/* Copyright (c) 2013-2016 Jeffrey Pfau * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "audio.h" #include "core/interface.h" #include "core/sync.h" #include "gb/gb.h" #include "gb/serialize.h" #include "gb/io.h" #ifdef _3DS #define blip_add_delta blip_add_delta_fast #endif #define FRAME_CYCLES (DMG_LR35902_FREQUENCY >> 9) const uint32_t DMG_LR35902_FREQUENCY = 0x400000; static const int CLOCKS_PER_BLIP_FRAME = 0x1000; static const unsigned BLIP_BUFFER_SIZE = 0x4000; const int GB_AUDIO_VOLUME_MAX = 0x100; static void _writeDuty(struct GBAudioEnvelope* envelope, uint8_t value); static bool _writeSweep(struct GBAudioEnvelope* envelope, uint8_t value); static int32_t _updateSquareChannel(struct GBAudioSquareControl* envelope, int duty); static void _updateEnvelope(struct GBAudioEnvelope* envelope); static bool _updateSweep(struct GBAudioChannel1* ch, bool initial); static int32_t _updateChannel1(struct GBAudioChannel1* ch); static int32_t _updateChannel2(struct GBAudioChannel2* ch); static int32_t _updateChannel3(struct GBAudioChannel3* ch, enum GBAudioStyle style); static int32_t _updateChannel4(struct GBAudioChannel4* ch); static void _sample(struct GBAudio* audio, int32_t cycles); static void _scheduleEvent(struct GBAudio* audio); void GBAudioInit(struct GBAudio* audio, size_t samples, uint8_t* nr52, enum GBAudioStyle style) { audio->samples = samples; audio->left = blip_new(BLIP_BUFFER_SIZE); audio->right = blip_new(BLIP_BUFFER_SIZE); audio->clockRate = DMG_LR35902_FREQUENCY; // Guess too large; we hang producing extra samples if we guess too low blip_set_rates(audio->left, DMG_LR35902_FREQUENCY, 96000); blip_set_rates(audio->right, DMG_LR35902_FREQUENCY, 96000); audio->forceDisableCh[0] = false; audio->forceDisableCh[1] = false; audio->forceDisableCh[2] = false; audio->forceDisableCh[3] = false; audio->masterVolume = GB_AUDIO_VOLUME_MAX; audio->nr52 = nr52; audio->style = style; } void GBAudioDeinit(struct GBAudio* audio) { blip_delete(audio->left); blip_delete(audio->right); } void GBAudioReset(struct GBAudio* audio) { audio->nextEvent = 0; audio->nextCh1 = 0; audio->nextCh2 = 0; audio->nextCh3 = 0; audio->fadeCh3 = 0; audio->nextCh4 = 0; audio->ch1 = (struct GBAudioChannel1) { .envelope = { .dead = 2 } }; audio->ch2 = (struct GBAudioChannel2) { .envelope = { .dead = 2 } }; audio->ch3 = (struct GBAudioChannel3) { .bank = 0 }; audio->ch4 = (struct GBAudioChannel4) { .envelope = { .dead = 2 } }; audio->eventDiff = 0; audio->nextFrame = 0; audio->frame = 0; audio->nextSample = 0; audio->sampleInterval = 128; audio->lastLeft = 0; audio->lastRight = 0; audio->clock = 0; audio->volumeRight = 0; audio->volumeLeft = 0; audio->ch1Right = false; audio->ch2Right = false; audio->ch3Right = false; audio->ch4Right = false; audio->ch1Left = false; audio->ch2Left = false; audio->ch3Left = false; audio->ch4Left = false; audio->playingCh1 = false; audio->playingCh2 = false; audio->playingCh3 = false; audio->playingCh4 = false; } void GBAudioResizeBuffer(struct GBAudio* audio, size_t samples) { mCoreSyncLockAudio(audio->p->sync); audio->samples = samples; blip_clear(audio->left); blip_clear(audio->right); audio->clock = 0; mCoreSyncConsumeAudio(audio->p->sync); } void GBAudioWriteNR10(struct GBAudio* audio, uint8_t value) { audio->ch1.shift = GBAudioRegisterSquareSweepGetShift(value); bool oldDirection = audio->ch1.direction; audio->ch1.direction = GBAudioRegisterSquareSweepGetDirection(value); if (audio->ch1.sweepOccurred && oldDirection && !audio->ch1.direction) { audio->playingCh1 = false; *audio->nr52 &= ~0x0001; } audio->ch1.sweepOccurred = false; audio->ch1.time = GBAudioRegisterSquareSweepGetTime(value); if (!audio->ch1.time) { audio->ch1.time = 8; } } void GBAudioWriteNR11(struct GBAudio* audio, uint8_t value) { _writeDuty(&audio->ch1.envelope, value); audio->ch1.control.length = 64 - audio->ch1.envelope.length; } void GBAudioWriteNR12(struct GBAudio* audio, uint8_t value) { if (!_writeSweep(&audio->ch1.envelope, value)) { audio->playingCh1 = false; *audio->nr52 &= ~0x0001; } } void GBAudioWriteNR13(struct GBAudio* audio, uint8_t value) { audio->ch1.control.frequency &= 0x700; audio->ch1.control.frequency |= GBAudioRegisterControlGetFrequency(value); } void GBAudioWriteNR14(struct GBAudio* audio, uint8_t value) { audio->ch1.control.frequency &= 0xFF; audio->ch1.control.frequency |= GBAudioRegisterControlGetFrequency(value << 8); bool wasStop = audio->ch1.control.stop; audio->ch1.control.stop = GBAudioRegisterControlGetStop(value << 8); if (!wasStop && audio->ch1.control.stop && audio->ch1.control.length && !(audio->frame & 1)) { --audio->ch1.control.length; if (audio->ch1.control.length == 0) { audio->playingCh1 = false; } } if (GBAudioRegisterControlIsRestart(value << 8)) { audio->playingCh1 = audio->ch1.envelope.initialVolume || audio->ch1.envelope.direction; audio->ch1.envelope.currentVolume = audio->ch1.envelope.initialVolume; if (audio->ch1.envelope.currentVolume > 0) { audio->ch1.envelope.dead = audio->ch1.envelope.stepTime ? 0 : 1; } else { audio->ch1.envelope.dead = audio->ch1.envelope.stepTime ? 0 : 2; } if (audio->nextEvent == INT_MAX) { audio->eventDiff = 0; } if (audio->playingCh1) { audio->ch1.control.hi = !audio->ch1.control.hi; } audio->nextCh1 = audio->eventDiff; audio->ch1.realFrequency = audio->ch1.control.frequency; audio->ch1.sweepStep = audio->ch1.time; audio->ch1.sweepEnable = (audio->ch1.sweepStep != 8) || audio->ch1.shift; audio->ch1.sweepOccurred = false; if (audio->playingCh1 && audio->ch1.shift) { audio->playingCh1 = _updateSweep(&audio->ch1, true); } if (!audio->ch1.control.length) { audio->ch1.control.length = 64; if (audio->ch1.control.stop && !(audio->frame & 1)) { --audio->ch1.control.length; } } _scheduleEvent(audio); } *audio->nr52 &= ~0x0001; *audio->nr52 |= audio->playingCh1; } void GBAudioWriteNR21(struct GBAudio* audio, uint8_t value) { _writeDuty(&audio->ch2.envelope, value); audio->ch2.control.length = 64 - audio->ch2.envelope.length; } void GBAudioWriteNR22(struct GBAudio* audio, uint8_t value) { if (!_writeSweep(&audio->ch2.envelope, value)) { audio->playingCh2 = false; *audio->nr52 &= ~0x0002; } } void GBAudioWriteNR23(struct GBAudio* audio, uint8_t value) { audio->ch2.control.frequency &= 0x700; audio->ch2.control.frequency |= GBAudioRegisterControlGetFrequency(value); } void GBAudioWriteNR24(struct GBAudio* audio, uint8_t value) { audio->ch2.control.frequency &= 0xFF; audio->ch2.control.frequency |= GBAudioRegisterControlGetFrequency(value << 8); bool wasStop = audio->ch2.control.stop; audio->ch2.control.stop = GBAudioRegisterControlGetStop(value << 8); if (!wasStop && audio->ch2.control.stop && audio->ch2.control.length && !