src/gba/gba-audio.c (view raw)
1#include "gba-audio.h"
2
3#include "gba.h"
4#include "gba-io.h"
5#include "gba-serialize.h"
6#include "gba-thread.h"
7#include "gba-video.h"
8
9const unsigned GBA_AUDIO_SAMPLES = 2048;
10const unsigned GBA_AUDIO_FIFO_SIZE = 8 * sizeof(int32_t);
11#define SWEEP_CYCLES (GBA_ARM7TDMI_FREQUENCY / 128)
12
13static int32_t _updateSquareChannel(struct GBAAudioSquareControl* envelope, int duty);
14static void _updateEnvelope(struct GBAAudioEnvelope* envelope);
15static bool _updateSweep(struct GBAAudioChannel1* ch);
16static int32_t _updateChannel1(struct GBAAudioChannel1* ch);
17static int32_t _updateChannel2(struct GBAAudioChannel2* ch);
18static int32_t _updateChannel3(struct GBAAudioChannel3* ch);
19static int32_t _updateChannel4(struct GBAAudioChannel4* ch);
20static int _applyBias(struct GBAAudio* audio, int sample);
21static void _sample(struct GBAAudio* audio);
22
23void GBAAudioInit(struct GBAAudio* audio, size_t samples) {
24 CircleBufferInit(&audio->left, samples * sizeof(int32_t));
25 CircleBufferInit(&audio->right, samples * sizeof(int32_t));
26 CircleBufferInit(&audio->chA.fifo, GBA_AUDIO_FIFO_SIZE);
27 CircleBufferInit(&audio->chB.fifo, GBA_AUDIO_FIFO_SIZE);
28}
29
30void GBAAudioReset(struct GBAAudio* audio) {
31 audio->nextEvent = 0;
32 audio->nextCh1 = 0;
33 audio->nextCh2 = 0;
34 audio->nextCh3 = 0;
35 audio->nextCh4 = 0;
36 audio->ch1.sweep.time = 0;
37 audio->ch1.envelope.nextStep = INT_MAX;
38 audio->ch1.control.nextStep = 0;
39 audio->ch1.control.endTime = 0;
40 audio->ch1.nextSweep = INT_MAX;
41 audio->ch1.sample = 0;
42 audio->ch2.envelope.nextStep = INT_MAX;
43 audio->ch2.control.nextStep = 0;
44 audio->ch2.control.endTime = 0;
45 audio->ch2.sample = 0;
46 audio->ch3.bank.packed = 0;
47 audio->ch3.control.endTime = 0;
48 audio->ch3.sample = 0;
49 audio->ch4.sample = 0;
50 audio->ch4.envelope.nextStep = INT_MAX;
51 audio->chA.dmaSource = 0;
52 audio->chB.dmaSource = 0;
53 audio->eventDiff = 0;
54 audio->nextSample = 0;
55 audio->sampleRate = 0x8000;
56 audio->soundbias = 0x200;
57 audio->soundcntLo = 0;
58 audio->soundcntHi = 0;
59 audio->soundcntX = 0;
60 audio->sampleInterval = GBA_ARM7TDMI_FREQUENCY / audio->sampleRate;
61
62 CircleBufferClear(&audio->left);
63 CircleBufferClear(&audio->right);
64 CircleBufferClear(&audio->chA.fifo);
65 CircleBufferClear(&audio->chB.fifo);
66}
67
68void GBAAudioDeinit(struct GBAAudio* audio) {
69 CircleBufferDeinit(&audio->left);
70 CircleBufferDeinit(&audio->right);
71 CircleBufferDeinit(&audio->chA.fifo);
72 CircleBufferDeinit(&audio->chB.fifo);
73}
74
75void GBAAudioResizeBuffer(struct GBAAudio* audio, size_t samples) {
76 if (samples > GBA_AUDIO_SAMPLES) {
77 return;
78 }
79
80 GBASyncLockAudio(audio->p->sync);
81 int32_t buffer[GBA_AUDIO_SAMPLES];
82 int32_t dummy;
83 size_t read;
84 size_t i;
85
86 read = CircleBufferDump(&audio->left, buffer, sizeof(buffer));
87 CircleBufferDeinit(&audio->left);
88 CircleBufferInit(&audio->left, samples * sizeof(int32_t));
89 for (i = 0; i * sizeof(int32_t) < read; ++i) {
90 if (!CircleBufferWrite32(&audio->left, buffer[i])) {
91 CircleBufferRead32(&audio->left, &dummy);
92 CircleBufferWrite32(&audio->left, buffer[i]);
