->hi = !control->hi;
463	int period = 16 * (2048 - control->frequency);
464	switch (duty) {
465	case 0:
466		return control->hi ? period : period * 7;
467	case 1:
468		return control->hi ? period * 2 : period * 6;
469	case 2:
470		return period * 4;
471	case 3:
472		return control->hi ? period * 6 : period * 2;
473	default:
474		// This should never be hit
475		return period * 4;
476	}
477}
478
479static void _updateEnvelope(struct GBAAudioEnvelope* envelope) {
480	if (envelope->direction) {
481		++envelope->currentVolume;
482	} else {
483		--envelope->currentVolume;
484	}
485	if (envelope->currentVolume >= 15) {
486		envelope->currentVolume = 15;
487		envelope->nextStep = INT_MAX;
488	} else if (envelope->currentVolume <= 0) {
489		envelope->currentVolume = 0;
490		envelope->dead = 1;
491		envelope->nextStep = INT_MAX;
492	} else {
493		envelope->nextStep += envelope->stepTime * (GBA_ARM7TDMI_FREQUENCY >> 6);
494	}
495}
496
497static int _updateSweep(struct GBAAudioChannel1* ch) {
498	if (ch->sweep.direction) {
499		int frequency = ch->control.frequency;
500		frequency -= frequency >> ch->sweep.shift;
501		if (frequency >= 0) {
502			ch->control.frequency = frequency;
503		}
504	} else {
505		int frequency = ch->control.frequency;
506		frequency += frequency >> ch->sweep.shift;
507		if (frequency < 2048) {
508			ch->control.frequency = frequency;
509		} else {
510			return 0;
511		}
512	}
513	ch->nextSweep += ch->sweep.time * SWEEP_CYCLES;
514	return 1;
515}
516
517static int32_t _updateChannel1(struct GBAAudioChannel1* ch) {
518	int timing = _updateSquareChannel(&ch->control, ch->envelope.duty);
519	ch->sample = ch->control.hi * 0x10 - 0x8;
520	ch->sample *= ch->envelope.currentVolume;
521	return timing;
522}
523
524static int32_t _updateChannel2(struct GBAAudioChannel2* ch) {
525	int timing = _updateSquareChannel(&ch->control, ch->envelope.duty);
526	ch->sample = ch->control.hi * 0x10 - 0x8;
527	ch->sample *= ch->envelope.currentVolume;
528	return timing;
529}
530
531static int32_t _updateChannel3(struct GBAAudioChannel3* ch) {
532	int i;
533	int start;
534	int end;
535	int volume;
536	switch (ch->wave.volume) {
537	case 0:
538		volume = 0;
539		break;
540	case 1:
541		volume = 4;
542		break;
543	case 2:
544		volume = 2;
545		break;
546	case 3:
547		volume = 1;
548		break;
549	default:
550		volume = 3;
551		break;
552	}
553	if (ch->bank.size) {
554		start = 7;
555		end = 0;
556	} else if (ch->bank.bank) {
557		start = 7;
558		end = 4;
559	} else {
560		start = 3;
561		end = 0;
562	}
563	uint32_t bitsCarry = ch->wavedata[end] & 0xF0000000;
564	uint32_t bits;
565	for (i = start; i >= end; --i) {
566		bits = ch->wavedata[i] & 0xF0000000;
567		ch->wavedata[i] <<= 4;
568		ch->wavedata[i] |= bitsCarry >> 28;
569		bitsCarry = bits;
570	}
571	ch->sample = ((bitsCarry >> 26) - 0x20) * volume;
572	return 8 * (2048 - ch->control.rate);
573}
574
575static int32_t _updateChannel4(struct GBAAudioChannel4* ch) {
576	int lsb = ch->lfsr & 1;
577	ch->sample = lsb * 0x10 - 0x8;
578	ch->sample *= ch->envelope.currentVolume;
579	ch->lfsr >>= 1;
580	ch->lfsr ^= (lsb * 0x60) << (ch->control.power ? 0 : 8);
581	int timing = ch->control.ratio ? 2 * ch->control.ratio : 1;
582	timing <<= ch->control.frequency;
583	timing *= 32;
584	return timing;
585}
586
587static void _sample(struct GBAAudio* audio) {
588	int32_t sampleLeft = 0;
589	int32_t sampleRight = 0;
590	int psgShift = 6 - audio->volume;
591
592	if (audio->ch1Left) {
593		sampleLeft += audio->ch1.sample;
594	}
595
596	if (audio->ch1Right) {
597		sampleRight += audio->ch1.sample;
598	}
599
600	if (audio->ch2Left) {
601		sampleLeft += audio->ch2.sample;
602	}
603
604	if (audio->ch2Right) {
605		sampleRight += audio->ch2.sample;
606	}
607
608	if (audio->ch3Left) {
609		sampleLeft += audio->ch3.sample;
610	}
611
612	if (audio->ch3Right) {
613		sampleRight += audio->ch3.sample;
614	}
615
616	if (audio->ch4Left) {
617		sampleLeft += audio->ch4.sample;
618	}
619
620	if (audio->ch4Right) {
621		sampleRight += audio->ch4.sample;
622	}
623
624	sampleLeft = (sampleLeft * (1 + audio->volumeLeft)) >> psgShift;
