all repos — mgba @ c52a5d2859a535cd439f914beffeb1f2eb49e9f6

mGBA Game Boy Advance Emulator

src/gba/gba-audio.c (view raw)

  1/* Copyright (c) 2013-2014 Jeffrey Pfau
  2 *
  3 * This Source Code Form is subject to the terms of the Mozilla Public
  4 * License, v. 2.0. If a copy of the MPL was not distributed with this
  5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  6#include "gba-audio.h"
  7
  8#include "gba.h"
  9#include "gba-io.h"
 10#include "gba-serialize.h"
 11#include "gba-thread.h"
 12#include "gba-video.h"
 13
 14const unsigned GBA_AUDIO_SAMPLES = 2048;
 15const unsigned GBA_AUDIO_FIFO_SIZE = 8 * sizeof(int32_t);
 16#define SWEEP_CYCLES (GBA_ARM7TDMI_FREQUENCY / 128)
 17
 18static bool _writeEnvelope(struct GBAAudioEnvelope* envelope, uint16_t value);
 19static int32_t _updateSquareChannel(struct GBAAudioSquareControl* envelope, int duty);
 20static void _updateEnvelope(struct GBAAudioEnvelope* envelope);
 21static bool _updateSweep(struct GBAAudioChannel1* ch);
 22static int32_t _updateChannel1(struct GBAAudioChannel1* ch);
 23static int32_t _updateChannel2(struct GBAAudioChannel2* ch);
 24static int32_t _updateChannel3(struct GBAAudioChannel3* ch);
 25static int32_t _updateChannel4(struct GBAAudioChannel4* ch);
 26static int _applyBias(struct GBAAudio* audio, int sample);
 27static void _sample(struct GBAAudio* audio);
 28
 29void GBAAudioInit(struct GBAAudio* audio, size_t samples) {
 30	CircleBufferInit(&audio->left, samples * sizeof(int16_t));
 31	CircleBufferInit(&audio->right, samples * sizeof(int16_t));
 32	CircleBufferInit(&audio->chA.fifo, GBA_AUDIO_FIFO_SIZE);
 33	CircleBufferInit(&audio->chB.fifo, GBA_AUDIO_FIFO_SIZE);
 34}
 35
 36void GBAAudioReset(struct GBAAudio* audio) {
 37	audio->nextEvent = 0;
 38	audio->nextCh1 = 0;
 39	audio->nextCh2 = 0;
 40	audio->nextCh3 = 0;
 41	audio->nextCh4 = 0;
 42	audio->ch1 = (struct GBAAudioChannel1) { .envelope = { .nextStep = INT_MAX }, .nextSweep = INT_MAX };
 43	audio->ch2 = (struct GBAAudioChannel2) { .envelope = { .nextStep = INT_MAX } };
 44	audio->ch3 = (struct GBAAudioChannel3) { .bank = { .bank = 0 } };
 45	audio->ch4 = (struct GBAAudioChannel4) { .envelope = { .nextStep = INT_MAX } };
 46	audio->chA.dmaSource = 0;
 47	audio->chB.dmaSource = 0;
 48	audio->chA.sample = 0;
 49	audio->chB.sample = 0;
 50	audio->eventDiff = 0;
 51	audio->nextSample = 0;
 52	audio->sampleRate = 0x8000;
 53	audio->soundbias = 0x200;
 54	audio->volumeRight = 0;
 55	audio->volumeLeft = 0;
 56	audio->ch1Right = false;
 57	audio->ch2Right = false;
 58	audio->ch3Right = false;
 59	audio->ch4Right = false;
 60	audio->ch1Left = false;
 61	audio->ch2Left = false;
 62	audio->ch3Left = false;
 63	audio->ch4Left = false;
 64	audio->volume = 0;
 65	audio->volumeChA = false;
 66	audio->volumeChB = false;
 67	audio->chARight = false;
 68	audio->chALeft = false;
 69	audio->chATimer = false;
 70	audio->chBRight = false;
 71	audio->chBLeft = false;
 72	audio->chBTimer = false;
 73	audio->playingCh1 = false;
 74	audio->playingCh2 = false;
 75	audio->playingCh3 = false;
 76	audio->playingCh4 = false;
 77	audio->enable = false;
 78	audio->sampleInterval = GBA_ARM7TDMI_FREQUENCY / audio->sampleRate;
 79
 80	CircleBufferClear(&audio->left);
 81	CircleBufferClear(&audio->right);
 82	CircleBufferClear(&audio->chA.fifo);
 83	CircleBufferClear(&audio->chB.fifo);
 84}
 85
 86void GBAAudioDeinit(struct GBAAudio* audio) {
 87	CircleBufferDeinit(&audio->left);
 88	CircleBufferDeinit(&audio->right);
 89	CircleBufferDeinit(&audio->chA.fifo);
 90	CircleBufferDeinit(&audio->chB.fifo);
 91}
 92
 93void GBAAudioResizeBuffer(struct GBAAudio* audio, size_t samples) {
 94	if (samples > GBA_AUDIO_SAMPLES) {
 95		return;
 96	}
 97
 98	GBASyncLockAudio(audio->p->sync);