93 }
94 }
95
96 read = CircleBufferDump(&audio->right, buffer, sizeof(buffer));
97 CircleBufferDeinit(&audio->right);
98 CircleBufferInit(&audio->right, samples * sizeof(int32_t));
99 for (i = 0; i * sizeof(int32_t) < read; ++i) {
100 if (!CircleBufferWrite32(&audio->right, buffer[i])) {
101 CircleBufferRead32(&audio->right, &dummy);
102 CircleBufferWrite32(&audio->right, buffer[i]);
103 }
104 }
105
106 GBASyncUnlockAudio(audio->p->sync);
107}
108
109int32_t GBAAudioProcessEvents(struct GBAAudio* audio, int32_t cycles) {
110 audio->nextEvent -= cycles;
111 audio->eventDiff += cycles;
112 if (audio->nextEvent <= 0) {
113 audio->nextEvent = INT_MAX;
114 if (audio->enable) {
115 if (audio->playingCh1 && !audio->ch1.envelope.dead) {
116 audio->nextCh1 -= audio->eventDiff;
117 if (audio->ch1.envelope.nextStep != INT_MAX) {
118 audio->ch1.envelope.nextStep -= audio->eventDiff;
119 if (audio->ch1.envelope.nextStep <= 0) {
120 int8_t sample = audio->ch1.control.hi * 0x10 - 0x8;
121 _updateEnvelope(&audio->ch1.envelope);
122 if (audio->ch1.envelope.nextStep < audio->nextEvent) {
123 audio->nextEvent = audio->ch1.envelope.nextStep;
124 }
125 audio->ch1.sample = sample * audio->ch1.envelope.currentVolume;
126 }
127 }
128
129 if (audio->ch1.nextSweep != INT_MAX) {
130 audio->ch1.nextSweep -= audio->eventDiff;
131 if (audio->ch1.nextSweep <= 0) {
132 audio->playingCh1 = _updateSweep(&audio->ch1);
133 if (audio->ch1.nextSweep < audio->nextEvent) {
134 audio->nextEvent = audio->ch1.nextSweep;
135 }
136 }
137 }
138
139 if (audio->nextCh1 <= 0) {
140 audio->nextCh1 += _updateChannel1(&audio->ch1);
141 if (audio->nextCh1 < audio->nextEvent) {
142 audio->nextEvent = audio->nextCh1;
143 }
144 }
145
146 if (audio->ch1.control.stop) {
147 audio->ch1.control.endTime -= audio->eventDiff;
148 if (audio->ch1.control.endTime <= 0) {
149 audio->playingCh1 = 0;
150 }
151 }
152 }
153
154 if (audio->playingCh2 && !audio->ch2.envelope.dead) {
155 audio->nextCh2 -= audio->eventDiff;
156 if (audio->ch2.envelope.nextStep != INT_MAX) {
157 audio->ch2.envelope.nextStep -= audio->eventDiff;
158 if (audio->ch2.envelope.nextStep <= 0) {
159 int8_t sample = audio->ch2.control.hi * 0x10 - 0x8;
160 _updateEnvelope(&audio->ch2.envelope);
161 if (audio->ch2.envelope.nextStep < audio->nextEvent) {
162 audio->nextEvent = audio->ch2.envelope.nextStep;
163 }
164 audio->ch2.sample = sample * audio->ch2.envelope.currentVolume;
165 }
166 }
167
168 if (audio->nextCh2 <= 0) {
169 audio->nextCh2 += _updateChannel2(&audio->ch2);
170 if (audio->nextCh2 < audio->nextEvent) {
171 audio->nextEvent = audio->nextCh2;
172 }
173 }
174
175 if (audio->ch2.control.stop) {
176 audio->ch2.control.endTime -= audio->eventDiff;
177 if (audio->ch2.control.endTime <= 0) {
178 audio->playingCh2 = 0;
179 }
180 }
181 }
182
183 if (audio->playingCh3) {
184 audio->nextCh3 -= audio->eventDiff;
185 if (audio->nextCh3 <= 0) {
186 audio->nextCh3 += _updateChannel3(&audio->ch3);
187 if (audio->nextCh3 < audio->nextEvent) {
188 audio->nextEvent = audio->nextCh3;
189 }
190 }
191
192 if (audio->ch3.control.stop) {
193 audio->ch3.control.endTime -= audio->eventDiff;
194 if (audio->ch3.control.endTime <= 0) {