(audio->frame & 1)) { --audio->ch2.control.length; if (audio->ch2.control.length == 0) { audio->playingCh2 = false; } } if (GBAudioRegisterControlIsRestart(value << 8)) { audio->playingCh2 = audio->ch2.envelope.initialVolume || audio->ch2.envelope.direction; audio->ch2.envelope.currentVolume = audio->ch2.envelope.initialVolume; if (audio->ch2.envelope.currentVolume > 0) { audio->ch2.envelope.dead = audio->ch2.envelope.stepTime ? 0 : 1; } else { audio->ch2.envelope.dead = audio->ch2.envelope.stepTime ? 0 : 2; } if (audio->nextEvent == INT_MAX) { audio->eventDiff = 0; } if (audio->playingCh2) { audio->ch2.control.hi = !audio->ch2.control.hi; } audio->nextCh2 = audio->eventDiff; if (!audio->ch2.control.length) { audio->ch2.control.length = 64; if (audio->ch2.control.stop && !(audio->frame & 1)) { --audio->ch2.control.length; } } _scheduleEvent(audio); } *audio->nr52 &= ~0x0002; *audio->nr52 |= audio->playingCh2 << 1; } void GBAudioWriteNR30(struct GBAudio* audio, uint8_t value) { audio->ch3.enable = GBAudioRegisterBankGetEnable(value); if (!audio->ch3.enable) { audio->playingCh3 = false; *audio->nr52 &= ~0x0004; } } void GBAudioWriteNR31(struct GBAudio* audio, uint8_t value) { audio->ch3.length = 256 - value; } void GBAudioWriteNR32(struct GBAudio* audio, uint8_t value) { audio->ch3.volume = GBAudioRegisterBankVolumeGetVolumeGB(value); } void GBAudioWriteNR33(struct GBAudio* audio, uint8_t value) { audio->ch3.rate &= 0x700; audio->ch3.rate |= GBAudioRegisterControlGetRate(value); } void GBAudioWriteNR34(struct GBAudio* audio, uint8_t value) { audio->ch3.rate &= 0xFF; audio->ch3.rate |= GBAudioRegisterControlGetRate(value << 8); bool wasStop = audio->ch3.stop; audio->ch3.stop = GBAudioRegisterControlGetStop(value << 8); if (!wasStop && audio->ch3.stop && audio->ch3.length && !(audio->frame & 1)) { --audio->ch3.length; if (audio->ch3.length == 0) { audio->playingCh3 = false; } } bool wasEnable = audio->playingCh3; if (GBAudioRegisterControlIsRestart(value << 8)) { audio->playingCh3 = audio->ch3.enable; if (!audio->ch3.length) { audio->ch3.length = 256; if (audio->ch3.stop && !(audio->frame & 1)) { --audio->ch3.length; } } if (audio->style == GB_AUDIO_DMG && wasEnable && audio->playingCh3 && audio->ch3.readable) { if (audio->ch3.window < 8) { audio->ch3.wavedata8[0] = audio->ch3.wavedata8[audio->ch3.window >> 1]; } else { audio->ch3.wavedata8[0] = audio->ch3.wavedata8[((audio->ch3.window >> 1) & ~3)]; audio->ch3.wavedata8[1] = audio->ch3.wavedata8[((audio->ch3.window >> 1) & ~3) + 1]; audio->ch3.wavedata8[2] = audio->ch3.wavedata8[((audio->ch3.window >> 1) & ~3) + 2]; audio->ch3.wavedata8[3] = audio->ch3.wavedata8[((audio->ch3.window >> 1) & ~3) + 3]; } } audio->ch3.window = 0; } if (audio->playingCh3) { if (audio->nextEvent == INT_MAX) { audio->eventDiff = 0; } audio->ch3.readable = audio->style != GB_AUDIO_DMG; _scheduleEvent(audio); // TODO: Where does this cycle delay come from? audio->nextCh3 = audio->eventDiff + audio->nextEvent + 4 + 2 * (2048 - audio->ch3.rate); } *audio->nr52 &= ~0x0004; *audio->nr52 |= audio->playingCh3 << 2; } void GBAudioWriteNR41(struct GBAudio* audio, uint8_t value) { _writeDuty(&audio->ch4.envelope, value); audio->ch4.length = 64 - audio->ch4.envelope.length; } void GBAudioWriteNR42(struct GBAudio* audio, uint8_t value) { if (!