src/gba/gba-audio.c (view raw)
1#include "gba-audio.h"
2
3#include "gba.h"
4#include "gba-io.h"
5#include "gba-serialize.h"
6#include "gba-thread.h"
7#include "gba-video.h"
8
9const unsigned GBA_AUDIO_SAMPLES = 512;
10const unsigned GBA_AUDIO_FIFO_SIZE = 8 * sizeof(int32_t);
11#define SWEEP_CYCLES (GBA_ARM7TDMI_FREQUENCY / 128)
12
13static int32_t _updateSquareChannel(struct GBAAudioSquareControl* envelope, int duty);
14static void _updateEnvelope(struct GBAAudioEnvelope* envelope);
15static bool _updateSweep(struct GBAAudioChannel1* ch);
16static int32_t _updateChannel1(struct GBAAudioChannel1* ch);
17static int32_t _updateChannel2(struct GBAAudioChannel2* ch);
18static int32_t _updateChannel3(struct GBAAudioChannel3* ch);
19static int32_t _updateChannel4(struct GBAAudioChannel4* ch);
20static int _applyBias(struct GBAAudio* audio, int sample);
21static void _sample(struct GBAAudio* audio);
22
23void GBAAudioInit(struct GBAAudio* audio, size_t samples) {
24 CircleBufferInit(&audio->left, samples * sizeof(int32_t));
25 CircleBufferInit(&audio->right, samples * sizeof(int32_t));
26 CircleBufferInit(&audio->chA.fifo, GBA_AUDIO_FIFO_SIZE);
27 CircleBufferInit(&audio->chB.fifo, GBA_AUDIO_FIFO_SIZE);
28}
29
30void GBAAudioReset(struct GBAAudio* audio) {
31 audio->nextEvent = 0;
32 audio->nextCh1 = 0;
33 audio->nextCh2 = 0;
34 audio->nextCh3 = 0;
35 audio->nextCh4 = 0;
36 audio->ch1.sweep.time = 0;
37 audio->ch1.envelope.nextStep = INT_MAX;
38 audio->ch1.control.nextStep = 0;
39 audio->ch1.control.endTime = 0;
40 audio->ch1.nextSweep = INT_MAX;
41 audio->ch1.sample = 0;
42 audio->ch2.envelope.nextStep = INT_MAX;
43 audio->ch2.control.nextStep = 0;
44 audio->ch2.control.endTime = 0;
45 audio->ch2.sample = 0;
46 audio->ch3.bank.packed = 0;
47 audio->ch3.control.endTime = 0;
48 audio->ch3.sample = 0;
49 audio->ch4.sample = 0;
50 audio->ch4.envelope.nextStep = INT_MAX;
51 audio->eventDiff = 0;
52 audio->nextSample = 0;
53 audio->sampleRate = 0x8000;
54 audio->soundbias = 0x200;
55 audio->soundcntLo = 0;
56 audio->soundcntHi = 0;
57 audio->soundcntX = 0;
58 audio->sampleInterval = GBA_ARM7TDMI_FREQUENCY / audio->sampleRate;
59
60 CircleBufferClear(&audio->left);
61 CircleBufferClear(&audio->right);
62 CircleBufferClear(&audio->chA.fifo);
63 CircleBufferClear(&audio->chB.fifo);
64}
65
66void GBAAudioDeinit(struct GBAAudio* audio) {
67 CircleBufferDeinit(&audio->left);
68 CircleBufferDeinit(&audio->right);
69 CircleBufferDeinit(&audio->chA.fifo);
70 CircleBufferDeinit(&audio->chB.fifo);
71}
72
73void GBAAudioResizeBuffer(struct GBAAudio* audio, size_t samples) {
74 if (samples >= GBA_AUDIO_SAMPLES) {
75 return;
76 }
77
78 GBASyncLockAudio(audio->p->sync);
79 int32_t buffer[GBA_AUDIO_SAMPLES];
80 int32_t dummy;
81 size_t read;
82 size_t i;
83
84 read = CircleBufferDump(&audio->left, buffer, sizeof(buffer));
85 CircleBufferDeinit(&audio->left);
86 CircleBufferInit(&audio->left, samples * sizeof(int32_t));
87 for (i = 0; i * sizeof(int32_t) < read; ++i) {
88 if (!CircleBufferWrite32(&audio->left, buffer[i])) {
89 CircleBufferRead32(&audio->left, &dummy);
90 CircleBufferWrite32(&audio->left, buffer[i]);
91 }
92 }
93