 99	int16_t buffer[GBA_AUDIO_SAMPLES];
100	int16_t dummy;
101	size_t read;
102	size_t i;
103
104	read = CircleBufferDump(&audio->left, buffer, sizeof(buffer));
105	CircleBufferDeinit(&audio->left);
106	CircleBufferInit(&audio->left, samples * sizeof(int16_t));
107	for (i = 0; i * sizeof(int16_t) < read; ++i) {
108		if (!CircleBufferWrite16(&audio->left, buffer[i])) {
109			CircleBufferRead16(&audio->left, &dummy);
110			CircleBufferWrite16(&audio->left, buffer[i]);
111		}
112	}
113
114	read = CircleBufferDump(&audio->right, buffer, sizeof(buffer));
115	CircleBufferDeinit(&audio->right);
116	CircleBufferInit(&audio->right, samples * sizeof(int16_t));
117	for (i = 0; i * sizeof(int16_t) < read; ++i) {
118		if (!CircleBufferWrite16(&audio->right, buffer[i])) {
119			CircleBufferRead16(&audio->right, &dummy);
120			CircleBufferWrite16(&audio->right, buffer[i]);
121		}
122	}
123
124	GBASyncConsumeAudio(audio->p->sync);
125}
126
127int32_t GBAAudioProcessEvents(struct GBAAudio* audio, int32_t cycles) {
128	audio->nextEvent -= cycles;
129	audio->eventDiff += cycles;
130	if (audio->nextEvent <= 0) {
131		audio->nextEvent = INT_MAX;
132		if (audio->enable) {
133			if (audio->playingCh1 && !audio->ch1.envelope.dead) {
134				audio->nextCh1 -= audio->eventDiff;
135				if (audio->ch1.envelope.nextStep != INT_MAX) {
136					audio->ch1.envelope.nextStep -= audio->eventDiff;
137					if (audio->ch1.envelope.nextStep <= 0) {
138						int8_t sample = audio->ch1.control.hi * 0x10 - 0x8;
139						_updateEnvelope(&audio->ch1.envelope);
140						if (audio->ch1.envelope.nextStep < audio->nextEvent) {
141							audio->nextEvent = audio->ch1.envelope.nextStep;
142						}
143						audio->ch1.sample = sample * audio->ch1.envelope.currentVolume;
144					}
145				}
146
147				if (audio->ch1.nextSweep != INT_MAX) {
148					audio->ch1.nextSweep -= audio->eventDiff;
149					if (audio->ch1.nextSweep <= 0) {
150						audio->playingCh1 = _updateSweep(&audio->ch1);
151						if (audio->ch1.nextSweep < audio->nextEvent) {
152							audio->nextEvent = audio->ch1.nextSweep;
153						}
154					}
155				}
156
157				if (audio->nextCh1 <= 0) {
158					audio->nextCh1 += _updateChannel1(&audio->ch1);
159					if (audio->nextCh1 < audio->nextEvent) {
160						audio->nextEvent = audio->nextCh1;
161					}
162				}
163
164				if (audio->ch1.control.stop) {
165					audio->ch1.control.endTime -= audio->eventDiff;
166					if (audio->ch1.control.endTime <= 0) {
167						audio->playingCh1 = 0;
168					}
169				}
170			}
171
172			if (audio->playingCh2 && !audio->ch2.envelope.dead) {
173				audio->nextCh2 -= audio->eventDiff;
174				if (audio->ch2.envelope.nextStep != INT_MAX) {
175					audio->ch2.envelope.nextStep -= audio->eventDiff;
176					if (audio->ch2.envelope.nextStep <= 0) {
177						int8_t sample = audio->ch2.control.hi * 0x10 - 0x8;
178						_updateEnvelope(&audio->ch2.envelope);
179						if (audio->ch2.envelope.nextStep < audio->nextEvent) {
180							audio->nextEvent = audio->ch2.envelope.nextStep;
181						}
182						audio->ch2.sample = sample * audio->ch2.envelope.currentVolume;
183					}
184				}
185
186				if (audio->nextCh2 <= 0) {
187					audio->nextCh2 += _updateChannel2(&audio->ch2);
188					if (audio->nextCh2 < audio->nextEvent) {
189						audio->nextEvent = audio->nextCh2;
190					}
191				}
192
193				if (audio->ch2.control.stop) {
194					audio->ch2.control.endTime -= audio->eventDiff;
195					if (audio->ch2.control.endTime <= 0) {
196						audio->playingCh2 = 0;
197					}
198				}
199			}
200
201			if (audio->playingCh3) {
202				audio->nextCh3 -= audio->eventDiff;
203				if (audio->nextCh3 <= 0) {
204					audio->nextCh3 += _updateChannel3(&audio->ch3);
205					if (audio->nextCh3 < audio->nextEvent) {
206						audio->nextEvent = audio->nextCh3;
