src/ds/gx.c (view raw)
1/* Copyright (c) 2013-2017 Jeffrey Pfau
2 *
3 * This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
6#include <mgba/internal/ds/gx.h>
7
8#include <mgba/internal/ds/ds.h>
9#include <mgba/internal/ds/io.h>
10
11mLOG_DEFINE_CATEGORY(DS_GX, "DS GX");
12
13#define DS_GX_FIFO_SIZE 256
14#define DS_GX_PIPE_SIZE 4
15
16static void DSGXDummyRendererInit(struct DSGXRenderer* renderer);
17static void DSGXDummyRendererReset(struct DSGXRenderer* renderer);
18static void DSGXDummyRendererDeinit(struct DSGXRenderer* renderer);
19static void DSGXDummyRendererSetRAM(struct DSGXRenderer* renderer, struct DSGXVertex* verts, struct DSGXPolygon* polys, unsigned polyCount);
20static void DSGXDummyRendererDrawScanline(struct DSGXRenderer* renderer, int y);
21static void DSGXDummyRendererGetScanline(struct DSGXRenderer* renderer, int y, color_t** output);
22
23static void DSGXWriteFIFO(struct DSGX* gx, struct DSGXEntry entry);
24
25static const int32_t _gxCommandCycleBase[DS_GX_CMD_MAX] = {
26 [DS_GX_CMD_NOP] = 0,
27 [DS_GX_CMD_MTX_MODE] = 2,
28 [DS_GX_CMD_MTX_PUSH] = 34,
29 [DS_GX_CMD_MTX_POP] = 72,
30 [DS_GX_CMD_MTX_STORE] = 34,
31 [DS_GX_CMD_MTX_RESTORE] = 72,
32 [DS_GX_CMD_MTX_IDENTITY] = 38,
33 [DS_GX_CMD_MTX_LOAD_4x4] = 68,
34 [DS_GX_CMD_MTX_LOAD_4x3] = 60,
35 [DS_GX_CMD_MTX_MULT_4x4] = 70,
36 [DS_GX_CMD_MTX_MULT_4x3] = 62,
37 [DS_GX_CMD_MTX_MULT_3x3] = 56,
38 [DS_GX_CMD_MTX_SCALE] = 44,
39 [DS_GX_CMD_MTX_TRANS] = 44,
40 [DS_GX_CMD_COLOR] = 2,
41 [DS_GX_CMD_NORMAL] = 18,
42 [DS_GX_CMD_TEXCOORD] = 2,
43 [DS_GX_CMD_VTX_16] = 18,
44 [DS_GX_CMD_VTX_10] = 16,
45 [DS_GX_CMD_VTX_XY] = 16,
46 [DS_GX_CMD_VTX_XZ] = 16,
47 [DS_GX_CMD_VTX_YZ] = 16,
48 [DS_GX_CMD_VTX_DIFF] = 16,
49 [DS_GX_CMD_POLYGON_ATTR] = 2,
50 [DS_GX_CMD_TEXIMAGE_PARAM] = 2,
51 [DS_GX_CMD_PLTT_BASE] = 2,
52 [DS_GX_CMD_DIF_AMB] = 8,
53 [DS_GX_CMD_SPE_EMI] = 8,
54 [DS_GX_CMD_LIGHT_VECTOR] = 12,
55 [DS_GX_CMD_LIGHT_COLOR] = 2,
56 [DS_GX_CMD_SHININESS] = 64,
57 [DS_GX_CMD_BEGIN_VTXS] = 2,
58 [DS_GX_CMD_END_VTXS] = 2,
59 [DS_GX_CMD_SWAP_BUFFERS] = 784,
60 [DS_GX_CMD_VIEWPORT] = 2,
61 [DS_GX_CMD_BOX_TEST] = 206,
62 [DS_GX_CMD_POS_TEST] = 18,
63 [DS_GX_CMD_VEC_TEST] = 10,
64};
65
66static const int32_t _gxCommandParams[DS_GX_CMD_MAX] = {
67 [DS_GX_CMD_MTX_MODE] = 1,
68 [DS_GX_CMD_MTX_POP] = 1,
69 [DS_GX_CMD_MTX_STORE] = 1,
70 [DS_GX_CMD_MTX_RESTORE] = 1,
71 [DS_GX_CMD_MTX_LOAD_4x4] = 16,
72 [DS_GX_CMD_MTX_LOAD_4x3] = 12,
73 [DS_GX_CMD_MTX_MULT_4x4] = 16,
74 [DS_GX_CMD_MTX_MULT_4x3] = 12,
75 [DS_GX_CMD_MTX_MULT_3x3] = 9,
76 [DS_GX_CMD_MTX_SCALE] = 3,
77 [DS_GX_CMD_MTX_TRANS] = 3,
78 [DS_GX_CMD_COLOR] = 1,
79 [DS_GX_CMD_NORMAL] = 1,
80 [DS_GX_CMD_TEXCOORD] = 1,
81 [DS_GX_CMD_VTX_16] = 2,
82 [DS_GX_CMD_VTX_10] = 1,
83 [DS_GX_CMD_VTX_XY] = 1,
84 [DS_GX_CMD_VTX_XZ] = 1,
85 [DS_GX_CMD_VTX_YZ] = 1,
86 [DS_GX_CMD_VTX_DIFF] = 1,
87 [DS_GX_CMD_POLYGON_ATTR] = 1,
88 [DS_GX_CMD_TEXIMAGE_PARAM] = 1,
89 [DS_GX_CMD_PLTT_BASE] = 1,
90 [DS_GX_CMD_DIF_AMB] = 1,
91 [DS_GX_CMD_SPE_EMI] = 1,
92 [DS_GX_CMD_LIGHT_VECTOR] = 1,
93 [DS_GX_CMD_LIGHT_COLOR] = 1,
94 [DS_GX_CMD_SHININESS] = 32,