94 read = CircleBufferDump(&audio->right, buffer, sizeof(buffer));
95 CircleBufferDeinit(&audio->right);
96 CircleBufferInit(&audio->right, samples * sizeof(int32_t));
97 for (i = 0; i * sizeof(int32_t) < read; ++i) {
98 if (!CircleBufferWrite32(&audio->right, buffer[i])) {
99 CircleBufferRead32(&audio->right, &dummy);
100 CircleBufferWrite32(&audio->right, buffer[i]);
101 }
102 }
103
104 GBASyncUnlockAudio(audio->p->sync);
105}
106
107int32_t GBAAudioProcessEvents(struct GBAAudio* audio, int32_t cycles) {
108 audio->nextEvent -= cycles;
109 audio->eventDiff += cycles;
110 if (audio->nextEvent <= 0) {
111 audio->nextEvent = INT_MAX;
112 if (audio->enable) {
113 if (audio->playingCh1 && !audio->ch1.envelope.dead) {
114 audio->nextCh1 -= audio->eventDiff;
115 if (audio->ch1.envelope.nextStep != INT_MAX) {
116 audio->ch1.envelope.nextStep -= audio->eventDiff;
117 if (audio->ch1.envelope.nextStep <= 0) {
118 int8_t sample = audio->ch1.control.hi * 0x10 - 0x8;
119 _updateEnvelope(&audio->ch1.envelope);
120 if (audio->ch1.envelope.nextStep < audio->nextEvent) {
121 audio->nextEvent = audio->ch1.envelope.nextStep;
122 }
123 audio->ch1.sample = sample * audio->ch1.envelope.currentVolume;
124 }
125 }
126
127 if (audio->ch1.nextSweep != INT_MAX) {
128 audio->ch1.nextSweep -= audio->eventDiff;
129 if (audio->ch1.nextSweep <= 0) {
130 audio->playingCh1 = _updateSweep(&audio->ch1);
131 if (audio->ch1.nextSweep < audio->nextEvent) {
132 audio->nextEvent = audio->ch1.nextSweep;
133 }
134 }
135 }
136
137 if (audio->nextCh1 <= 0) {
138 audio->nextCh1 += _updateChannel1(&audio->ch1);
139 if (audio->nextCh1 < audio->nextEvent) {
140 audio->nextEvent = audio->nextCh1;
141 }
142 }
143
144 if (audio->ch1.control.stop) {
145 audio->ch1.control.endTime -= audio->eventDiff;
146 if (audio->ch1.control.endTime <= 0) {
147 audio->playingCh1 = 0;
148 }
149 }
150 }
151
152 if (audio->playingCh2 && !audio->ch2.envelope.dead) {
153 audio->nextCh2 -= audio->eventDiff;
154 if (audio->ch2.envelope.nextStep != INT_MAX) {
155 audio->ch2.envelope.nextStep -= audio->eventDiff;
156 if (audio->ch2.envelope.nextStep <= 0) {
157 int8_t sample = audio->ch2.control.hi * 0x10 - 0x8;
158 _updateEnvelope(&audio->ch2.envelope);
159 if (audio->ch2.envelope.nextStep < audio->nextEvent) {
160 audio->nextEvent = audio->ch2.envelope.nextStep;
161 }
162 audio->ch2.sample = sample * audio->ch2.envelope.currentVolume;
163 }
164 }
165
166 if (audio->nextCh2 <= 0) {
167 audio->nextCh2 += _updateChannel2(&audio->ch2);
168 if (audio->nextCh2 < audio->nextEvent) {
169 audio->nextEvent = audio->nextCh2;
170 }
171 }
172
173 if (audio->ch2.control.stop) {
174 audio->ch2.control.endTime -= audio->eventDiff;
175 if (audio->ch2.control.endTime <= 0) {
176 audio->playingCh2 = 0;
177 }
178 }
179 }
180
181 if (audio->playingCh3) {
182 audio->nextCh3 -= audio->eventDiff;
183 if (audio->nextCh3 <= 0) {
184 audio->nextCh3 += _updateChannel3(&audio->ch3);
185 if (audio->nextCh3 < audio->nextEvent) {
186 audio->nextEvent = audio->nextCh3;
187 }
188 }
189
190 if (audio->ch3.control.stop) {
191 audio->ch3.control.endTime -= audio->eventDiff;
192 if (audio->ch3.control.endTime <= 0) {