207					}
208				}
209
210				if (audio->ch3.control.stop) {
211					audio->ch3.control.endTime -= audio->eventDiff;
212					if (audio->ch3.control.endTime <= 0) {
213						audio->playingCh3 = 0;
214					}
215				}
216			}
217
218			if (audio->playingCh4 && !audio->ch4.envelope.dead) {
219				audio->nextCh4 -= audio->eventDiff;
220				if (audio->ch4.envelope.nextStep != INT_MAX) {
221					audio->ch4.envelope.nextStep -= audio->eventDiff;
222					if (audio->ch4.envelope.nextStep <= 0) {
223						int8_t sample = (audio->ch4.sample >> 31) * 0x8;
224						_updateEnvelope(&audio->ch4.envelope);
225						if (audio->ch4.envelope.nextStep < audio->nextEvent) {
226							audio->nextEvent = audio->ch4.envelope.nextStep;
227						}
228						audio->ch4.sample = sample * audio->ch4.envelope.currentVolume;
229					}
230				}
231
232				if (audio->nextCh4 <= 0) {
233					audio->nextCh4 += _updateChannel4(&audio->ch4);
234					if (audio->nextCh4 < audio->nextEvent) {
235						audio->nextEvent = audio->nextCh4;
236					}
237				}
238
239				if (audio->ch4.control.stop) {
240					audio->ch4.control.endTime -= audio->eventDiff;
241					if (audio->ch4.control.endTime <= 0) {
242						audio->playingCh4 = 0;
243					}
244				}
245			}
246		}
247
248		audio->nextSample -= audio->eventDiff;
249		if (audio->nextSample <= 0) {
250			_sample(audio);
251			audio->nextSample += audio->sampleInterval;
252		}
253
254		if (audio->nextSample < audio->nextEvent) {
255			audio->nextEvent = audio->nextSample;
256		}
257		audio->eventDiff = 0;
258	}
259	return audio->nextEvent;
260}
261
262void GBAAudioScheduleFifoDma(struct GBAAudio* audio, int number, struct GBADMA* info) {
263	switch (info->dest) {
264	case BASE_IO | REG_FIFO_A_LO:
265		audio->chA.dmaSource = number;
266		break;
267	case BASE_IO | REG_FIFO_B_LO:
268		audio->chB.dmaSource = number;
269		break;
270	default:
271		GBALog(audio->p, GBA_LOG_GAME_ERROR, "Invalid FIFO destination: 0x%08X", info->dest);
272		return;
273	}
274	info->reg = GBADMARegisterSetDestControl(info->reg, DMA_FIXED);
275}
276
277void GBAAudioWriteSOUND1CNT_LO(struct GBAAudio* audio, uint16_t value) {
278	audio->ch1.sweep.shift = GBAAudioRegisterSquareSweepGetShift(value);
279	audio->ch1.sweep.direction = GBAAudioRegisterSquareSweepGetDirection(value);
280	audio->ch1.sweep.time = GBAAudioRegisterSquareSweepGetTime(value);
281	if (audio->ch1.sweep.time) {
282		audio->ch1.nextSweep = audio->ch1.sweep.time * SWEEP_CYCLES;
283	} else {
284		audio->ch1.nextSweep = INT_MAX;
285	}
286}
287
288void GBAAudioWriteSOUND1CNT_HI(struct GBAAudio* audio, uint16_t value) {
289	if (!_writeEnvelope(&audio->ch1.envelope, value)) {
290		audio->ch1.sample = 0;
291	}
292}
293
294void GBAAudioWriteSOUND1CNT_X(struct GBAAudio* audio, uint16_t value) {
295	audio->ch1.control.frequency = GBAAudioRegisterControlGetFrequency(value);
296	audio->ch1.control.stop = GBAAudioRegisterControlGetStop(value);
297	audio->ch1.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch1.envelope.length)) >> 8;
298	if (GBAAudioRegisterControlIsRestart(value)) {
299		if (audio->ch1.sweep.time) {
300			audio->ch1.nextSweep = audio->ch1.sweep.time * SWEEP_CYCLES;
301		} else {
302			audio->ch1.nextSweep = INT_MAX;
303		}
304		if (!audio->playingCh1) {
305			audio->nextCh1 = 0;
306		}
307		audio->playingCh1 = 1;
308		if (audio->ch1.envelope.stepTime) {
309			audio->ch1.envelope.nextStep = 0;
310		} else {
311			audio->ch1.envelope.nextStep = INT_MAX;
312		}
313		audio->ch1.envelope.currentVolume = audio->ch1.envelope.initialVolume;
314		if (audio->ch1.envelope.stepTime) {
315			audio->ch1.envelope.nextStep = 0;
316		} else {
317			audio->ch1.envelope.nextStep = INT_MAX;
318		}
319	}
320}
321
322void GBAAudioWriteSOUND2CNT_LO(struct GBAAudio* audio, uint16_t value) {