95 [DS_GX_CMD_BEGIN_VTXS] = 1,
96 [DS_GX_CMD_SWAP_BUFFERS] = 1,
97 [DS_GX_CMD_VIEWPORT] = 1,
98 [DS_GX_CMD_BOX_TEST] = 3,
99 [DS_GX_CMD_POS_TEST] = 2,
100 [DS_GX_CMD_VEC_TEST] = 1,
101};
102
103static struct DSGXRenderer dummyRenderer = {
104 .init = DSGXDummyRendererInit,
105 .reset = DSGXDummyRendererReset,
106 .deinit = DSGXDummyRendererDeinit,
107 .setRAM = DSGXDummyRendererSetRAM,
108 .drawScanline = DSGXDummyRendererDrawScanline,
109 .getScanline = DSGXDummyRendererGetScanline,
110};
111
112static void _pullPipe(struct DSGX* gx) {
113 if (CircleBufferSize(&gx->fifo) >= sizeof(struct DSGXEntry)) {
114 struct DSGXEntry entry = { 0 };
115 CircleBufferRead8(&gx->fifo, (int8_t*) &entry.command);
116 CircleBufferRead8(&gx->fifo, (int8_t*) &entry.params[0]);
117 CircleBufferRead8(&gx->fifo, (int8_t*) &entry.params[1]);
118 CircleBufferRead8(&gx->fifo, (int8_t*) &entry.params[2]);
119 CircleBufferRead8(&gx->fifo, (int8_t*) &entry.params[3]);
120 CircleBufferWrite8(&gx->pipe, entry.command);
121 CircleBufferWrite8(&gx->pipe, entry.params[0]);
122 CircleBufferWrite8(&gx->pipe, entry.params[1]);
123 CircleBufferWrite8(&gx->pipe, entry.params[2]);
124 CircleBufferWrite8(&gx->pipe, entry.params[3]);
125 }
126 if (CircleBufferSize(&gx->fifo) >= sizeof(struct DSGXEntry)) {
127 struct DSGXEntry entry = { 0 };
128 CircleBufferRead8(&gx->fifo, (int8_t*) &entry.command);
129 CircleBufferRead8(&gx->fifo, (int8_t*) &entry.params[0]);
130 CircleBufferRead8(&gx->fifo, (int8_t*) &entry.params[1]);
131 CircleBufferRead8(&gx->fifo, (int8_t*) &entry.params[2]);
132 CircleBufferRead8(&gx->fifo, (int8_t*) &entry.params[3]);
133 CircleBufferWrite8(&gx->pipe, entry.command);
134 CircleBufferWrite8(&gx->pipe, entry.params[0]);
135 CircleBufferWrite8(&gx->pipe, entry.params[1]);
136 CircleBufferWrite8(&gx->pipe, entry.params[2]);
137 CircleBufferWrite8(&gx->pipe, entry.params[3]);
138 }
139}
140
141static void _updateClipMatrix(struct DSGX* gx) {
142 DSGXMtxMultiply(&gx->clipMatrix, &gx->posMatrix, &gx->projMatrix);
143}
144
145static int32_t _dotViewport(struct DSGXVertex* vertex, int32_t* col) {
146 int64_t a;
147 int64_t b;
148 int64_t sum;
149 a = col[0];
150 b = vertex->x;
151 sum = a * b;
152 a = col[4];
153 b = vertex->y;
154 sum += a * b;
155 a = col[8];
156 b = vertex->z;
157 sum += a * b;
158 a = col[12];
159 b = MTX_ONE;
160 sum += a * b;
161 return sum >> 8LL;
162}
163
164static void _emitVertex(struct DSGX* gx, uint16_t x, uint16_t y, uint16_t z) {
165 if (gx->vertexMode < 0 || gx->vertexIndex == DS_GX_VERTEX_BUFFER_SIZE || gx->polygonIndex == DS_GX_POLYGON_BUFFER_SIZE) {
166 return;
167 }
168 gx->currentVertex.x = x;
169 gx->currentVertex.y = y;
170 gx->currentVertex.z = z;
171 gx->currentVertex.vx = _dotViewport(&gx->currentVertex, &gx->clipMatrix.m[0]);
172 gx->currentVertex.vy = _dotViewport(&gx->currentVertex, &gx->clipMatrix.m[1]);
173 gx->currentVertex.vz = _dotViewport(&gx->currentVertex, &gx->clipMatrix.m[2]);
174 gx->currentVertex.vw = _dotViewport(&gx->currentVertex, &gx->clipMatrix.m[3]);
175
176 // TODO: What to do if w is 0?