193 audio->playingCh3 = 0;
194 }
195 }
196 }
197
198 if (audio->playingCh4 && !audio->ch4.envelope.dead) {
199 audio->nextCh4 -= audio->eventDiff;
200 if (audio->ch4.envelope.nextStep != INT_MAX) {
201 audio->ch4.envelope.nextStep -= audio->eventDiff;
202 if (audio->ch4.envelope.nextStep <= 0) {
203 int8_t sample = (audio->ch4.sample >> 31) * 0x8;
204 _updateEnvelope(&audio->ch4.envelope);
205 if (audio->ch4.envelope.nextStep < audio->nextEvent) {
206 audio->nextEvent = audio->ch4.envelope.nextStep;
207 }
208 audio->ch4.sample = sample * audio->ch4.envelope.currentVolume;
209 }
210 }
211
212 if (audio->nextCh4 <= 0) {
213 audio->nextCh4 += _updateChannel4(&audio->ch4);
214 if (audio->nextCh4 < audio->nextEvent) {
215 audio->nextEvent = audio->nextCh4;
216 }
217 }
218
219 if (audio->ch4.control.stop) {
220 audio->ch4.control.endTime -= audio->eventDiff;
221 if (audio->ch4.control.endTime <= 0) {
222 audio->playingCh4 = 0;
223 }
224 }
225 }
226 }
227
228 audio->nextSample -= audio->eventDiff;
229 if (audio->nextSample <= 0) {
230 _sample(audio);
231 audio->nextSample += audio->sampleInterval;
232 }
233
234 if (audio->nextSample < audio->nextEvent) {
235 audio->nextEvent = audio->nextSample;
236 }
237 audio->eventDiff = 0;
238 }
239 return audio->nextEvent;
240}
241
242void GBAAudioScheduleFifoDma(struct GBAAudio* audio, int number, struct GBADMA* info) {
243 switch (info->dest) {
244 case BASE_IO | REG_FIFO_A_LO:
245 audio->chA.dmaSource = number;
246 break;
247 case BASE_IO | REG_FIFO_B_LO:
248 audio->chB.dmaSource = number;
249 break;
250 default:
251 GBALog(audio->p, GBA_LOG_GAME_ERROR, "Invalid FIFO destination: 0x%08X", info->dest);
252 return;
253 }
254 info->dstControl = DMA_FIXED;
255}
256
257void GBAAudioWriteSOUND1CNT_LO(struct GBAAudio* audio, uint16_t value) {
258 audio->ch1.sweep.packed = value;
259 if (audio->ch1.sweep.time) {
260 audio->ch1.nextSweep = audio->ch1.sweep.time * SWEEP_CYCLES;
261 } else {
262 audio->ch1.nextSweep = INT_MAX;
263 }
264}
265
266void GBAAudioWriteSOUND1CNT_HI(struct GBAAudio* audio, uint16_t value) {
267 audio->ch1.envelope.packed = value;
268 audio->ch1.envelope.dead = 0;
269 if (audio->ch1.envelope.stepTime) {
270 audio->ch1.envelope.nextStep = 0;
271 } else {
272 audio->ch1.envelope.nextStep = INT_MAX;
273 if (audio->ch1.envelope.initialVolume == 0) {
274 audio->ch1.envelope.dead = 1;
275 audio->ch1.sample = 0;
276 }
277 }
278}
279
280void GBAAudioWriteSOUND1CNT_X(struct GBAAudio* audio, uint16_t value) {
281 audio->ch1.control.packed = value;
282 audio->ch1.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch1.envelope.length)) >> 8;
283 if (audio->ch1.control.restart) {
284 if (audio->ch1.sweep.time) {
285 audio->ch1.nextSweep = audio->ch1.sweep.time * SWEEP_CYCLES;
286 } else {
287 audio->ch1.nextSweep = INT_MAX;
288 }
289 if (!audio->playingCh1) {
290 audio->nextCh1 = 0;
291 }
292 audio->playingCh1 = 1;
293 if (audio->ch1.envelope.stepTime) {
294 audio->ch1.envelope.nextStep = 0;
295 } else {
296 audio->ch1.envelope.nextStep = INT_MAX;
297 }
298 audio->ch1.envelope.currentVolume = audio->ch1.envelope.initialVolume;
299 if (audio->ch1.envelope.stepTime) {