323	if (!_writeEnvelope(&audio->ch2.envelope, value)) {
324		audio->ch2.sample = 0;
325	}
326}
327
328void GBAAudioWriteSOUND2CNT_HI(struct GBAAudio* audio, uint16_t value) {
329	audio->ch2.control.frequency = GBAAudioRegisterControlGetFrequency(value);
330	audio->ch2.control.stop = GBAAudioRegisterControlGetStop(value);
331	audio->ch2.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch2.envelope.length)) >> 8;
332	if (GBAAudioRegisterControlIsRestart(value)) {
333		audio->playingCh2 = 1;
334		audio->ch2.envelope.currentVolume = audio->ch2.envelope.initialVolume;
335		if (audio->ch2.envelope.stepTime) {
336			audio->ch2.envelope.nextStep = 0;
337		} else {
338			audio->ch2.envelope.nextStep = INT_MAX;
339		}
340		audio->nextCh2 = 0;
341	}
342}
343
344void GBAAudioWriteSOUND3CNT_LO(struct GBAAudio* audio, uint16_t value) {
345	audio->ch3.bank.size = GBAAudioRegisterBankGetSize(value);
346	audio->ch3.bank.bank = GBAAudioRegisterBankGetBank(value);
347	audio->ch3.bank.enable = GBAAudioRegisterBankGetEnable(value);
348	if (audio->ch3.control.endTime >= 0) {
349		audio->playingCh3 = audio->ch3.bank.enable;
350	}
351}
352
353void GBAAudioWriteSOUND3CNT_HI(struct GBAAudio* audio, uint16_t value) {
354	audio->ch3.wave.length = GBAAudioRegisterBankWaveGetLength(value);
355	audio->ch3.wave.volume = GBAAudioRegisterBankWaveGetVolume(value);
356}
357
358void GBAAudioWriteSOUND3CNT_X(struct GBAAudio* audio, uint16_t value) {
359	audio->ch3.control.rate = GBAAudioRegisterControlGetRate(value);
360	audio->ch3.control.stop = GBAAudioRegisterControlGetStop(value);
361	audio->ch3.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (256 - audio->ch3.wave.length)) >> 8;
362	if (GBAAudioRegisterControlIsRestart(value)) {
363		audio->playingCh3 = audio->ch3.bank.enable;
364	}
365}
366
367void GBAAudioWriteSOUND4CNT_LO(struct GBAAudio* audio, uint16_t value) {
368	if (!_writeEnvelope(&audio->ch4.envelope, value)) {
369		audio->ch4.sample = 0;
370	}
371}
372
373void GBAAudioWriteSOUND4CNT_HI(struct GBAAudio* audio, uint16_t value) {
374	audio->ch4.control.ratio = GBAAudioRegisterCh4ControlGetRatio(value);
375	audio->ch4.control.frequency = GBAAudioRegisterCh4ControlGetFrequency(value);
376	audio->ch4.control.power = GBAAudioRegisterCh4ControlGetPower(value);
377	audio->ch4.control.stop = GBAAudioRegisterCh4ControlGetStop(value);
378	audio->ch4.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch4.envelope.length)) >> 8;
379	if (GBAAudioRegisterCh4ControlIsRestart(value)) {
380		audio->playingCh4 = 1;
381		audio->ch4.envelope.currentVolume = audio->ch4.envelope.initialVolume;
382		if (audio->ch4.envelope.stepTime) {
383			audio->ch4.envelope.nextStep = 0;
384		} else {
385			audio->ch4.envelope.nextStep = INT_MAX;
386		}
387		if (audio->ch4.control.power) {
388			audio->ch4.lfsr = 0x40;
389		} else {
390			audio->ch4.lfsr = 0x4000;
391		}
392		audio->nextCh4 = 0;
393	}
394}
395
396void GBAAudioWriteSOUNDCNT_LO(struct GBAAudio* audio, uint16_t value) {
397	audio->volumeRight = GBARegisterSOUNDCNT_LOGetVolumeRight(value);
398	audio->volumeLeft = GBARegisterSOUNDCNT_LOGetVolumeLeft(value);
399	audio->ch1Right = GBARegisterSOUNDCNT_LOGetCh1Right(value);
400	audio->ch2Right = GBARegisterSOUNDCNT_LOGetCh2Right(value);
401	audio->ch3Right = GBARegisterSOUNDCNT_LOGetCh3Right(value);
402	audio->ch4Right = GBARegisterSOUNDCNT_LOGetCh4Right(value);
403	audio->ch1Left = GBARegisterSOUNDCNT_LOGetCh1Left(value);
404	audio->ch2Left = GBARegisterSOUNDCNT_LOGetCh2Left(value);
405	audio->ch3Left = GBARegisterSOUNDCNT_LOGetCh3Left(value);
406	audio->ch4Left = GBARegisterSOUNDCNT_LOGetCh4Left(value);
407}
408
409void GBAAudioWriteSOUNDCNT_HI(struct GBAAudio* audio, uint16_t value) {
410	audio->volume = GBARegisterSOUNDCNT_HIGetVolume(value);