177
178 gx->currentVertex.vx = (gx->currentVertex.vx + gx->currentVertex.vw) * (int64_t) (gx->viewportWidth << 12) / (gx->currentVertex.vw * 2) + (gx->viewportX1 << 12);
179 gx->currentVertex.vy = (gx->currentVertex.vy + gx->currentVertex.vw) * (int64_t) (gx->viewportHeight << 12) / (gx->currentVertex.vw * 2) + (gx->viewportY1 << 12);
180
181 struct DSGXVertex* vbuf = gx->vertexBuffer[gx->bufferIndex];
182 vbuf[gx->vertexIndex] = gx->currentVertex;
183
184 gx->currentPoly.vertIds[gx->currentPoly.verts] = gx->vertexIndex;
185
186 ++gx->vertexIndex;
187 ++gx->currentPoly.verts;
188 int totalVertices;
189 switch (gx->vertexMode) {
190 case 0:
191 case 2:
192 totalVertices = 3;
193 break;
194 case 1:
195 case 3:
196 totalVertices = 4;
197 break;
198 }
199 if (gx->currentPoly.verts == totalVertices) {
200 struct DSGXPolygon* pbuf = gx->polygonBuffer[gx->bufferIndex];
201 pbuf[gx->polygonIndex] = gx->currentPoly;
202
203 switch (gx->vertexMode) {
204 case 0:
205 case 1:
206 gx->currentPoly.verts = 0;
207 break;
208 case 2:
209 gx->currentPoly.vertIds[0] = gx->currentPoly.vertIds[1];
210 gx->currentPoly.vertIds[1] = gx->currentPoly.vertIds[2];
211 gx->currentPoly.verts = 2;
212 break;
213 case 3:
214 gx->currentPoly.vertIds[0] = gx->currentPoly.vertIds[2];
215 gx->currentPoly.vertIds[1] = gx->currentPoly.vertIds[3];
216 // Ensure quads don't cross over
217 pbuf[gx->polygonIndex].vertIds[2] = gx->currentPoly.vertIds[3];
218 pbuf[gx->polygonIndex].vertIds[3] = gx->currentPoly.vertIds[2];
219 gx->currentPoly.verts = 2;
220 break;
221 }
222 ++gx->polygonIndex;
223 }
224}
225
226static void _flushOutstanding(struct DSGX* gx) {
227 if (CircleBufferSize(&gx->fifo) == (DS_GX_FIFO_SIZE * sizeof(struct DSGXEntry))) {
228 return;
229 }
230 if (gx->p->cpuBlocked & DS_CPU_BLOCK_GX) {
231 gx->p->cpuBlocked &= ~DS_CPU_BLOCK_GX;
232 DSGXWriteFIFO(gx, gx->outstandingEntry);
233 gx->outstandingEntry.command = 0;
234 }
235 while (gx->outstandingCommand[0] && !gx->outstandingParams[0]) {
236 if (CircleBufferSize(&gx->fifo) == (DS_GX_FIFO_SIZE * sizeof(struct DSGXEntry))) {
237 return;
238 }
239 DSGXWriteFIFO(gx, (struct DSGXEntry) { 0 });
240 }
241}
242
243static void _fifoRun(struct mTiming* timing, void* context, uint32_t cyclesLate) {
244 struct DSGX* gx = context;
245 uint32_t cycles;
246 bool first = true;
247 while (!gx->swapBuffers) {
248 if (CircleBufferSize(&gx->pipe) <= 2 * sizeof(struct DSGXEntry)) {
249 _pullPipe(gx);
250 }
251
252 if (!CircleBufferSize(&gx->pipe)) {
253 cycles = 0;
254 break;
255 }
256
257 DSRegGXSTAT gxstat = gx->p->memory.io9[DS9_REG_GXSTAT_LO >> 1];
258 int projMatrixPointer = DSRegGXSTATGetProjMatrixStackLevel(gxstat);
259
260 struct DSGXEntry entry = { 0 };
261 CircleBufferDump(&gx->pipe, (int8_t*) &entry.command, 1);
262 cycles = _gxCommandCycleBase[entry.command];
263
264 if (first) {
265 first = false;
266 } else if (!gx->activeParams && cycles > cyclesLate) {
267 break;
268 }
269 CircleBufferRead8(&gx->pipe, (int8_t*) &entry.command);
270 CircleBufferRead8(&gx->pipe, (int8_t*) &entry.params[0]);
271 CircleBufferRead8(&gx->pipe, (int8_t*) &entry.params[1]);
272 CircleBufferRead8(&gx->pipe, (int8_t*) &entry.params[2]);
273 CircleBufferRead8(&gx->pipe, (int8_t*) &entry.params[3]);
274
275 if (gx->activeParams) {
276 int index = _gxCommandParams[entry.command] - gx->activeParams;
277 gx->activeEntries[index] = entry;
278 --gx->activeParams;
279 } else {
280 gx->activeParams = _gxCommandParams[entry.command];
281 if (gx->activeParams) {
282 --gx->activeParams;
283 }
284 if (gx->activeParams) {
285 gx->activeEntries[0] = entry;
286 }
287 }
288
289 if (gx->activeParams) {
290 continue;
291 }
292
293 switch (entry.command) {
294 case DS_GX_CMD_MTX_MODE:
295 if (entry.params[0] < 4) {
296 gx->mtxMode = entry.params[0];
297 } else {
298 mLOG(DS_GX, GAME_ERROR, "Invalid GX MTX_MODE %02X", entry.params[0]);
299 }
300 break;
301 case DS_GX_CMD_MTX_PUSH:
302 switch (gx->mtxMode) {
303 case 0:
304 memcpy(&gx->projMatrixStack, &gx->projMatrix, sizeof(gx->projMatrix));
305 ++projMatrixPointer;
306 break;
307 case 2:
308 memcpy(&gx->vecMatrixStack[gx->pvMatrixPointer & 0x1F], &gx->vecMatrix, sizeof(gx->vecMatrix));
309 // Fall through
310 case 1:
311 memcpy(&gx->posMatrixStack[gx->pvMatrixPointer & 0x1F], &gx->posMatrix, sizeof(gx->posMatrix));