300 audio->ch1.envelope.nextStep = 0;
301 } else {
302 audio->ch1.envelope.nextStep = INT_MAX;
303 }
304 }
305}
306
307void GBAAudioWriteSOUND2CNT_LO(struct GBAAudio* audio, uint16_t value) {
308 audio->ch2.envelope.packed = value;
309 audio->ch2.envelope.dead = 0;
310 if (audio->ch2.envelope.stepTime) {
311 audio->ch2.envelope.nextStep = 0;
312 } else {
313 audio->ch2.envelope.nextStep = INT_MAX;
314 if (audio->ch2.envelope.initialVolume == 0) {
315 audio->ch2.envelope.dead = 1;
316 audio->ch2.sample = 0;
317 }
318 }
319}
320
321void GBAAudioWriteSOUND2CNT_HI(struct GBAAudio* audio, uint16_t value) {
322 audio->ch2.control.packed = value;
323 audio->ch1.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch2.envelope.length)) >> 8;
324 if (audio->ch2.control.restart) {
325 audio->playingCh2 = 1;
326 audio->ch2.envelope.currentVolume = audio->ch2.envelope.initialVolume;
327 if (audio->ch2.envelope.stepTime) {
328 audio->ch2.envelope.nextStep = 0;
329 } else {
330 audio->ch2.envelope.nextStep = INT_MAX;
331 }
332 audio->nextCh2 = 0;
333 }
334}
335
336void GBAAudioWriteSOUND3CNT_LO(struct GBAAudio* audio, uint16_t value) {
337 audio->ch3.bank.packed = value;
338 if (audio->ch3.control.endTime >= 0) {
339 audio->playingCh3 = audio->ch3.bank.enable;
340 }
341}
342
343void GBAAudioWriteSOUND3CNT_HI(struct GBAAudio* audio, uint16_t value) {
344 audio->ch3.wave.packed = value;
345}
346
347void GBAAudioWriteSOUND3CNT_X(struct GBAAudio* audio, uint16_t value) {
348 audio->ch3.control.packed = value;
349 audio->ch3.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (256 - audio->ch3.wave.length)) >> 8;
350 if (audio->ch3.control.restart) {
351 audio->playingCh3 = audio->ch3.bank.enable;
352 }
353}
354
355void GBAAudioWriteSOUND4CNT_LO(struct GBAAudio* audio, uint16_t value) {
356 audio->ch4.envelope.packed = value;
357 audio->ch4.envelope.dead = 0;
358 if (audio->ch4.envelope.stepTime) {
359 audio->ch4.envelope.nextStep = 0;
360 } else {
361 audio->ch4.envelope.nextStep = INT_MAX;
362 if (audio->ch4.envelope.initialVolume == 0) {
363 audio->ch4.envelope.dead = 1;
364 audio->ch4.sample = 0;
365 }
366 }
367}
368
369void GBAAudioWriteSOUND4CNT_HI(struct GBAAudio* audio, uint16_t value) {
370 audio->ch4.control.packed = value;
371 audio->ch4.control.endTime = (GBA_ARM7TDMI_FREQUENCY * (64 - audio->ch4.envelope.length)) >> 8;
372 if (audio->ch4.control.restart) {
373 audio->playingCh4 = 1;
374 audio->ch4.envelope.currentVolume = audio->ch4.envelope.initialVolume;
375 if (audio->ch4.envelope.stepTime) {
376 audio->ch4.envelope.nextStep = 0;
377 } else {
378 audio->ch4.envelope.nextStep = INT_MAX;
379 }
380 if (audio->ch4.control.power) {
381 audio->ch4.lfsr = 0x40;
382 } else {
383 audio->ch4.lfsr = 0x4000;
384 }
385 audio->nextCh4 = 0;
386 }
387}
388
389void GBAAudioWriteSOUNDCNT_LO(struct GBAAudio* audio, uint16_t value) {
390 audio->soundcntLo = value;
391}
392
393void GBAAudioWriteSOUNDCNT_HI(struct GBAAudio* audio, uint16_t value) {
394 audio->soundcntHi = value;
395}
396
397void GBAAudioWriteSOUNDCNT_X(struct GBAAudio* audio, uint16_t value) {
398 audio->soundcntX = (value & 0x80) | (audio->soundcntX & 0x0F);