411	audio->volumeChA = GBARegisterSOUNDCNT_HIGetVolumeChA(value);
412	audio->volumeChB = GBARegisterSOUNDCNT_HIGetVolumeChB(value);
413	audio->chARight = GBARegisterSOUNDCNT_HIGetChARight(value);
414	audio->chALeft = GBARegisterSOUNDCNT_HIGetChALeft(value);
415	audio->chATimer = GBARegisterSOUNDCNT_HIGetChATimer(value);
416	audio->chBRight = GBARegisterSOUNDCNT_HIGetChBRight(value);
417	audio->chBLeft = GBARegisterSOUNDCNT_HIGetChBLeft(value);
418	audio->chBTimer = GBARegisterSOUNDCNT_HIGetChBTimer(value);
419	// TODO: Implement channel reset
420}
421
422void GBAAudioWriteSOUNDCNT_X(struct GBAAudio* audio, uint16_t value) {
423	audio->enable = GBARegisterSOUNDCNT_XGetEnable(value);
424}
425
426void GBAAudioWriteSOUNDBIAS(struct GBAAudio* audio, uint16_t value) {
427	audio->soundbias = value;
428}
429
430void GBAAudioWriteWaveRAM(struct GBAAudio* audio, int address, uint32_t value) {
431	audio->ch3.wavedata[address | (!audio->ch3.bank.bank * 4)] = value;
432}
433
434void GBAAudioWriteFIFO(struct GBAAudio* audio, int address, uint32_t value) {
435	struct CircleBuffer* fifo;
436	switch (address) {
437	case REG_FIFO_A_LO:
438		fifo = &audio->chA.fifo;
439		break;
440	case REG_FIFO_B_LO:
441		fifo = &audio->chB.fifo;
442		break;
443	default:
444		GBALog(audio->p, GBA_LOG_ERROR, "Bad FIFO write to address 0x%03x", address);
445		return;
446	}
447	int i;
448	for (i = 0; i < 4; ++i) {
449		while (!CircleBufferWrite8(fifo, value >> (8 * i))) {
450			int8_t dummy;
451			CircleBufferRead8(fifo, &dummy);
452		}
453	}
454}
455
456void GBAAudioWriteFIFO16(struct GBAAudio* audio, int address, uint16_t value) {
457	struct CircleBuffer* fifo;
458	switch (address) {
459	case REG_FIFO_A_LO:
460	case REG_FIFO_A_HI:
461		fifo = &audio->chA.fifo;
462		break;
463	case REG_FIFO_B_LO:
464	case REG_FIFO_B_HI:
465		fifo = &audio->chB.fifo;
466		break;
467	default:
468		GBALog(audio->p, GBA_LOG_ERROR, "Bad FIFO write to address 0x%03x", address);
469		return;
470	}
471	int i;
472	for (i = 0; i < 2; ++i) {
473		while (!CircleBufferWrite8(fifo, value >> (8 * i))) {
474			int8_t dummy;
475			CircleBufferRead8(fifo, &dummy);
476		}
477	}
478}
479
480void GBAAudioSampleFIFO(struct GBAAudio* audio, int fifoId, int32_t cycles) {
481	struct GBAAudioFIFO* channel;
482	if (fifoId == 0) {
483		channel = &audio->chA;
484	} else if (fifoId == 1) {
485		channel = &audio->chB;
486	} else {
487		GBALog(audio->p, GBA_LOG_ERROR, "Bad FIFO write to address 0x%03x", fifoId);
488		return;
489	}
490	if (CircleBufferSize(&channel->fifo) <= 4 * sizeof(int32_t)) {
491		struct GBADMA* dma = &audio->p->memory.dma[channel->dmaSource];
492		dma->nextCount = 4;
493		dma->nextEvent = 0;
494		GBAMemoryUpdateDMAs(audio->p, -cycles);
495	}
496	CircleBufferRead8(&channel->fifo, &channel->sample);
497}
498
499unsigned GBAAudioCopy(struct GBAAudio* audio, void* left, void* right, unsigned nSamples) {
500	GBASyncLockAudio(audio->p->sync);
501	unsigned read = 0;
502	if (left) {
503		unsigned readL = CircleBufferRead(&audio->left, left, nSamples * sizeof(int16_t)) >> 1;
504		if (readL < nSamples) {
505			memset((int16_t*) left + readL, 0, nSamples - readL);
506		}
507		read = readL;
508	}
509	if (right) {
510		unsigned readR = CircleBufferRead(&audio->right, right, nSamples * sizeof(int16_t)) >> 1;
511		if (readR < nSamples) {
512			memset((int16_t*) right + readR, 0, nSamples - readR);
513		}
514		read = read >= readR ? read : readR;
515	}
516	GBASyncConsumeAudio(audio->p->sync);
517	return read;
518}
519
520unsigned GBAAudioResampleNN(struct GBAAudio* audio, float ratio, float* drift, struct GBAStereoSample* output, unsigned nSamples) {
521	int16_t left[GBA_AUDIO_SAMPLES];
522	int16_t right[GBA_AUDIO_SAMPLES];
523
524	// toRead is in GBA samples