_writeSweep(&audio->ch4.envelope, value)) { audio->playingCh4 = false; *audio->nr52 &= ~0x0008; } } void GBAudioWriteNR43(struct GBAudio* audio, uint8_t value) { audio->ch4.ratio = GBAudioRegisterNoiseFeedbackGetRatio(value); audio->ch4.frequency = GBAudioRegisterNoiseFeedbackGetFrequency(value); audio->ch4.power = GBAudioRegisterNoiseFeedbackGetPower(value); } void GBAudioWriteNR44(struct GBAudio* audio, uint8_t value) { bool wasStop = audio->ch4.stop; audio->ch4.stop = GBAudioRegisterNoiseControlGetStop(value); if (!wasStop && audio->ch4.stop && audio->ch4.length && !(audio->frame & 1)) { --audio->ch4.length; if (audio->ch4.length == 0) { audio->playingCh4 = false; } } if (GBAudioRegisterNoiseControlIsRestart(value)) { audio->playingCh4 = audio->ch4.envelope.initialVolume || audio->ch4.envelope.direction; audio->ch4.envelope.currentVolume = audio->ch4.envelope.initialVolume; if (audio->ch4.envelope.currentVolume > 0) { audio->ch4.envelope.dead = audio->ch4.envelope.stepTime ? 0 : 1; } else { audio->ch4.envelope.dead = audio->ch4.envelope.stepTime ? 0 : 2; } if (audio->ch4.power) { audio->ch4.lfsr = 0x40; } else { audio->ch4.lfsr = 0x4000; } if (audio->nextEvent == INT_MAX) { audio->eventDiff = 0; } audio->nextCh4 = audio->eventDiff; if (!audio->ch4.length) { audio->ch4.length = 64; if (audio->ch4.stop && !(audio->frame & 1)) { --audio->ch4.length; } } _scheduleEvent(audio); } *audio->nr52 &= ~0x0008; *audio->nr52 |= audio->playingCh4 << 3; } void GBAudioWriteNR50(struct GBAudio* audio, uint8_t value) { audio->volumeRight = GBRegisterNR50GetVolumeRight(value); audio->volumeLeft = GBRegisterNR50GetVolumeLeft(value); } void GBAudioWriteNR51(struct GBAudio* audio, uint8_t value) { audio->ch1Right = GBRegisterNR51GetCh1Right(value); audio->ch2Right = GBRegisterNR51GetCh2Right(value); audio->ch3Right = GBRegisterNR51GetCh3Right(value); audio->ch4Right = GBRegisterNR51GetCh4Right(value); audio->ch1Left = GBRegisterNR51GetCh1Left(value); audio->ch2Left = GBRegisterNR51GetCh2Left(value); audio->ch3Left = GBRegisterNR51GetCh3Left(value); audio->ch4Left = GBRegisterNR51GetCh4Left(value); } void GBAudioWriteNR52(struct GBAudio* audio, uint8_t value) { bool wasEnable = audio->enable; audio->enable = GBAudioEnableGetEnable(value); if (!audio->enable) { audio->playingCh1 = 0; audio->playingCh2 = 0; audio->playingCh3 = 0; audio->playingCh4 = 0; GBAudioWriteNR10(audio, 0); GBAudioWriteNR12(audio, 0); GBAudioWriteNR13(audio, 0); GBAudioWriteNR14(audio, 0); GBAudioWriteNR22(audio, 0); GBAudioWriteNR23(audio, 0); GBAudioWriteNR24(audio, 0); GBAudioWriteNR30(audio, 0); GBAudioWriteNR32(audio, 0); GBAudioWriteNR33(audio, 0); GBAudioWriteNR34(audio, 0); GBAudioWriteNR42(audio, 0); GBAudioWriteNR43(audio, 0); GBAudioWriteNR44(audio, 0); GBAudioWriteNR50(audio, 0); GBAudioWriteNR51(audio, 0); if (audio->style != GB_AUDIO_DMG) { GBAudioWriteNR11(audio, 0); GBAudioWriteNR21(audio, 0); GBAudioWriteNR31(audio, 0); GBAudioWriteNR41(audio, 0); } if (audio->p) { audio->p->memory.io[REG_NR10] = 0; audio->p->memory.io[REG_NR11] = 0; audio->p->memory.io[REG_NR12] = 0; audio->p->memory.io[REG_NR13] = 0; audio->p->memory.io[REG_NR14] = 0; audio->p->memory.io[REG_NR21] = 0; audio->p->memory.io[REG_NR22] = 0; audio->p->memory.io[REG_NR23] = 0; audio->p->memory.io[REG_NR24] = 0; audio->p->memory.io[REG_NR30] = 0; audio->p->memory.io[REG_NR31] = 0; audio->p->memory.io[REG_NR32] = 0; audio->p->memory.io[REG_NR33] = 0; audio->p->memory.io[REG_NR34] = 0; audio->p->memory.io[REG_NR42] = 0; audio->p->memory.io[REG_NR43] = 0; audio->p->memory.io[REG_NR44] = 