399}
400
401void GBAAudioWriteSOUNDBIAS(struct GBAAudio* audio, uint16_t value) {
402 audio->soundbias = value;
403}
404
405void GBAAudioWriteWaveRAM(struct GBAAudio* audio, int address, uint32_t value) {
406 audio->ch3.wavedata[address | (!audio->ch3.bank.bank * 4)] = value;
407}
408
409void GBAAudioWriteFIFO(struct GBAAudio* audio, int address, uint32_t value) {
410 struct CircleBuffer* fifo;
411 switch (address) {
412 case REG_FIFO_A_LO:
413 fifo = &audio->chA.fifo;
414 break;
415 case REG_FIFO_B_LO:
416 fifo = &audio->chB.fifo;
417 break;
418 default:
419 GBALog(audio->p, GBA_LOG_ERROR, "Bad FIFO write to address 0x%03x", address);
420 return;
421 }
422 while (!CircleBufferWrite32(fifo, value)) {
423 int32_t dummy;
424 CircleBufferRead32(fifo, &dummy);
425 }
426}
427
428void GBAAudioSampleFIFO(struct GBAAudio* audio, int fifoId, int32_t cycles) {
429 struct GBAAudioFIFO* channel;
430 if (fifoId == 0) {
431 channel = &audio->chA;
432 } else if (fifoId == 1) {
433 channel = &audio->chB;
434 } else {
435 GBALog(audio->p, GBA_LOG_ERROR, "Bad FIFO write to address 0x%03x", fifoId);
436 return;
437 }
438 if (CircleBufferSize(&channel->fifo) <= 4 * sizeof(int32_t)) {
439 struct GBADMA* dma = &audio->p->memory.dma[channel->dmaSource];
440 dma->nextCount = 4;
441 dma->nextEvent = 0;
442 GBAMemoryUpdateDMAs(audio->p, -cycles);
443 }
444 CircleBufferRead8(&channel->fifo, &channel->sample);
445}
446
447unsigned GBAAudioCopy(struct GBAAudio* audio, void* left, void* right, unsigned nSamples) {
448 GBASyncLockAudio(audio->p->sync);
449 unsigned read = 0;
450 if (left) {
451 unsigned readL = CircleBufferRead(&audio->left, left, nSamples * sizeof(int32_t)) >> 2;
452 if (readL < nSamples) {
453 memset((int32_t*) left + readL, 0, nSamples - readL);
454 }
455 read = readL;
456 }
457 if (right) {
458 unsigned readR = CircleBufferRead(&audio->right, right, nSamples * sizeof(int32_t)) >> 2;
459 if (readR < nSamples) {
460 memset((int32_t*) right + readR, 0, nSamples - readR);
461 }
462 read = read >= readR ? read : readR;
463 }
464 GBASyncConsumeAudio(audio->p->sync);
465 return read;
466}
467
468unsigned GBAAudioResampleNN(struct GBAAudio* audio, float ratio, float* drift, struct GBAStereoSample* output, unsigned nSamples) {
469 int32_t left[GBA_AUDIO_SAMPLES];
470 int32_t right[GBA_AUDIO_SAMPLES];
471
472 // toRead is in GBA samples
473 // TODO: Do this with fixed-point math
474 unsigned toRead = ceilf(nSamples / ratio);
475 unsigned totalRead = 0;
476 while (nSamples) {
477 unsigned currentRead = GBA_AUDIO_SAMPLES;
478 if (currentRead > toRead) {
479 currentRead = toRead;
480 }
481 unsigned read = GBAAudioCopy(audio, left, right, currentRead);
482 toRead -= read;
483 unsigned i;
484 for (i = 0; i < read; ++i) {
485 *drift += ratio;
486 while (*drift >= 1.f) {
487 output->left = left[i];
488 output->right = right[i];
489 ++output;
490 ++totalRead;
491 --nSamples;
492 *drift -= 1.f;
493 if (!nSamples) {
494 return totalRead;
495 }
496 }
497 }
498 if (read < currentRead) {
499 memset(output, 0, nSamples * sizeof(struct GBAStereoSample));
500 break;
501 }
502 }
503 return totalRead;
504}
505