195 audio->playingCh3 = 0;
196 }
197 }
198 }
199
200 if (audio->playingCh4 && !audio->ch4.envelope.dead) {
201 audio->nextCh4 -= audio->eventDiff;
202 if (audio->ch4.envelope.nextStep != INT_MAX) {
203 audio->ch4.envelope.nextStep -= audio->eventDiff;
204 if (audio->ch4.envelope.nextStep <= 0) {
205 int8_t sample = (audio->ch4.sample >> 31) * 0x8;
206 _updateEnvelope(&audio->ch4.envelope);
207 if (audio->ch4.envelope.nextStep < audio->nextEvent) {
208 audio->nextEvent = audio->ch4.envelope.nextStep;
209 }
210 audio->ch4.sample = sample * audio->ch4.envelope.currentVolume;
211 }
212 }
213
214 if (audio->nextCh4 <= 0) {
215 audio->nextCh4 += _updateChannel4(&audio->ch4);
216 if (audio->nextCh4 < audio->nextEvent) {
217 audio->nextEvent = audio->nextCh4;
218 }
219 }
220
221 if (audio->ch4.control.stop) {
222 audio->ch4.control.endTime -= audio->eventDiff;
223 if (audio->ch4.control.endTime <= 0) {
224 audio->playingCh4 = 0;
225 }
226 }
227 }
228 }
229
230 audio->nextSample -= audio->eventDiff;
231 if (audio->nextSample <= 0) {
232 _sample(audio);
233 audio->nextSample += audio->sampleInterval;
234 }
235
236 if (audio->nextSample < audio->nextEvent) {
237 audio->nextEvent = audio->nextSample;
238 }
239 audio->eventDiff = 0;
240 }
241 return audio->nextEvent;
242}
243
244void GBAAudioScheduleFifoDma(struct GBAAudio* audio, int number, struct GBADMA* info) {
245 switch (info->dest) {
246 case BASE_IO | REG_FIFO_A_LO:
247 audio->chA.dmaSource = number;
248 break;
249 case BASE_IO | REG_FIFO_B_LO:
250 audio->chB.dmaSource = number;
251 break;
252 default:
253 GBALog(audio->p, GBA_LOG_GAME_ERROR, "Invalid FIFO destination: 0x%08X", info->dest);
254 return;
255 }
256 info->dstControl = DMA_FIXED;
257}
258
259void GBAAudioWriteSOUND1CNT_LO(struct GBAAudio* audio, uint16_t value) {
260 audio->ch1.sweep.packed = value;
261 if (audio->ch1.sweep.time) {
262 audio->ch1.nextSweep = audio->ch1.sweep.time * SWEEP_CYCLES;
263 } else {
264 audio->ch1.nextSweep = INT_MAX;
265 }
266}
267
268void GBAAudioWriteSOUND1CNT_HI(struct GBAAudio* audio, uint16_t value) {
269 audio->ch1.envelope.packed = value;
270 audio->ch1.envelope.dead = 0;
271 if (audio->ch1.envelope.stepTime) {
272 audio->ch1.envelope.nextStep = 0;
273 } else {
274 audio->ch1.envelope.nextStep = INT_MAX;
275 if (audio->ch1.envelope.initialVolume == 0) {
276 audio->ch1.envelope.dead = 1;
277 audio->ch1.sample = 0;
278 }
279 }
280}
281
282void GBAAudioWriteSOUND1CNT_X(struct GBAAudio* audio, uint16_t value) {
283 audio->ch1.control.packed = value;
284 audio->ch1.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch1.envelope.length)) >> 8;
285 if (audio->ch1.control.restart) {
286 if (audio->ch1.sweep.time) {
287 audio->ch1.nextSweep = audio->ch1.sweep.time * SWEEP_CYCLES;
288 } else {
289 audio->ch1.nextSweep = INT_MAX;
290 }
291 if (!audio->playingCh1) {
292 audio->nextCh1 = 0;
293 }
294 audio->playingCh1 = 1;
295 if (audio->ch1.envelope.stepTime) {
296 audio->ch1.envelope.nextStep = 0;
297 } else {
298 audio->ch1.envelope.nextStep = INT_MAX;
299 }
300 audio->ch1.envelope.currentVolume = audio->ch1.envelope.initialVolume;
301 if (audio->ch1.envelope.stepTime) {
302 audio->ch1.envelope.nextStep = 0;