625	sampleRight = (sampleRight * (1 + audio->volumeRight)) >> psgShift;
626
627	if (audio->chALeft) {
628		sampleLeft += (audio->chA.sample << 2) >> !audio->volumeChA;
629	}
630
631	if (audio->chARight) {
632		sampleRight += (audio->chA.sample << 2) >> !audio->volumeChA;
633	}
634
635	if (audio->chBLeft) {
636		sampleLeft += (audio->chB.sample << 2) >> !audio->volumeChB;
637	}
638
639	if (audio->chBRight) {
640		sampleRight += (audio->chB.sample << 2) >> !audio->volumeChB;
641	}
642
643	GBASyncLockAudio(audio->p->sync);
644	CircleBufferWrite32(&audio->left, sampleLeft << 5);
645	CircleBufferWrite32(&audio->right, sampleRight << 5);
646	unsigned produced = CircleBufferSize(&audio->left);
647	GBASyncProduceAudio(audio->p->sync, produced >= GBA_AUDIO_SAMPLES * 3);
648}
649
650void GBAAudioSerialize(const struct GBAAudio* audio, struct GBASerializedState* state) {
651	state->audio.ch1Volume = audio->ch1.envelope.currentVolume;
652	state->audio.ch1Dead = audio->ch1.envelope.dead;
653	state->audio.ch1Hi = audio->ch1.control.hi;
654	state->audio.ch1.envelopeNextStep = audio->ch1.envelope.nextStep;
655	state->audio.ch1.waveNextStep = audio->ch1.control.nextStep;
656	state->audio.ch1.sweepNextStep = audio->ch1.nextSweep;
657	state->audio.ch1.endTime = audio->ch1.control.endTime;
658	state->audio.ch1.nextEvent = audio->nextCh1;
659
660	state->audio.ch2Volume = audio->ch2.envelope.currentVolume;
661	state->audio.ch2Dead = audio->ch2.envelope.dead;
662	state->audio.ch2Hi = audio->ch2.control.hi;
663	state->audio.ch2.envelopeNextStep = audio->ch2.envelope.nextStep;
664	state->audio.ch2.waveNextStep = audio->ch2.control.nextStep;
665	state->audio.ch2.endTime = audio->ch2.control.endTime;
666	state->audio.ch2.nextEvent = audio->nextCh2;
667
668	memcpy(state->audio.ch3.wavebanks, audio->ch3.wavedata, sizeof(state->audio.ch3.wavebanks));
669	state->audio.ch3.endTime = audio->ch3.control.endTime;
670	state->audio.ch3.nextEvent = audio->nextCh3;
671
672	state->audio.ch4Volume = audio->ch4.envelope.currentVolume;
673	state->audio.ch4Dead = audio->ch4.envelope.dead;
674	state->audio.ch4.envelopeNextStep = audio->ch4.envelope.nextStep;
675	state->audio.ch4.lfsr = audio->ch4.lfsr;
676	state->audio.ch4.endTime = audio->ch4.control.endTime;
677	state->audio.ch4.nextEvent = audio->nextCh4;
678
679	state->audio.nextEvent = audio->nextEvent;
680	state->audio.eventDiff = audio->eventDiff;
681	state->audio.nextSample = audio->nextSample;
682}
683
684void GBAAudioDeserialize(struct GBAAudio* audio, const struct GBASerializedState* state) {
685	audio->ch1.envelope.currentVolume = state->audio.ch1Volume;
686	audio->ch1.envelope.dead = state->audio.ch1Dead;
687	audio->ch1.control.hi = state->audio.ch1Hi;
688	audio->ch1.envelope.nextStep = state->audio.ch1.envelopeNextStep;
689	audio->ch1.control.nextStep = state->audio.ch1.waveNextStep;
690	audio->ch1.nextSweep = state->audio.ch1.sweepNextStep;
691	audio->ch1.control.endTime = state->audio.ch1.endTime;
692	audio->nextCh1 = state->audio.ch1.nextEvent;
693
694	audio->ch2.envelope.currentVolume = state->audio.ch2Volume;
695	audio->ch2.envelope.dead = state->audio.ch2Dead;
696	audio->ch2.control.hi = state->audio.ch2Hi;
697	audio->ch2.envelope.nextStep = state->audio.ch2.envelopeNextStep;
698	audio->ch2.control.nextStep = state->audio.ch2.waveNextStep;
699	audio->ch2.control.endTime = state->audio.ch2.endTime;
700	audio->nextCh2 = state->audio.ch2.nextEvent;
701
702	memcpy(audio->ch3.wavedata, state->audio.ch3.wavebanks, sizeof(audio->ch3.wavedata));
703	audio->ch3.control.endTime = state->audio.ch3.endTime;
704	audio->nextCh3 = state->audio.ch3.nextEvent;
705
706	audio->ch4.envelope.currentVolume = state->audio.ch4Volume;
707	audio->ch4.envelope.dead = state->audio.ch4Dead;
708	audio->ch4.envelope.nextStep = state->audio.ch4.envelopeNextStep;
709	audio->ch4.lfsr = state->audio.ch4.lfsr;
710	audio->ch4.control.endTime = state->audio.ch4.endTime;
711	audio->nextCh4 = state->audio.ch4.nextEvent;
712
713	audio->nextEvent = state->audio.nextEvent;
714	audio->eventDiff = state->audio.eventDiff;
715	audio->nextSample = state->audio.nextSample;
716}