312 ++gx->pvMatrixPointer;
313 break;
314 case 3:
315 mLOG(DS_GX, STUB, "Unimplemented GX MTX_PUSH mode");
316 break;
317 }
318 _updateClipMatrix(gx);
319 break;
320 case DS_GX_CMD_MTX_POP: {
321 int8_t offset = entry.params[0];
322 offset <<= 2;
323 offset >>= 2;
324 switch (gx->mtxMode) {
325 case 0:
326 projMatrixPointer -= offset;
327 memcpy(&gx->projMatrix, &gx->projMatrixStack, sizeof(gx->projMatrix));
328 break;
329 case 1:
330 gx->pvMatrixPointer -= offset;
331 memcpy(&gx->posMatrix, &gx->posMatrixStack[gx->pvMatrixPointer & 0x1F], sizeof(gx->posMatrix));
332 break;
333 case 2:
334 gx->pvMatrixPointer -= offset;
335 memcpy(&gx->vecMatrix, &gx->vecMatrixStack[gx->pvMatrixPointer & 0x1F], sizeof(gx->vecMatrix));
336 memcpy(&gx->posMatrix, &gx->posMatrixStack[gx->pvMatrixPointer & 0x1F], sizeof(gx->posMatrix));
337 break;
338 case 3:
339 mLOG(DS_GX, STUB, "Unimplemented GX MTX_POP mode");
340 break;
341 }
342 _updateClipMatrix(gx);
343 break;
344 }
345 case DS_GX_CMD_MTX_IDENTITY:
346 switch (gx->mtxMode) {
347 case 0:
348 DSGXMtxIdentity(&gx->projMatrix);
349 break;
350 case 2:
351 DSGXMtxIdentity(&gx->vecMatrix);
352 // Fall through
353 case 1:
354 DSGXMtxIdentity(&gx->posMatrix);
355 break;
356 case 3:
357 DSGXMtxIdentity(&gx->texMatrix);
358 break;
359 }
360 _updateClipMatrix(gx);
361 break;
362 case DS_GX_CMD_MTX_LOAD_4x4: {
363 struct DSGXMatrix m;
364 int i;
365 for (i = 0; i < 16; ++i) {
366 m.m[i] = gx->activeEntries[i].params[0];
367 m.m[i] |= gx->activeEntries[i].params[1] << 8;
368 m.m[i] |= gx->activeEntries[i].params[2] << 16;
369 m.m[i] |= gx->activeEntries[i].params[3] << 24;
370 }
371 switch (gx->mtxMode) {
372 case 0:
373 memcpy(&gx->projMatrix, &m, sizeof(gx->projMatrix));
374 break;
375 case 2:
376 memcpy(&gx->vecMatrix, &m, sizeof(gx->vecMatrix));
377 // Fall through
378 case 1:
379 memcpy(&gx->posMatrix, &m, sizeof(gx->posMatrix));
380 break;
381 case 3:
382 memcpy(&gx->texMatrix, &m, sizeof(gx->texMatrix));
383 break;
384 }
385 _updateClipMatrix(gx);
386 break;
387 }
388 case DS_GX_CMD_MTX_LOAD_4x3: {
389 struct DSGXMatrix m;
390 int i, j;
391 for (j = 0; j < 4; ++j) {
392 for (i = 0; i < 3; ++i) {
393 m.m[i + j * 4] = gx->activeEntries[i + j * 3].params[0];
394 m.m[i + j * 4] |= gx->activeEntries[i + j * 3].params[1] << 8;
395 m.m[i + j * 4] |= gx->activeEntries[i + j * 3].params[2] << 16;
396 m.m[i + j * 4] |= gx->activeEntries[i + j * 3].params[3] << 24;
397 }
398 m.m[j * 4 + 3] = 0;
399 }
400 m.m[15] = MTX_ONE;
401 switch (gx->mtxMode) {
402 case 0:
403 memcpy(&gx->projMatrix, &m, sizeof(gx->projMatrix));
404 break;
405 case 2:
406 memcpy(&gx->vecMatrix, &m, sizeof(gx->vecMatrix));
407 // Fall through
408 case 1:
409 memcpy(&gx->posMatrix, &m, sizeof(gx->posMatrix));
410 break;
411 case 3:
412 memcpy(&gx->texMatrix, &m, sizeof(gx->texMatrix));
413 break;
414 }
415 _updateClipMatrix(gx);
416 break;
417 }
418 case DS_GX_CMD_MTX_MULT_4x4: {
419 struct DSGXMatrix m;
420 int i;
421 for (i = 0; i < 16; ++i) {
422 m.m[i] = gx->activeEntries[i].params[0];
423 m.m[i] |= gx->activeEntries[i].params[1] << 8;
424 m.m[i] |= gx->activeEntries[i].params[2] << 16;
425 m.m[i] |= gx->activeEntries[i].params[3] << 24;
426 }
427 switch (gx->mtxMode) {
428 case 0:
429 DSGXMtxMultiply(&gx->projMatrix, &m, &gx->projMatrix);
430 break;
431 case 2:
432 DSGXMtxMultiply(&gx->vecMatrix, &m, &gx->vecMatrix);
433 // Fall through
434 case 1:
435 DSGXMtxMultiply(&gx->posMatrix, &m, &gx->posMatrix);
436 break;
437 case 3:
438 DSGXMtxMultiply(&gx->texMatrix, &m, &gx->texMatrix);
439 break;
440 }
441 _updateClipMatrix(gx);
442 break;
443 }
444 case DS_GX_CMD_MTX_MULT_4x3: {
445 struct DSGXMatrix m;
446 int i, j;
447 for (j = 0; j < 4; ++j) {
448 for (i = 0; i < 3; ++i) {
449 m.m[i + j * 4] = gx->activeEntries[i + j * 3].params[0];
450 m.m[i + j * 4] |= gx->activeEntries[i + j * 3].params[1] << 8;
451 m.m[i + j * 4] |= gx->activeEntries[i + j * 3].params[2] << 16;
452 m.m[i + j * 4] |= gx->activeEntries[i + j * 3].params[3] << 24;
453 }
454 m.m[j * 4 + 3] = 0;
455 }
456 m.m[15] = MTX_ONE;
457 switch (gx->mtxMode) {
458 case 0:
459 DSGXMtxMultiply(&gx->projMatrix, &m, &gx->projMatrix);
460 break;
461 case 2:
462 DSGXMtxMultiply(&gx->vecMatrix, &m, &gx->vecMatrix);
463 // Fall through
464 case 1:
465 DSGXMtxMultiply(&gx->posMatrix, &m, &gx->posMatrix);
466 break;
467 case 3:
468 DSGXMtxMultiply(&gx->texMatrix, &m, &gx->texMatrix);
469 break;
470 }
471 _updateClipMatrix(gx);
472 break;
473 }
474 case DS_GX_CMD_MTX_MULT_3x3: {
475 struct DSGXMatrix m;
476 int i, j;
477 for (j = 0; j < 3; ++j) {
478 for (i = 0; i < 3; ++i) {
479 m.m[i + j * 4] = gx->activeEntries[i + j * 3].params[0];
480 m.m[i + j * 4] |= gx->activeEntries[i + j * 3].params[1] << 8;
481 m.m[i + j * 4] |= gx->activeEntries[i + j * 3].params[2] << 16;
482 m.m[i + j * 4] |= gx->activeEntries[i + j * 3].params[3] << 24;
483 }
484 m.m[j * 4 + 3] = 0;
485 }
486 m.m[12] = 0;
487 m.m[13] = 0;
488 m.m[14] = 0;
489 m.m[15] = MTX_ONE;
490 switch (gx->mtxMode) {
491 case 0:
492 DSGXMtxMultiply(&gx->projMatrix, &m, &gx->projMatrix);
493 break;
494 case 2:
495 DSGXMtxMultiply(&gx->vecMatrix, &m, &gx->vecMatrix);
496 // Fall through
497 case 1:
498 DSGXMtxMultiply(&gx->posMatrix, &m, &gx->posMatrix);
499 break;
500 case 3:
501 DSGXMtxMultiply(&gx->texMatrix, &m, &gx->texMatrix);
502 break;
503 }
504 _updateClipMatrix(gx);
505 break;
506 }
507 case DS_GX_CMD_MTX_TRANS: {
508 int32_t m[3];
509 m[0] = gx->activeEntries[0].params[0];
510 m[0] |= gx->activeEntries[0].params[1] << 8;
511 m[0] |= gx->activeEntries[0].params[2] << 16;
512 m[0] |= gx->activeEntries[0].params[3] << 24;
513 m[1] = gx->activeEntries[1].params[0];
514 m[1] |= gx->activeEntries[1].params[1] << 8;
515 m[1] |= gx->activeEntries[1].params[2] << 16;
516 m[1] |= gx->activeEntries[1].params[3] << 24;
517 m[2] = gx->activeEntries[2].params[0];
518 m[2] |= gx->activeEntries[2].params[1] << 8;
519 m[2] |= gx->activeEntries[2].params[2] << 16;
520 m[2] |= gx->activeEntries[2].params[3] << 24;
521 switch (gx->mtxMode) {
522 case 0:
523 DSGXMtxTranslate(&gx->projMatrix, m);
524 break;
525 case 2:
526 DSGXMtxTranslate(&gx->vecMatrix, m);
527 // Fall through
528 case 1:
529 DSGXMtxTranslate(&gx->posMatrix, m);
530 break;
531 case 3:
532 DSGXMtxTranslate(&gx->texMatrix, m);
533 break;
534 }
535 _updateClipMatrix(gx);
536 break;
537 }
538 case DS_GX_CMD_MTX_SCALE: {
539 int32_t m[3];
540 m[0] = gx->activeEntries[0].params[0];
541 m[0] |= gx->activeEntries[0].params[1] << 8;
542 m[0] |= gx->activeEntries[0].params[2] << 16;
543 m[0] |= gx->activeEntries[0].params[3] << 24;
544 m[1] = gx->activeEntries[1].params[0];
545 m[1] |= gx->activeEntries[1].params[1] << 8;
546 m[1] |= gx->activeEntries[1].params[2] << 16;
547 m[1] |= gx->activeEntries[1].params[3] << 24;
548 m[2] = gx->activeEntries[2].params[0];
549 m[2] |= gx->activeEntries[2].params[1] << 8;
550 m[2] |= gx->activeEntries[2].params[2] << 16;
551 m[2] |= gx->activeEntries[2].params[3] << 24;
552 switch (gx->mtxMode) {
553 case 0:
554 DSGXMtxScale(&gx->projMatrix, m);
555 break;
556 case 2:
557 DSGXMtxScale(&gx->vecMatrix, m);
558 // Fall through
559 case 1:
560 DSGXMtxScale(&gx->posMatrix, m);
561 break;
562 case 3:
563 DSGXMtxScale(&gx->texMatrix, m);
564 break;
565 }
566 _updateClipMatrix(gx);
567 break;
568 }
569 case DS_GX_CMD_COLOR:
570 gx->currentVertex.color = entry.params[0];
571 gx->currentVertex.color |= entry.params[1] << 8;
572 break;
573 case DS_GX_CMD_TEXCOORD:
574 gx->currentVertex.s = entry.params[0];
575 gx->currentVertex.s |= entry.params[1] << 8;
576 gx->currentVertex.t = entry.params[2];
577 gx->currentVertex.t |= entry.params[3] << 8;
578 break;
579 case DS_GX_CMD_VTX_16: {
580 int16_t x = gx->activeEntries[0].params[0];
581 x |= gx->activeEntries[0].params[1] << 8;
582 int16_t y = gx->activeEntries[0].params[2];
583 y |= gx->activeEntries[0].params[3] << 8;
584 int16_t z = gx->activeEntries[1].params[0];
585 z |= gx->activeEntries[1].params[1] << 8;
586 _emitVertex(gx, x, y, z);
587 break;
588 }
589 case DS_GX_CMD_VTX_10: {
590 int32_t xyz = gx->activeEntries[0].params[0];
591 xyz |= gx->activeEntries[0].params[1] << 8;
592 xyz |= gx->activeEntries[0].params[2] << 16;
593 xyz |= gx->activeEntries[0].params[3] << 24;
594 int16_t x = (xyz << 6) & 0xFFC0;
595 int16_t y = (xyz >> 4) & 0xFFC0;
596 int16_t z = (xyz >> 14) & 0xFFC0;
597 _emitVertex(gx, x, y, z);
598 break;
599 }
600 case DS_GX_CMD_VTX_XY: {
601 int16_t x = gx->activeEntries[0].params[0];
602 x |= gx->activeEntries[0].params[1] << 8;
603 int16_t y = gx->activeEntries[0].params[2];