303 } else {
304 audio->ch1.envelope.nextStep = INT_MAX;
305 }
306 }
307}
308
309void GBAAudioWriteSOUND2CNT_LO(struct GBAAudio* audio, uint16_t value) {
310 audio->ch2.envelope.packed = value;
311 audio->ch2.envelope.dead = 0;
312 if (audio->ch2.envelope.stepTime) {
313 audio->ch2.envelope.nextStep = 0;
314 } else {
315 audio->ch2.envelope.nextStep = INT_MAX;
316 if (audio->ch2.envelope.initialVolume == 0) {
317 audio->ch2.envelope.dead = 1;
318 audio->ch2.sample = 0;
319 }
320 }
321}
322
323void GBAAudioWriteSOUND2CNT_HI(struct GBAAudio* audio, uint16_t value) {
324 audio->ch2.control.packed = value;
325 audio->ch1.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch2.envelope.length)) >> 8;
326 if (audio->ch2.control.restart) {
327 audio->playingCh2 = 1;
328 audio->ch2.envelope.currentVolume = audio->ch2.envelope.initialVolume;
329 if (audio->ch2.envelope.stepTime) {
330 audio->ch2.envelope.nextStep = 0;
331 } else {
332 audio->ch2.envelope.nextStep = INT_MAX;
333 }
334 audio->nextCh2 = 0;
335 }
336}
337
338void GBAAudioWriteSOUND3CNT_LO(struct GBAAudio* audio, uint16_t value) {
339 audio->ch3.bank.packed = value;
340 if (audio->ch3.control.endTime >= 0) {
341 audio->playingCh3 = audio->ch3.bank.enable;
342 }
343}
344
345void GBAAudioWriteSOUND3CNT_HI(struct GBAAudio* audio, uint16_t value) {
346 audio->ch3.wave.packed = value;
347}
348
349void GBAAudioWriteSOUND3CNT_X(struct GBAAudio* audio, uint16_t value) {
350 audio->ch3.control.packed = value;
351 audio->ch3.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (256 - audio->ch3.wave.length)) >> 8;
352 if (audio->ch3.control.restart) {
353 audio->playingCh3 = audio->ch3.bank.enable;
354 }
355}
356
357void GBAAudioWriteSOUND4CNT_LO(struct GBAAudio* audio, uint16_t value) {
358 audio->ch4.envelope.packed = value;
359 audio->ch4.envelope.dead = 0;
360 if (audio->ch4.envelope.stepTime) {
361 audio->ch4.envelope.nextStep = 0;
362 } else {
363 audio->ch4.envelope.nextStep = INT_MAX;
364 if (audio->ch4.envelope.initialVolume == 0) {
365 audio->ch4.envelope.dead = 1;
366 audio->ch4.sample = 0;
367 }
368 }
369}
370
371void GBAAudioWriteSOUND4CNT_HI(struct GBAAudio* audio, uint16_t value) {
372 audio->ch4.control.packed = value;
373 audio->ch4.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch4.envelope.length)) >> 8;
374 if (audio->ch4.control.restart) {
375 audio->playingCh4 = 1;
376 audio->ch4.envelope.currentVolume = audio->ch4.envelope.initialVolume;
377 if (audio->ch4.envelope.stepTime) {
378 audio->ch4.envelope.nextStep = 0;
379 } else {
380 audio->ch4.envelope.nextStep = INT_MAX;
381 }
382 if (audio->ch4.control.power) {
383 audio->ch4.lfsr = 0x40;
384 } else {
385 audio->ch4.lfsr = 0x4000;
386 }
387 audio->nextCh4 = 0;
388 }
389}
390
391void GBAAudioWriteSOUNDCNT_LO(struct GBAAudio* audio, uint16_t value) {
392 audio->soundcntLo = value;
393}
394
395void GBAAudioWriteSOUNDCNT_HI(struct GBAAudio* audio, uint16_t value) {
396 audio->soundcntHi = value;
397}
398
399void GBAAudioWriteSOUNDCNT_X(struct GBAAudio* audio, uint16_t value) {
400 audio->soundcntX = (value & 0x80) | (audio->soundcntX & 0x0F);
401}
402
403void GBAAudioWriteSOUNDBIAS(struct GBAAudio* audio, uint16_t value) {