506static int32_t _updateSquareChannel(struct GBAAudioSquareControl* control, int duty) {
507 control->hi = !control->hi;
508 int period = 16 * (2048 - control->frequency);
509 switch (duty) {
510 case 0:
511 return control->hi ? period : period * 7;
512 case 1:
513 return control->hi ? period * 2 : period * 6;
514 case 2:
515 return period * 4;
516 case 3:
517 return control->hi ? period * 6 : period * 2;
518 default:
519 // This should never be hit
520 return period * 4;
521 }
522}
523
524static void _updateEnvelope(struct GBAAudioEnvelope* envelope) {
525 if (envelope->direction) {
526 ++envelope->currentVolume;
527 } else {
528 --envelope->currentVolume;
529 }
530 if (envelope->currentVolume >= 15) {
531 envelope->currentVolume = 15;
532 envelope->nextStep = INT_MAX;
533 } else if (envelope->currentVolume <= 0) {
534 envelope->currentVolume = 0;
535 envelope->dead = 1;
536 envelope->nextStep = INT_MAX;
537 } else {
538 envelope->nextStep += envelope->stepTime * (GBA_ARM7TDMI_FREQUENCY >> 6);
539 }
540}
541
542static bool _updateSweep(struct GBAAudioChannel1* ch) {
543 if (ch->sweep.direction) {
544 int frequency = ch->control.frequency;
545 frequency -= frequency >> ch->sweep.shift;
546 if (frequency >= 0) {
547 ch->control.frequency = frequency;
548 }
549 } else {
550 int frequency = ch->control.frequency;
551 frequency += frequency >> ch->sweep.shift;
552 if (frequency < 2048) {
553 ch->control.frequency = frequency;
554 } else {
555 return false;
556 }
557 }
558 ch->nextSweep += ch->sweep.time * SWEEP_CYCLES;
559 return true;
560}
561
562static int32_t _updateChannel1(struct GBAAudioChannel1* ch) {
563 int timing = _updateSquareChannel(&ch->control, ch->envelope.duty);
564 ch->sample = ch->control.hi * 0x10 - 0x8;
565 ch->sample *= ch->envelope.currentVolume;
566 return timing;
567}
568
569static int32_t _updateChannel2(struct GBAAudioChannel2* ch) {
570 int timing = _updateSquareChannel(&ch->control, ch->envelope.duty);
571 ch->sample = ch->control.hi * 0x10 - 0x8;
572 ch->sample *= ch->envelope.currentVolume;
573 return timing;
574}
575
576static int32_t _updateChannel3(struct GBAAudioChannel3* ch) {
577 int i;
578 int start;
579 int end;
580 int volume;
581 switch (ch->wave.volume) {
582 case 0:
583 volume = 0;
584 break;
585 case 1:
586 volume = 4;
587 break;
588 case 2:
589 volume = 2;
590 break;
591 case 3:
592 volume = 1;
593 break;
594 default:
595 volume = 3;
596 break;
597 }
598 if (ch->bank.size) {
599 start = 7;
600 end = 0;
601 } else if (ch->bank.bank) {
602 start = 7;
603 end = 4;
604 } else {
605 start = 3;
606 end = 0;
607 }
608 uint32_t bitsCarry = ch->wavedata[end] & 0x0F000000;
609 uint32_t bits;
610 for (i = start; i >= end; --i) {
611 bits = ch->wavedata[i] & 0x0F000000;
612 ch->wavedata[i] = ((ch->wavedata[i] & 0xF0F0F0F0) >> 4) | ((ch->wavedata[i] & 0x000F0F0F) << 12);
613 ch->wavedata[i] |= bitsCarry >> 20;
614 bitsCarry = bits;
615 }
616 ch->sample = (bitsCarry >> 20);
617 ch->sample >>= 2;
618 ch->sample *= volume;
619 return 8 * (2048 - ch->control.rate);
620}
621
622static int32_t _updateChannel4(struct GBAAudioChannel4* ch) {
623 int lsb = ch->lfsr & 1;
624 ch->sample = lsb * 0x10 - 0x8;