525	// TODO: Do this with fixed-point math
526	unsigned toRead = ceilf(nSamples / ratio);
527	unsigned totalRead = 0;
528	while (nSamples) {
529		unsigned currentRead = GBA_AUDIO_SAMPLES;
530		if (currentRead > toRead) {
531			currentRead = toRead;
532		}
533		unsigned read = GBAAudioCopy(audio, left, right, currentRead);
534		toRead -= read;
535		unsigned i;
536		for (i = 0; i < read; ++i) {
537			*drift += ratio;
538			while (*drift >= 1.f) {
539				output->left = left[i];
540				output->right = right[i];
541				++output;
542				++totalRead;
543				--nSamples;
544				*drift -= 1.f;
545				if (!nSamples) {
546					return totalRead;
547				}
548			}
549		}
550		if (read < currentRead) {
551			memset(output, 0, nSamples * sizeof(struct GBAStereoSample));
552			break;
553		}
554	}
555	return totalRead;
556}
557
558bool _writeEnvelope(struct GBAAudioEnvelope* envelope, uint16_t value) {
559	envelope->length = GBAAudioRegisterEnvelopeGetLength(value);
560	envelope->duty = GBAAudioRegisterEnvelopeGetDuty(value);
561	envelope->stepTime = GBAAudioRegisterEnvelopeGetStepTime(value);
562	envelope->direction = GBAAudioRegisterEnvelopeGetDirection(value);
563	envelope->initialVolume = GBAAudioRegisterEnvelopeGetInitialVolume(value);
564	envelope->dead = 0;
565	if (envelope->stepTime) {
566		envelope->nextStep = 0;
567	} else {
568		envelope->nextStep = INT_MAX;
569		if (envelope->initialVolume == 0) {
570			envelope->dead = 1;
571			return false;
572		}
573	}
574	return true;
575}
576
577static int32_t _updateSquareChannel(struct GBAAudioSquareControl* control, int duty) {
578	control->hi = !control->hi;
579	int period = 16 * (2048 - control->frequency);
580	switch (duty) {
581	case 0:
582		return control->hi ? period : period * 7;
583	case 1:
584		return control->hi ? period * 2 : period * 6;
585	case 2:
586		return period * 4;
587	case 3:
588		return control->hi ? period * 6 : period * 2;
589	default:
590		// This should never be hit
591		return period * 4;
592	}
593}
594
595static void _updateEnvelope(struct GBAAudioEnvelope* envelope) {
596	if (envelope->direction) {
597		++envelope->currentVolume;
598	} else {
599		--envelope->currentVolume;
600	}
601	if (envelope->currentVolume >= 15) {
602		envelope->currentVolume = 15;
603		envelope->nextStep = INT_MAX;
604	} else if (envelope->currentVolume <= 0) {
605		envelope->currentVolume = 0;
606		envelope->dead = 1;
607		envelope->nextStep = INT_MAX;
608	} else {
609		envelope->nextStep += envelope->stepTime * (GBA_ARM7TDMI_FREQUENCY >> 6);
610	}
611}
612
613static bool _updateSweep(struct GBAAudioChannel1* ch) {
614	if (ch->sweep.direction) {
615		int frequency = ch->control.frequency;
616		frequency -= frequency >> ch->sweep.shift;
617		if (frequency >= 0) {
618			ch->control.frequency = frequency;
619		}
620	} else {
621		int frequency = ch->control.frequency;
622		frequency += frequency >> ch->sweep.shift;
623		if (frequency < 2048) {
624			ch->control.frequency = frequency;
625		} else {
626			return false;
627		}
628	}
629	ch->nextSweep += ch->sweep.time * SWEEP_CYCLES;
630	return true;
631}
632
633static int32_t _updateChannel1(struct GBAAudioChannel1* ch) {
634	int timing = _updateSquareChannel(&ch->control, ch->envelope.duty);
635	ch->sample = ch->control.hi * 0x10 - 0x8;
636	ch->sample *= ch->envelope.currentVolume;
637	return timing;
638}
639
640static int32_t _updateChannel2(struct GBAAudioChannel2* ch) {
641	int timing = _updateSquareChannel(&ch->control, ch->envelope.duty);
642	ch->sample = ch->control.hi * 0x10 - 0x8;
643	ch->sample *= ch->envelope.currentVolume;
644	return timing;
645}
646
647static int32_t _updateChannel3(struct GBAAudioChannel3* ch) {
648	int i;
649	int start;
650	int end;
651	int volume;
652	switch (ch->wave.volume) {
653	case 0:
654		volume = 0;
655		break;
656	case 1:
657		volume = 4;
658		break;
659	case 2:
660		volume = 2;
661		break;
662	case 3:
663		volume = 1;
664		break;
665	default:
666		volume = 3;
667		break;
668	}
669	if (ch->bank.size) {
670		start = 7;
671		end = 0;
672	} else if (ch->bank.bank) {
673		start = 7;
674		end = 4;
675	} else {
676		start = 3;
677		end = 0;
678	}
679	uint32_t bitsCarry = ch->wavedata[end] & 0x0F000000;
680	uint32_t bits;
681	for (i = start; i >= end; --i) {
682		bits = ch->wavedata[i] & 0x0F000000;
683		ch->wavedata[i] = ((ch->wavedata[i] & 0xF0F0F0F0) >> 4) | ((ch->wavedata[i] & 0x000F0F0F) << 12);
684		ch->wavedata[i] |= bitsCarry >> 20;
685		bitsCarry = bits;
686	}
687	ch->sample = bitsCarry >> 24;
688	ch->sample -= 8;
689	ch->sample *= volume * 4;
690	return 8 * (2048 - ch->control.rate);
691}
692
693static int32_t _updateChannel4(struct GBAAudioChannel4* ch) {
694	int lsb = ch->lfsr & 1;
695	ch->sample = lsb * 0x10 - 0x8;
696	ch->sample *= ch->envelope.currentVolume;
697	ch->lfsr >>= 1;
698	ch->lfsr ^= (lsb * 0x60) << (ch->control.power ? 0 : 8);
699	int timing = ch->control.ratio ? 2 * ch->control.ratio : 1;
700	timing <<= ch->control.frequency;
701	timing *= 32;
702	return timing;
703}
704
705static int _applyBias(struct GBAAudio* audio, int sample) {
706	sample += GBARegisterSOUNDBIASGetBias(audio->soundbias);
707	if (sample >= 0x400) {
708		sample = 0x3FF;
709	} else if (sample < 0) {
710		sample = 0;
711	}
712	return (sample - GBARegisterSOUNDBIASGetBias(audio->soundbias)) << 5;
713}
714
715static void _sample(struct GBAAudio* audio) {
716	int16_t sampleLeft = 0;
717	int16_t sampleRight = 0;
718	int psgShift = 6 - audio->volume;
719
720	if (audio->ch1Left) {
721		sampleLeft += audio->ch1.sample;
722	}
723
724	if (audio->ch1Right) {
725		sampleRight += audio->ch1.sample;
726	}
727
728	if (audio->ch2Left) {
729		sampleLeft += audio->ch2.sample;
730	}
731
732	if (audio->ch2Right) {
733		sampleRight += audio->ch2.sample;
734	}
735
736	if (audio->ch3Left) {
737		sampleLeft += audio->ch3.sample;
738	}
739
740	if (audio->ch3Right) {
741		sampleRight += audio->ch3.sample;
742	}
743
744	if (audio->ch4Left) {
745		sampleLeft += audio->ch4.sample;
746	}
747
748	if (audio->ch4Right) {
749		sampleRight += audio->ch4.sample;
750	}
751
752	sampleLeft = (sampleLeft * (1 + audio->volumeLeft)) >> psgShift;
753	sampleRight = (sampleRight * (1 + audio->volumeRight)) >> psgShift;
754
755	if (audio->chALeft) {
756		sampleLeft += (audio->chA.sample << 2) >> !audio->volumeChA;
757	}
758
759	if (audio->chARight) {
760		sampleRight += (audio->chA.sample << 2) >> !audio->volumeChA;
761	}
762
763	if (audio->chBLeft) {
764		sampleLeft += (audio->chB.sample << 2) >> !audio->volumeChB;
765	}
766
767	if (audio->chBRight) {
768		sampleRight += (audio->chB.sample << 2) >> !audio->volumeChB;
769	}
770
771	sampleLeft = _applyBias(audio, sampleLeft);
772	sampleRight = _applyBias(audio, sampleRight);
773
774	GBASyncLockAudio(audio->p->sync);
775	CircleBufferWrite16(&audio->left, sampleLeft);
776	CircleBufferWrite16(&audio->right, sampleRight);
777	unsigned produced = CircleBufferSize(&audio->left);
778	struct GBAThread* thread = GBAThreadGetContext();
779	if (thread && thread->stream) {
780		thread->stream->postAudioFrame(thread->stream, sampleLeft, sampleRight);
781	}
782	GBASyncProduceAudio(audio->p->sync, produced >= CircleBufferCapacity(&audio->left) / sizeof(int32_t) * 3);
783}
784
785void GBAAudioSerialize(const struct GBAAudio* audio, struct GBASerializedState* state) {
786	state->audio.ch1Volume = audio->ch1.envelope.currentVolume;
787	state->audio.ch1Dead = audio->ch1.envelope.dead;
788	state->audio.ch1Hi = audio->ch1.control.hi;
789	state->audio.ch1.envelopeNextStep = audio->ch1.envelope.nextStep;