404 audio->soundbias = value;
405}
406
407void GBAAudioWriteWaveRAM(struct GBAAudio* audio, int address, uint32_t value) {
408 audio->ch3.wavedata[address | (!audio->ch3.bank.bank * 4)] = value;
409}
410
411void GBAAudioWriteFIFO(struct GBAAudio* audio, int address, uint32_t value) {
412 struct CircleBuffer* fifo;
413 switch (address) {
414 case REG_FIFO_A_LO:
415 fifo = &audio->chA.fifo;
416 break;
417 case REG_FIFO_B_LO:
418 fifo = &audio->chB.fifo;
419 break;
420 default:
421 GBALog(audio->p, GBA_LOG_ERROR, "Bad FIFO write to address 0x%03x", address);
422 return;
423 }
424 while (!CircleBufferWrite32(fifo, value)) {
425 int32_t dummy;
426 CircleBufferRead32(fifo, &dummy);
427 }
428}
429
430void GBAAudioSampleFIFO(struct GBAAudio* audio, int fifoId, int32_t cycles) {
431 struct GBAAudioFIFO* channel;
432 if (fifoId == 0) {
433 channel = &audio->chA;
434 } else if (fifoId == 1) {
435 channel = &audio->chB;
436 } else {
437 GBALog(audio->p, GBA_LOG_ERROR, "Bad FIFO write to address 0x%03x", fifoId);
438 return;
439 }
440 if (CircleBufferSize(&channel->fifo) <= 4 * sizeof(int32_t)) {
441 struct GBADMA* dma = &audio->p->memory.dma[channel->dmaSource];
442 dma->nextCount = 4;
443 dma->nextEvent = 0;
444 GBAMemoryUpdateDMAs(audio->p, -cycles);
445 }
446 CircleBufferRead8(&channel->fifo, &channel->sample);
447}
448
449unsigned GBAAudioCopy(struct GBAAudio* audio, void* left, void* right, unsigned nSamples) {
450 GBASyncLockAudio(audio->p->sync);
451 unsigned read = 0;
452 if (left) {
453 unsigned readL = CircleBufferRead(&audio->left, left, nSamples * sizeof(int32_t)) >> 2;
454 if (readL < nSamples) {
455 memset((int32_t*) left + readL, 0, nSamples - readL);
456 }
457 read = readL;
458 }
459 if (right) {
460 unsigned readR = CircleBufferRead(&audio->right, right, nSamples * sizeof(int32_t)) >> 2;
461 if (readR < nSamples) {
462 memset((int32_t*) right + readR, 0, nSamples - readR);
463 }
464 read = read >= readR ? read : readR;
465 }
466 GBASyncConsumeAudio(audio->p->sync);
467 return read;
468}
469
470unsigned GBAAudioResampleNN(struct GBAAudio* audio, float ratio, float* drift, struct GBAStereoSample* output, unsigned nSamples) {
471 int32_t left[GBA_AUDIO_SAMPLES];
472 int32_t right[GBA_AUDIO_SAMPLES];
473
474 // toRead is in GBA samples
475 // TODO: Do this with fixed-point math
476 unsigned toRead = ceilf(nSamples / ratio);
477 unsigned totalRead = 0;
478 while (nSamples) {
479 unsigned currentRead = GBA_AUDIO_SAMPLES;
480 if (currentRead > toRead) {
481 currentRead = toRead;
482 }
483 unsigned read = GBAAudioCopy(audio, left, right, currentRead);
484 toRead -= read;
485 unsigned i;
486 for (i = 0; i < read; ++i) {
487 *drift += ratio;
488 while (*drift >= 1.f) {
489 output->left = left[i];
490 output->right = right[i];
491 ++output;
492 ++totalRead;
493 --nSamples;
494 *drift -= 1.f;
495 if (!nSamples) {
496 return totalRead;
497 }
498 }
499 }
500 if (read < currentRead) {
501 memset(output, 0, nSamples * sizeof(struct GBAStereoSample));
502 break;
503 }
504 }
505 return totalRead;
506}
507
508static int32_t _updateSquareChannel(struct GBAAudioSquareControl* control, int duty) {
509 control->hi = !control->hi;