625 ch->sample *= ch->envelope.currentVolume;
626 ch->lfsr >>= 1;
627 ch->lfsr ^= (lsb * 0x60) << (ch->control.power ? 0 : 8);
628 int timing = ch->control.ratio ? 2 * ch->control.ratio : 1;
629 timing <<= ch->control.frequency;
630 timing *= 32;
631 return timing;
632}
633
634static int _applyBias(struct GBAAudio* audio, int sample) {
635 sample += audio->bias;
636 if (sample >= 0x400) {
637 sample = 0x3FF;
638 } else if (sample < 0) {
639 sample = 0;
640 }
641 return (sample - audio->bias) << 6;
642}
643
644static void _sample(struct GBAAudio* audio) {
645 int32_t sampleLeft = 0;
646 int32_t sampleRight = 0;
647 int psgShift = 6 - audio->volume;
648
649 if (audio->ch1Left) {
650 sampleLeft += audio->ch1.sample;
651 }
652
653 if (audio->ch1Right) {
654 sampleRight += audio->ch1.sample;
655 }
656
657 if (audio->ch2Left) {
658 sampleLeft += audio->ch2.sample;
659 }
660
661 if (audio->ch2Right) {
662 sampleRight += audio->ch2.sample;
663 }
664
665 if (audio->ch3Left) {
666 sampleLeft += audio->ch3.sample;
667 }
668
669 if (audio->ch3Right) {
670 sampleRight += audio->ch3.sample;
671 }
672
673 if (audio->ch4Left) {
674 sampleLeft += audio->ch4.sample;
675 }
676
677 if (audio->ch4Right) {
678 sampleRight += audio->ch4.sample;
679 }
680
681 sampleLeft = (sampleLeft * (1 + audio->volumeLeft)) >> psgShift;
682 sampleRight = (sampleRight * (1 + audio->volumeRight)) >> psgShift;
683
684 if (audio->chALeft) {
685 sampleLeft += (audio->chA.sample << 2) >> !audio->volumeChA;
686 }
687
688 if (audio->chARight) {
689 sampleRight += (audio->chA.sample << 2) >> !audio->volumeChA;
690 }
691
692 if (audio->chBLeft) {
693 sampleLeft += (audio->chB.sample << 2) >> !audio->volumeChB;
694 }
695
696 if (audio->chBRight) {
697 sampleRight += (audio->chB.sample << 2) >> !audio->volumeChB;
698 }
699
700 sampleLeft = _applyBias(audio, sampleLeft);
701 sampleRight = _applyBias(audio, sampleRight);
702
703 GBASyncLockAudio(audio->p->sync);
704 CircleBufferWrite32(&audio->left, sampleLeft);
705 CircleBufferWrite32(&audio->right, sampleRight);
706 unsigned produced = CircleBufferSize(&audio->left);
707 GBASyncProduceAudio(audio->p->sync, produced >= CircleBufferCapacity(&audio->left) / sizeof(int32_t) * 3);
708}
709
710void GBAAudioSerialize(const struct GBAAudio* audio, struct GBASerializedState* state) {
711 state->audio.ch1Volume = audio->ch1.envelope.currentVolume;
712 state->audio.ch1Dead = audio->ch1.envelope.dead;
713 state->audio.ch1Hi = audio->ch1.control.hi;
714 state->audio.ch1.envelopeNextStep = audio->ch1.envelope.nextStep;
715 state->audio.ch1.waveNextStep = audio->ch1.control.nextStep;
716 state->audio.ch1.sweepNextStep = audio->ch1.nextSweep;
717 state->audio.ch1.endTime = audio->ch1.control.endTime;
718 state->audio.ch1.nextEvent = audio->nextCh1;
719
720 state->audio.ch2Volume = audio->ch2.envelope.currentVolume;
721 state->audio.ch2Dead = audio->ch2.envelope.dead;
722 state->audio.ch2Hi = audio->ch2.control.hi;
723 state->audio.ch2.envelopeNextStep = audio->ch2.envelope.nextStep;
724 state->audio.ch2.waveNextStep = audio->ch2.control.nextStep;
725 state->audio.ch2.endTime = audio->ch2.control.endTime;