790	state->audio.ch1.waveNextStep = audio->ch1.control.nextStep;
791	state->audio.ch1.sweepNextStep = audio->ch1.nextSweep;
792	state->audio.ch1.endTime = audio->ch1.control.endTime;
793	state->audio.ch1.nextEvent = audio->nextCh1;
794
795	state->audio.ch2Volume = audio->ch2.envelope.currentVolume;
796	state->audio.ch2Dead = audio->ch2.envelope.dead;
797	state->audio.ch2Hi = audio->ch2.control.hi;
798	state->audio.ch2.envelopeNextStep = audio->ch2.envelope.nextStep;
799	state->audio.ch2.waveNextStep = audio->ch2.control.nextStep;
800	state->audio.ch2.endTime = audio->ch2.control.endTime;
801	state->audio.ch2.nextEvent = audio->nextCh2;
802
803	memcpy(state->audio.ch3.wavebanks, audio->ch3.wavedata, sizeof(state->audio.ch3.wavebanks));
804	state->audio.ch3.endTime = audio->ch3.control.endTime;
805	state->audio.ch3.nextEvent = audio->nextCh3;
806
807	state->audio.ch4Volume = audio->ch4.envelope.currentVolume;
808	state->audio.ch4Dead = audio->ch4.envelope.dead;
809	state->audio.ch4.envelopeNextStep = audio->ch4.envelope.nextStep;
810	state->audio.ch4.lfsr = audio->ch4.lfsr;
811	state->audio.ch4.endTime = audio->ch4.control.endTime;
812	state->audio.ch4.nextEvent = audio->nextCh4;
813
814	CircleBufferDump(&audio->chA.fifo, state->audio.fifoA, sizeof(state->audio.fifoA));
815	CircleBufferDump(&audio->chB.fifo, state->audio.fifoB, sizeof(state->audio.fifoB));
816	state->audio.fifoSize = CircleBufferSize(&audio->chA.fifo);
817
818	state->audio.nextEvent = audio->nextEvent;
819	state->audio.eventDiff = audio->eventDiff;
820	state->audio.nextSample = audio->nextSample;
821}
822
823void GBAAudioDeserialize(struct GBAAudio* audio, const struct GBASerializedState* state) {
824	audio->ch1.envelope.currentVolume = state->audio.ch1Volume;
825	audio->ch1.envelope.dead = state->audio.ch1Dead;
826	audio->ch1.control.hi = state->audio.ch1Hi;
827	audio->ch1.envelope.nextStep = state->audio.ch1.envelopeNextStep;
828	audio->ch1.control.nextStep = state->audio.ch1.waveNextStep;
829	audio->ch1.nextSweep = state->audio.ch1.sweepNextStep;
830	audio->ch1.control.endTime = state->audio.ch1.endTime;
831	audio->nextCh1 = state->audio.ch1.nextEvent;
832
833	audio->ch2.envelope.currentVolume = state->audio.ch2Volume;
834	audio->ch2.envelope.dead = state->audio.ch2Dead;
835	audio->ch2.control.hi = state->audio.ch2Hi;
836	audio->ch2.envelope.nextStep = state->audio.ch2.envelopeNextStep;
837	audio->ch2.control.nextStep = state->audio.ch2.waveNextStep;
838	audio->ch2.control.endTime = state->audio.ch2.endTime;
839	audio->nextCh2 = state->audio.ch2.nextEvent;
840
841	memcpy(audio->ch3.wavedata, state->audio.ch3.wavebanks, sizeof(audio->ch3.wavedata));
842	audio->ch3.control.endTime = state->audio.ch3.endTime;
843	audio->nextCh3 = state->audio.ch3.nextEvent;
844
845	audio->ch4.envelope.currentVolume = state->audio.ch4Volume;
846	audio->ch4.envelope.dead = state->audio.ch4Dead;
847	audio->ch4.envelope.nextStep = state->audio.ch4.envelopeNextStep;
848	audio->ch4.lfsr = state->audio.ch4.lfsr;
849	audio->ch4.control.endTime = state->audio.ch4.endTime;
850	audio->nextCh4 = state->audio.ch4.nextEvent;
851
852	CircleBufferClear(&audio->chA.fifo);
853	CircleBufferClear(&audio->chB.fifo);
854	int i;
855	for (i = 0; i < state->audio.fifoSize; ++i) {
856		CircleBufferWrite8(&audio->chA.fifo, state->audio.fifoA[i]);
857		CircleBufferWrite8(&audio->chB.fifo, state->audio.fifoB[i]);
858	}
859
860	audio->nextEvent = state->audio.nextEvent;
861	audio->eventDiff = state->audio.eventDiff;
862	audio->nextSample = state->audio.nextSample;
863}
864
865float GBAAudioCalculateRatio(struct GBAAudio* audio, float desiredFPS, float desiredSampleRate) {
866	return desiredSampleRate * GBA_ARM7TDMI_FREQUENCY / (VIDEO_TOTAL_LENGTH * desiredFPS * audio->sampleRate);
867}