510 int period = 16 * (2048 - control->frequency);
511 switch (duty) {
512 case 0:
513 return control->hi ? period : period * 7;
514 case 1:
515 return control->hi ? period * 2 : period * 6;
516 case 2:
517 return period * 4;
518 case 3:
519 return control->hi ? period * 6 : period * 2;
520 default:
521 // This should never be hit
522 return period * 4;
523 }
524}
525
526static void _updateEnvelope(struct GBAAudioEnvelope* envelope) {
527 if (envelope->direction) {
528 ++envelope->currentVolume;
529 } else {
530 --envelope->currentVolume;
531 }
532 if (envelope->currentVolume >= 15) {
533 envelope->currentVolume = 15;
534 envelope->nextStep = INT_MAX;
535 } else if (envelope->currentVolume <= 0) {
536 envelope->currentVolume = 0;
537 envelope->dead = 1;
538 envelope->nextStep = INT_MAX;
539 } else {
540 envelope->nextStep += envelope->stepTime * (GBA_ARM7TDMI_FREQUENCY >> 6);
541 }
542}
543
544static bool _updateSweep(struct GBAAudioChannel1* ch) {
545 if (ch->sweep.direction) {
546 int frequency = ch->control.frequency;
547 frequency -= frequency >> ch->sweep.shift;
548 if (frequency >= 0) {
549 ch->control.frequency = frequency;
550 }
551 } else {
552 int frequency = ch->control.frequency;
553 frequency += frequency >> ch->sweep.shift;
554 if (frequency < 2048) {
555 ch->control.frequency = frequency;
556 } else {
557 return false;
558 }
559 }
560 ch->nextSweep += ch->sweep.time * SWEEP_CYCLES;
561 return true;
562}
563
564static int32_t _updateChannel1(struct GBAAudioChannel1* ch) {
565 int timing = _updateSquareChannel(&ch->control, ch->envelope.duty);
566 ch->sample = ch->control.hi * 0x10 - 0x8;
567 ch->sample *= ch->envelope.currentVolume;
568 return timing;
569}
570
571static int32_t _updateChannel2(struct GBAAudioChannel2* ch) {
572 int timing = _updateSquareChannel(&ch->control, ch->envelope.duty);
573 ch->sample = ch->control.hi * 0x10 - 0x8;
574 ch->sample *= ch->envelope.currentVolume;
575 return timing;
576}
577
578static int32_t _updateChannel3(struct GBAAudioChannel3* ch) {
579 int i;
580 int start;
581 int end;
582 int volume;
583 switch (ch->wave.volume) {
584 case 0:
585 volume = 0;
586 break;
587 case 1:
588 volume = 4;
589 break;
590 case 2:
591 volume = 2;
592 break;
593 case 3:
594 volume = 1;
595 break;
596 default:
597 volume = 3;
598 break;
599 }
600 if (ch->bank.size) {
601 start = 7;
602 end = 0;
603 } else if (ch->bank.bank) {
604 start = 7;
605 end = 4;
606 } else {
607 start = 3;
608 end = 0;
609 }
610 uint32_t bitsCarry = ch->wavedata[end] & 0x0F000000;
611 uint32_t bits;
612 for (i = start; i >= end; --i) {
613 bits = ch->wavedata[i] & 0x0F000000;
614 ch->wavedata[i] = ((ch->wavedata[i] & 0xF0F0F0F0) >> 4) | ((ch->wavedata[i] & 0x000F0F0F) << 12);
615 ch->wavedata[i] |= bitsCarry >> 20;
616 bitsCarry = bits;
617 }
618 ch->sample = (bitsCarry >> 20);
619 ch->sample >>= 2;
620 ch->sample *= volume;
621 return 8 * (2048 - ch->control.rate);
622}
623
624static int32_t _updateChannel4(struct GBAAudioChannel4* ch) {
625 int lsb = ch->lfsr & 1;
626 ch->sample = lsb * 0x10 - 0x8;
627 ch->sample *= ch->envelope.currentVolume;
628 ch->lfsr >>= 1;
629 ch->lfsr ^= (lsb * 0x60) << (ch->control.power ? 0 : 8);