604 y |= gx->activeEntries[0].params[3] << 8;
605 _emitVertex(gx, x, y, gx->currentVertex.z);
606 break;
607 }
608 case DS_GX_CMD_VTX_XZ: {
609 int16_t x = gx->activeEntries[0].params[0];
610 x |= gx->activeEntries[0].params[1] << 8;
611 int16_t z = gx->activeEntries[0].params[2];
612 z |= gx->activeEntries[0].params[3] << 8;
613 _emitVertex(gx, x, gx->currentVertex.y, z);
614 break;
615 }
616 case DS_GX_CMD_VTX_YZ: {
617 int16_t y = gx->activeEntries[0].params[0];
618 y |= gx->activeEntries[0].params[1] << 8;
619 int16_t z = gx->activeEntries[0].params[2];
620 z |= gx->activeEntries[0].params[3] << 8;
621 _emitVertex(gx, gx->currentVertex.x, y, z);
622 break;
623 }
624 case DS_GX_CMD_POLYGON_ATTR:
625 gx->currentPoly.polyParams = entry.params[0];
626 gx->currentPoly.polyParams |= entry.params[1] << 8;
627 gx->currentPoly.polyParams |= entry.params[2] << 16;
628 gx->currentPoly.polyParams |= entry.params[3] << 24;
629 break;
630 case DS_GX_CMD_BEGIN_VTXS:
631 gx->vertexMode = entry.params[0] & 3;
632 gx->currentPoly.verts = 0;
633 break;
634 case DS_GX_CMD_END_VTXS:
635 gx->vertexMode = -1;
636 break;
637 case DS_GX_CMD_SWAP_BUFFERS:
638 gx->swapBuffers = true;
639 break;
640 case DS_GX_CMD_VIEWPORT:
641 gx->viewportX1 = (uint8_t) entry.params[0];
642 gx->viewportY1 = (uint8_t) entry.params[1];
643 gx->viewportX2 = (uint8_t) entry.params[2];
644 gx->viewportY2 = (uint8_t) entry.params[3];
645 gx->viewportWidth = gx->viewportX2 - gx->viewportX1;
646 gx->viewportHeight = gx->viewportY2 - gx->viewportY1;
647 break;
648 default:
649 mLOG(DS_GX, STUB, "Unimplemented GX command %02X:%02X %02X %02X %02X", entry.command, entry.params[0], entry.params[1], entry.params[2], entry.params[3]);
650 break;
651 }
652
653 gxstat = DSRegGXSTATSetPVMatrixStackLevel(gxstat, gx->pvMatrixPointer);
654 gxstat = DSRegGXSTATSetProjMatrixStackLevel(gxstat, projMatrixPointer);
655 gxstat = DSRegGXSTATTestFillMatrixStackError(gxstat, projMatrixPointer || gx->pvMatrixPointer >= 0x1F);
656 gx->p->memory.io9[DS9_REG_GXSTAT_LO >> 1] = gxstat;
657
658 if (cyclesLate >= cycles) {
659 cyclesLate -= cycles;
660 } else {
661 break;
662 }
663 }
664 if (cycles && !gx->swapBuffers) {
665 mTimingSchedule(timing, &gx->fifoEvent, cycles - cyclesLate);
666 }
667 _flushOutstanding(gx);
668 DSGXUpdateGXSTAT(gx);
669}
670
671void DSGXInit(struct DSGX* gx) {
672 gx->renderer = &dummyRenderer;
673 CircleBufferInit(&gx->fifo, sizeof(struct DSGXEntry) * DS_GX_FIFO_SIZE);
674 CircleBufferInit(&gx->pipe, sizeof(struct DSGXEntry) * DS_GX_PIPE_SIZE);
675 gx->vertexBuffer[0] = malloc(sizeof(struct DSGXVertex) * DS_GX_VERTEX_BUFFER_SIZE);
676 gx->vertexBuffer[1] = malloc(sizeof(struct DSGXVertex) * DS_GX_VERTEX_BUFFER_SIZE);
677 gx->polygonBuffer[0] = malloc(sizeof(struct DSGXPolygon) * DS_GX_POLYGON_BUFFER_SIZE);
678 gx->polygonBuffer[1] = malloc(sizeof(struct DSGXPolygon) * DS_GX_POLYGON_BUFFER_SIZE);
679 gx->fifoEvent.name = "DS GX FIFO";
680 gx->fifoEvent.priority = 0xC;
681 gx->fifoEvent.context = gx;
682 gx->fifoEvent.callback = _fifoRun;
683}
684
685void DSGXDeinit(struct DSGX* gx) {
686 DSGXAssociateRenderer(gx, &dummyRenderer);
687 CircleBufferDeinit(&gx->fifo);
688 CircleBufferDeinit(&gx->pipe);
689 free(gx->vertexBuffer[0]);
690 free(gx->vertexBuffer[1]);
691 free(gx->polygonBuffer[0]);
692 free(gx->polygonBuffer[1]);
693}
694
695void DSGXReset(struct DSGX* gx) {
696 CircleBufferClear(&gx->fifo);
697 CircleBufferClear(&gx->pipe);
698 DSGXMtxIdentity(&gx->projMatrix);
699 DSGXMtxIdentity(&gx->texMatrix);
700 DSGXMtxIdentity(&gx->posMatrix);
701 DSGXMtxIdentity(&gx->vecMatrix);
702
703 DSGXMtxIdentity(&gx->clipMatrix);
704 DSGXMtxIdentity(&gx->projMatrixStack);
705 DSGXMtxIdentity(&gx->texMatrixStack);
706 int i;
707 for (i = 0; i < 32; ++i) {
708 DSGXMtxIdentity(&gx->posMatrixStack[i]);
709 DSGXMtxIdentity(&gx->vecMatrixStack[i]);
710 }
711 gx->swapBuffers = false;
712 gx->bufferIndex = 0;
713 gx->vertexIndex = 0;
714 gx->polygonIndex = 0;
715 gx->mtxMode = 0;
716 gx->pvMatrixPointer = 0;
717 gx->vertexMode = -1;
718
719 gx->viewportX1 = 0;
720 gx->viewportY1 = 0;
721 gx->viewportX2 = DS_VIDEO_HORIZONTAL_PIXELS - 1;
722 gx->viewportY2 = DS_VIDEO_VERTICAL_PIXELS - 1;
723 gx->viewportWidth = gx->viewportX2 - gx->viewportX1;