726 state->audio.ch2.nextEvent = audio->nextCh2;
727
728 memcpy(state->audio.ch3.wavebanks, audio->ch3.wavedata, sizeof(state->audio.ch3.wavebanks));
729 state->audio.ch3.endTime = audio->ch3.control.endTime;
730 state->audio.ch3.nextEvent = audio->nextCh3;
731
732 state->audio.ch4Volume = audio->ch4.envelope.currentVolume;
733 state->audio.ch4Dead = audio->ch4.envelope.dead;
734 state->audio.ch4.envelopeNextStep = audio->ch4.envelope.nextStep;
735 state->audio.ch4.lfsr = audio->ch4.lfsr;
736 state->audio.ch4.endTime = audio->ch4.control.endTime;
737 state->audio.ch4.nextEvent = audio->nextCh4;
738
739 CircleBufferDump(&audio->chA.fifo, state->audio.fifoA, sizeof(state->audio.fifoA));
740 CircleBufferDump(&audio->chB.fifo, state->audio.fifoB, sizeof(state->audio.fifoB));
741 state->audio.fifoSize = CircleBufferSize(&audio->chA.fifo);
742
743 state->audio.nextEvent = audio->nextEvent;
744 state->audio.eventDiff = audio->eventDiff;
745 state->audio.nextSample = audio->nextSample;
746}
747
748void GBAAudioDeserialize(struct GBAAudio* audio, const struct GBASerializedState* state) {
749 audio->ch1.envelope.currentVolume = state->audio.ch1Volume;
750 audio->ch1.envelope.dead = state->audio.ch1Dead;
751 audio->ch1.control.hi = state->audio.ch1Hi;
752 audio->ch1.envelope.nextStep = state->audio.ch1.envelopeNextStep;
753 audio->ch1.control.nextStep = state->audio.ch1.waveNextStep;
754 audio->ch1.nextSweep = state->audio.ch1.sweepNextStep;
755 audio->ch1.control.endTime = state->audio.ch1.endTime;
756 audio->nextCh1 = state->audio.ch1.nextEvent;
757
758 audio->ch2.envelope.currentVolume = state->audio.ch2Volume;
759 audio->ch2.envelope.dead = state->audio.ch2Dead;
760 audio->ch2.control.hi = state->audio.ch2Hi;
761 audio->ch2.envelope.nextStep = state->audio.ch2.envelopeNextStep;
762 audio->ch2.control.nextStep = state->audio.ch2.waveNextStep;
763 audio->ch2.control.endTime = state->audio.ch2.endTime;
764 audio->nextCh2 = state->audio.ch2.nextEvent;
765
766 memcpy(audio->ch3.wavedata, state->audio.ch3.wavebanks, sizeof(audio->ch3.wavedata));
767 audio->ch3.control.endTime = state->audio.ch3.endTime;
768 audio->nextCh3 = state->audio.ch3.nextEvent;
769
770 audio->ch4.envelope.currentVolume = state->audio.ch4Volume;
771 audio->ch4.envelope.dead = state->audio.ch4Dead;
772 audio->ch4.envelope.nextStep = state->audio.ch4.envelopeNextStep;
773 audio->ch4.lfsr = state->audio.ch4.lfsr;
774 audio->ch4.control.endTime = state->audio.ch4.endTime;
775 audio->nextCh4 = state->audio.ch4.nextEvent;
776
777 CircleBufferClear(&audio->chA.fifo);
778 CircleBufferClear(&audio->chB.fifo);
779 int i;
780 for (i = 0; i < state->audio.fifoSize; ++i) {
781 CircleBufferWrite8(&audio->chA.fifo, state->audio.fifoA[i]);
782 CircleBufferWrite8(&audio->chB.fifo, state->audio.fifoB[i]);
783 }
784
785 audio->nextEvent = state->audio.nextEvent;
786 audio->eventDiff = state->audio.eventDiff;
787 audio->nextSample = state->audio.nextSample;
788}
789
790float GBAAudioCalculateRatio(struct GBAAudio* audio, float desiredFPS, float desiredSampleRate) {
791 return desiredSampleRate * GBA_ARM7TDMI_FREQUENCY / (VIDEO_TOTAL_LENGTH * desiredFPS * audio->sampleRate);
792}