630 int timing = ch->control.ratio ? 2 * ch->control.ratio : 1;
631 timing <<= ch->control.frequency;
632 timing *= 32;
633 return timing;
634}
635
636static int _applyBias(struct GBAAudio* audio, int sample) {
637 sample += audio->bias;
638 if (sample >= 0x400) {
639 sample = 0x3FF;
640 } else if (sample < 0) {
641 sample = 0;
642 }
643 return (sample - audio->bias) << 6;
644}
645
646static void _sample(struct GBAAudio* audio) {
647 int32_t sampleLeft = 0;
648 int32_t sampleRight = 0;
649 int psgShift = 6 - audio->volume;
650
651 if (audio->ch1Left) {
652 sampleLeft += audio->ch1.sample;
653 }
654
655 if (audio->ch1Right) {
656 sampleRight += audio->ch1.sample;
657 }
658
659 if (audio->ch2Left) {
660 sampleLeft += audio->ch2.sample;
661 }
662
663 if (audio->ch2Right) {
664 sampleRight += audio->ch2.sample;
665 }
666
667 if (audio->ch3Left) {
668 sampleLeft += audio->ch3.sample;
669 }
670
671 if (audio->ch3Right) {
672 sampleRight += audio->ch3.sample;
673 }
674
675 if (audio->ch4Left) {
676 sampleLeft += audio->ch4.sample;
677 }
678
679 if (audio->ch4Right) {
680 sampleRight += audio->ch4.sample;
681 }
682
683 sampleLeft = (sampleLeft * (1 + audio->volumeLeft)) >> psgShift;
684 sampleRight = (sampleRight * (1 + audio->volumeRight)) >> psgShift;
685
686 if (audio->chALeft) {
687 sampleLeft += (audio->chA.sample << 2) >> !audio->volumeChA;
688 }
689
690 if (audio->chARight) {
691 sampleRight += (audio->chA.sample << 2) >> !audio->volumeChA;
692 }
693
694 if (audio->chBLeft) {
695 sampleLeft += (audio->chB.sample << 2) >> !audio->volumeChB;
696 }
697
698 if (audio->chBRight) {
699 sampleRight += (audio->chB.sample << 2) >> !audio->volumeChB;
700 }
701
702 sampleLeft = _applyBias(audio, sampleLeft);
703 sampleRight = _applyBias(audio, sampleRight);
704
705 GBASyncLockAudio(audio->p->sync);
706 CircleBufferWrite32(&audio->left, sampleLeft);
707 CircleBufferWrite32(&audio->right, sampleRight);
708 unsigned produced = CircleBufferSize(&audio->left);
709 struct GBAThread* thread = GBAThreadGetContext();
710 if (thread && thread->stream) {
711 thread->stream->postAudioFrame(thread->stream, sampleLeft, sampleRight);
712 }
713 GBASyncProduceAudio(audio->p->sync, produced >= CircleBufferCapacity(&audio->left) / sizeof(int32_t) * 3);
714}
715
716void GBAAudioSerialize(const struct GBAAudio* audio, struct GBASerializedState* state) {
717 state->audio.ch1Volume = audio->ch1.envelope.currentVolume;
718 state->audio.ch1Dead = audio->ch1.envelope.dead;
719 state->audio.ch1Hi = audio->ch1.control.hi;
720 state->audio.ch1.envelopeNextStep = audio->ch1.envelope.nextStep;
721 state->audio.ch1.waveNextStep = audio->ch1.control.nextStep;
722 state->audio.ch1.sweepNextStep = audio->ch1.nextSweep;
723 state->audio.ch1.endTime = audio->ch1.control.endTime;
724 state->audio.ch1.nextEvent = audio->nextCh1;
725
726 state->audio.ch2Volume = audio->ch2.envelope.currentVolume;
727 state->audio.ch2Dead = audio->ch2.envelope.dead;
728 state->audio.ch2Hi = audio->ch2.control.hi;
729 state->audio.ch2.envelopeNextStep = audio->ch2.envelope.nextStep;
730 state->audio.ch2.waveNextStep = audio->ch2.control.nextStep;
731 state->audio.ch2.endTime = audio->ch2.control.endTime;