724 gx->viewportHeight = gx->viewportY2 - gx->viewportY1;
725
726 memset(gx->outstandingParams, 0, sizeof(gx->outstandingParams));
727 memset(gx->outstandingCommand, 0, sizeof(gx->outstandingCommand));
728 memset(&gx->outstandingEntry, 0, sizeof(gx->outstandingEntry));
729 gx->activeParams = 0;
730 memset(&gx->currentVertex, 0, sizeof(gx->currentVertex));
731}
732
733void DSGXAssociateRenderer(struct DSGX* gx, struct DSGXRenderer* renderer) {
734 gx->renderer->deinit(gx->renderer);
735 gx->renderer = renderer;
736 gx->renderer->init(gx->renderer);
737}
738
739void DSGXUpdateGXSTAT(struct DSGX* gx) {
740 uint32_t value = gx->p->memory.io9[DS9_REG_GXSTAT_HI >> 1] << 16;
741 value = DSRegGXSTATIsDoIRQ(value);
742
743 size_t entries = CircleBufferSize(&gx->fifo) / sizeof(struct DSGXEntry);
744 // XXX
745 if (gx->swapBuffers) {
746 entries++;
747 }
748 value = DSRegGXSTATSetFIFOEntries(value, entries);
749 value = DSRegGXSTATSetFIFOLtHalf(value, entries < (DS_GX_FIFO_SIZE / 2));
750 value = DSRegGXSTATSetFIFOEmpty(value, entries == 0);
751
752 if ((DSRegGXSTATGetDoIRQ(value) == 1 && entries < (DS_GX_FIFO_SIZE / 2)) ||
753 (DSRegGXSTATGetDoIRQ(value) == 2 && entries == 0)) {
754 DSRaiseIRQ(gx->p->ds9.cpu, gx->p->ds9.memory.io, DS_IRQ_GEOM_FIFO);
755 }
756
757 value = DSRegGXSTATSetBusy(value, mTimingIsScheduled(&gx->p->ds9.timing, &gx->fifoEvent) || gx->swapBuffers);
758
759 gx->p->memory.io9[DS9_REG_GXSTAT_HI >> 1] = value >> 16;
760}
761
762static void DSGXUnpackCommand(struct DSGX* gx, uint32_t command) {
763 gx->outstandingCommand[0] = command;
764 gx->outstandingCommand[1] = command >> 8;
765 gx->outstandingCommand[2] = command >> 16;
766 gx->outstandingCommand[3] = command >> 24;
767 if (gx->outstandingCommand[0] >= DS_GX_CMD_MAX) {
768 gx->outstandingCommand[0] = 0;
769 }
770 if (gx->outstandingCommand[1] >= DS_GX_CMD_MAX) {
771 gx->outstandingCommand[1] = 0;
772 }
773 if (gx->outstandingCommand[2] >= DS_GX_CMD_MAX) {
774 gx->outstandingCommand[2] = 0;
775 }
776 if (gx->outstandingCommand[3] >= DS_GX_CMD_MAX) {
777 gx->outstandingCommand[3] = 0;
778 }
779 gx->outstandingParams[0] = _gxCommandParams[gx->outstandingCommand[0]];
780 gx->outstandingParams[1] = _gxCommandParams[gx->outstandingCommand[1]];
781 gx->outstandingParams[2] = _gxCommandParams[gx->outstandingCommand[2]];
782 gx->outstandingParams[3] = _gxCommandParams[gx->outstandingCommand[3]];
783 }
784 _flushOutstanding(gx);
785}
786
787static void DSGXWriteFIFO(struct DSGX* gx, struct DSGXEntry entry) {
788 if (CircleBufferSize(&gx->fifo) == (DS_GX_FIFO_SIZE * sizeof(entry))) {
789 mLOG(DS_GX, INFO, "FIFO full");
790 if (gx->p->cpuBlocked & DS_CPU_BLOCK_GX) {
791 abort();
792 }
793 gx->p->cpuBlocked |= DS_CPU_BLOCK_GX;
794 gx->outstandingEntry = entry;
795 gx->p->ds9.cpu->nextEvent = 0;
796 return;
797 }
798 if (gx->outstandingCommand[0]) {
799 entry.command = gx->outstandingCommand[0];
800 if (gx->outstandingParams[0]) {
801 --gx->outstandingParams[0];
802 }
803 if (!gx->outstandingParams[0]) {
804 // TODO: improve this
805 memmove(&gx->outstandingParams[0], &gx->outstandingParams[1], sizeof(gx->outstandingParams[0]) * 3);
806 memmove(&gx->outstandingCommand[0], &gx->outstandingCommand[1], sizeof(gx->outstandingCommand[0]) * 3);
807 gx->outstandingParams[3] = 0;
808 gx->outstandingCommand[3] = 0;
809 }
810 } else {
811 gx->outstandingParams[0] = _gxCommandParams[entry.command];
812 if (gx->outstandingParams[0]) {
813 --gx->outstandingParams[0];
814 }
815 if (gx->outstandingParams[0]) {
816 gx->outstandingCommand[0] = entry.command;
817 }
818 }
819 uint32_t cycles = _gxCommandCycleBase[entry.command];
820 if (!cycles) {
821 return;
822 }
823 if (CircleBufferSize(&gx->fifo) == 0 && CircleBufferSize(&gx->pipe) < (DS_GX_PIPE_SIZE * sizeof(entry))) {
824 CircleBufferWrite8(&gx->pipe, entry.command);
825 CircleBufferWrite8(&gx->pipe, entry.params[0]);
826 CircleBufferWrite8(&gx->pipe, entry.params[1]);
827 CircleBufferWrite8(&gx->pipe, entry.params[2]);
828 CircleBufferWrite8(&gx->pipe, entry.params[3]);
829 } else if (CircleBufferSize(&gx->fifo) < (DS_GX_FIFO_SIZE * sizeof(entry))) {
830 CircleBufferWrite8(&gx->fifo, entry.command);
831 CircleBufferWrite8(&gx->fifo, entry.params[0]);
832 CircleBufferWrite8(&gx->fifo, entry.params[1]);
833 CircleBufferWrite8(&gx->fifo, entry.params[2]);