732 state->audio.ch2.nextEvent = audio->nextCh2;
733
734 memcpy(state->audio.ch3.wavebanks, audio->ch3.wavedata, sizeof(state->audio.ch3.wavebanks));
735 state->audio.ch3.endTime = audio->ch3.control.endTime;
736 state->audio.ch3.nextEvent = audio->nextCh3;
737
738 state->audio.ch4Volume = audio->ch4.envelope.currentVolume;
739 state->audio.ch4Dead = audio->ch4.envelope.dead;
740 state->audio.ch4.envelopeNextStep = audio->ch4.envelope.nextStep;
741 state->audio.ch4.lfsr = audio->ch4.lfsr;
742 state->audio.ch4.endTime = audio->ch4.control.endTime;
743 state->audio.ch4.nextEvent = audio->nextCh4;
744
745 CircleBufferDump(&audio->chA.fifo, state->audio.fifoA, sizeof(state->audio.fifoA));
746 CircleBufferDump(&audio->chB.fifo, state->audio.fifoB, sizeof(state->audio.fifoB));
747 state->audio.fifoSize = CircleBufferSize(&audio->chA.fifo);
748
749 state->audio.nextEvent = audio->nextEvent;
750 state->audio.eventDiff = audio->eventDiff;
751 state->audio.nextSample = audio->nextSample;
752}
753
754void GBAAudioDeserialize(struct GBAAudio* audio, const struct GBASerializedState* state) {
755 audio->ch1.envelope.currentVolume = state->audio.ch1Volume;
756 audio->ch1.envelope.dead = state->audio.ch1Dead;
757 audio->ch1.control.hi = state->audio.ch1Hi;
758 audio->ch1.envelope.nextStep = state->audio.ch1.envelopeNextStep;
759 audio->ch1.control.nextStep = state->audio.ch1.waveNextStep;
760 audio->ch1.nextSweep = state->audio.ch1.sweepNextStep;
761 audio->ch1.control.endTime = state->audio.ch1.endTime;
762 audio->nextCh1 = state->audio.ch1.nextEvent;
763
764 audio->ch2.envelope.currentVolume = state->audio.ch2Volume;
765 audio->ch2.envelope.dead = state->audio.ch2Dead;
766 audio->ch2.control.hi = state->audio.ch2Hi;
767 audio->ch2.envelope.nextStep = state->audio.ch2.envelopeNextStep;
768 audio->ch2.control.nextStep = state->audio.ch2.waveNextStep;
769 audio->ch2.control.endTime = state->audio.ch2.endTime;
770 audio->nextCh2 = state->audio.ch2.nextEvent;
771
772 memcpy(audio->ch3.wavedata, state->audio.ch3.wavebanks, sizeof(audio->ch3.wavedata));
773 audio->ch3.control.endTime = state->audio.ch3.endTime;
774 audio->nextCh3 = state->audio.ch3.nextEvent;
775
776 audio->ch4.envelope.currentVolume = state->audio.ch4Volume;
777 audio->ch4.envelope.dead = state->audio.ch4Dead;
778 audio->ch4.envelope.nextStep = state->audio.ch4.envelopeNextStep;
779 audio->ch4.lfsr = state->audio.ch4.lfsr;
780 audio->ch4.control.endTime = state->audio.ch4.endTime;
781 audio->nextCh4 = state->audio.ch4.nextEvent;
782
783 CircleBufferClear(&audio->chA.fifo);
784 CircleBufferClear(&audio->chB.fifo);
785 int i;
786 for (i = 0; i < state->audio.fifoSize; ++i) {
787 CircleBufferWrite8(&audio->chA.fifo, state->audio.fifoA[i]);
788 CircleBufferWrite8(&audio->chB.fifo, state->audio.fifoB[i]);
789 }
790
791 audio->nextEvent = state->audio.nextEvent;
792 audio->eventDiff = state->audio.eventDiff;
793 audio->nextSample = state->audio.nextSample;
794}
795
796float GBAAudioCalculateRatio(struct GBAAudio* audio, float desiredFPS, float desiredSampleRate) {
797 return desiredSampleRate * GBA_ARM7TDMI_FREQUENCY / (VIDEO_TOTAL_LENGTH * desiredFPS * audio->sampleRate);
798}