834 CircleBufferWrite8(&gx->fifo, entry.params[3]);
835 }
836 if (!gx->swapBuffers && !mTimingIsScheduled(&gx->p->ds9.timing, &gx->fifoEvent)) {
837 mTimingSchedule(&gx->p->ds9.timing, &gx->fifoEvent, cycles);
838 }
839
840 _flushOutstanding(gx);
841}
842
843uint16_t DSGXWriteRegister(struct DSGX* gx, uint32_t address, uint16_t value) {
844 uint16_t oldValue = gx->p->memory.io9[address >> 1];
845 switch (address) {
846 case DS9_REG_DISP3DCNT:
847 mLOG(DS_GX, STUB, "Unimplemented GX write %03X:%04X", address, value);
848 break;
849 case DS9_REG_GXSTAT_LO:
850 value = DSRegGXSTATIsMatrixStackError(value);
851 if (value) {
852 oldValue = DSRegGXSTATClearMatrixStackError(oldValue);
853 oldValue = DSRegGXSTATClearProjMatrixStackLevel(oldValue);
854 }
855 value = oldValue;
856 break;
857 case DS9_REG_GXSTAT_HI:
858 value = DSRegGXSTATIsDoIRQ(value << 16) >> 16;
859 gx->p->memory.io9[address >> 1] = value;
860 DSGXUpdateGXSTAT(gx);
861 value = gx->p->memory.io9[address >> 1];
862 break;
863 default:
864 if (address < DS9_REG_GXFIFO_00) {
865 mLOG(DS_GX, STUB, "Unimplemented GX write %03X:%04X", address, value);
866 } else if (address <= DS9_REG_GXFIFO_1F) {
867 mLOG(DS_GX, STUB, "Unimplemented GX write %03X:%04X", address, value);
868 } else if (address < DS9_REG_GXSTAT_LO) {
869 struct DSGXEntry entry = {
870 .command = (address & 0x1FC) >> 2,
871 .params = {
872 value,
873 value >> 8,
874 }
875 };
876 if (entry.command < DS_GX_CMD_MAX) {
877 DSGXWriteFIFO(gx, entry);
878 }
879 } else {
880 mLOG(DS_GX, STUB, "Unimplemented GX write %03X:%04X", address, value);
881 }
882 break;
883 }
884 return value;
885}
886
887uint32_t DSGXWriteRegister32(struct DSGX* gx, uint32_t address, uint32_t value) {
888 switch (address) {
889 case DS9_REG_DISP3DCNT:
890 mLOG(DS_GX, STUB, "Unimplemented GX write %03X:%08X", address, value);
891 break;
892 case DS9_REG_GXSTAT_LO:
893 value = (value & 0xFFFF0000) | DSGXWriteRegister(gx, DS9_REG_GXSTAT_LO, value);
894 value = (value & 0x0000FFFF) | (DSGXWriteRegister(gx, DS9_REG_GXSTAT_HI, value >> 16) << 16);
895 break;
896 default:
897 if (address < DS9_REG_GXFIFO_00) {
898 mLOG(DS_GX, STUB, "Unimplemented GX write %03X:%08X", address, value);
899 } else if (address <= DS9_REG_GXFIFO_1F) {
900 if (gx->outstandingParams[0]) {
901 struct DSGXEntry entry = {
902 .command = gx->outstandingCommand[0],
903 .params = {
904 value,
905 value >> 8,
906 value >> 16,
907 value >> 24
908 }
909 };
910 DSGXWriteFIFO(gx, entry);
911 } else {
912 DSGXUnpackCommand(gx, value);
913 }
914 } else if (address < DS9_REG_GXSTAT_LO) {
915 struct DSGXEntry entry = {
916 .command = (address & 0x1FC) >> 2,
917 .params = {
918 value,
919 value >> 8,
920 value >> 16,
921 value >> 24
922 }
923 };
924 DSGXWriteFIFO(gx, entry);
925 } else {
926 mLOG(DS_GX, STUB, "Unimplemented GX write %03X:%08X", address, value);
927 }
928 break;
929 }
930 return value;
931}
932
933void DSGXSwapBuffers(struct DSGX* gx) {
934 gx->swapBuffers = false;
935
936 gx->renderer->setRAM(gx->renderer, gx->vertexBuffer[gx->bufferIndex], gx->polygonBuffer[gx->bufferIndex], gx->polygonIndex);
937
938 gx->bufferIndex ^= 1;
939 gx->vertexIndex = 0;
940 gx->polygonIndex = 0;
941
942 if (CircleBufferSize(&gx->fifo)) {
943 mTimingSchedule(&gx->p->ds9.timing, &gx->fifoEvent, 0);
944 }
945 DSGXUpdateGXSTAT(gx);
946}
947
948static void DSGXDummyRendererInit(struct DSGXRenderer* renderer) {
949 UNUSED(renderer);
950 // Nothing to do
951}
952
953static void DSGXDummyRendererReset(struct DSGXRenderer* renderer) {
954 UNUSED(renderer);
955 // Nothing to do
956}
957
958static void DSGXDummyRendererDeinit(struct DSGXRenderer* renderer) {
959 UNUSED(renderer);
960 // Nothing to do
961}
962
963static void DSGXDummyRendererSetRAM(struct DSGXRenderer* renderer, struct DSGXVertex* verts, struct DSGXPolygon* polys, unsigned polyCount) {
964 UNUSED(renderer);
965 UNUSED(verts);
966 UNUSED(polys);
967 UNUSED(polyCount);
968 // Nothing to do
969}
970
971static void DSGXDummyRendererDrawScanline(struct DSGXRenderer* renderer, int y) {
972 UNUSED(renderer);
973 UNUSED(y);
974 // Nothing to do
975}
976
977static void DSGXDummyRendererGetScanline(struct DSGXRenderer* renderer, int y, color_t** output) {
978 UNUSED(renderer);
979 UNUSED(y);
980 *output = NULL;
981 // Nothing to do
982}