0; audio->p->memory.io[REG_NR50] = 0; audio->p->memory.io[REG_NR51] = 0; if (audio->style != GB_AUDIO_DMG) { audio->p->memory.io[REG_NR11] = 0; audio->p->memory.io[REG_NR21] = 0; audio->p->memory.io[REG_NR31] = 0; audio->p->memory.io[REG_NR41] = 0; } } *audio->nr52 &= ~0x000F; } else if (!wasEnable) { audio->frame = 7; } } int32_t GBAudioProcessEvents(struct GBAudio* audio, int32_t cycles) { if (audio->nextEvent == INT_MAX) { return INT_MAX; } audio->nextEvent -= cycles; audio->eventDiff += cycles; while (audio->nextEvent <= 0) { audio->nextEvent = INT_MAX; if (audio->enable) { audio->nextFrame -= audio->eventDiff; int frame = -1; if (audio->nextFrame <= 0) { frame = (audio->frame + 1) & 7; audio->frame = frame; audio->nextFrame += FRAME_CYCLES; if (audio->nextFrame < audio->nextEvent) { audio->nextEvent = audio->nextFrame; } } if (audio->playingCh1) { audio->nextCh1 -= audio->eventDiff; if (!audio->ch1.envelope.dead && frame == 7) { --audio->ch1.envelope.nextStep; if (audio->ch1.envelope.nextStep == 0) { int8_t sample = audio->ch1.control.hi * 0x10 - 0x8; _updateEnvelope(&audio->ch1.envelope); audio->ch1.sample = sample * audio->ch1.envelope.currentVolume; } } if (audio->ch1.sweepEnable && (frame & 3) == 2) { --audio->ch1.sweepStep; if (audio->ch1.sweepStep == 0) { audio->playingCh1 = _updateSweep(&audio->ch1, false); } } if (audio->ch1.envelope.dead != 2) { if (audio->nextCh1 <= 0) { audio->nextCh1 += _updateChannel1(&audio->ch1); } if (audio->nextCh1 < audio->nextEvent) { audio->nextEvent = audio->nextCh1; } } } if (audio->ch1.control.length && audio->ch1.control.stop && !(frame & 1)) { --audio->ch1.control.length; if (audio->ch1.control.length == 0) { audio->playingCh1 = 0; } } if (audio->playingCh2) { audio->nextCh2 -= audio->eventDiff; if (!audio->ch2.envelope.dead && frame == 7) { --audio->ch2.envelope.nextStep; if (audio->ch2.envelope.nextStep == 0) { int8_t sample = audio->ch2.control.hi * 0x10 - 0x8; _updateEnvelope(&audio->ch2.envelope); audio->ch2.sample = sample * audio->ch2.envelope.currentVolume; } } if (audio->ch2.envelope.dead != 2) { if (audio->nextCh2 <= 0) { audio->nextCh2 += _updateChannel2(&audio->ch2); } if (audio->nextCh2 < audio->nextEvent) { audio->nextEvent = audio->nextCh2; } } } if (audio->ch2.control.length && audio->ch2.control.stop && !(frame & 1)) { --audio->ch2.control.length; if (audio->ch2.control.length == 0) { audio->playingCh2 = 0; } } if (audio->playingCh3) { audio->nextCh3 -= audio->eventDiff; audio->fadeCh3 -= audio->eventDiff; if (audio->fadeCh3 <= 0) { audio->ch3.readable = false; audio->fadeCh3 = INT_MAX; } if (audio->nextCh3 <= 0) { if (audio->style == GB_AUDIO_DMG) { audio->fadeCh3 = audio->nextCh3 + 2; } audio->nextCh3 += _updateChannel3(&audio->ch3, audio->style); audio->ch3.readable = true; } if (audio->fadeCh3 < audio->nextEvent) { audio->nextEvent = audio->fadeCh3; } if (audio->nextCh3 < audio->nextEvent) { audio->nextEvent = audio->nextCh3; } } if (audio->ch3.length && audio->ch3.stop && !(frame & 1)) { --audio->ch3.length; if (audio->ch3.length == 0) { audio->playingCh3 = 0; } } if (audio->playingCh4) { audio->nextCh4 -= audio->eventDiff; if (!audio->ch4.envelope.dead && frame == 7) { --audio->ch4.envelope.nextStep; if (audio->ch4.envelope.nextStep == 0) { int8_t sample = (audio->ch4.sample >> 31) * 0x8; _updateEnvelope(&audio->ch4.envelope); audio->ch4.sample = sample * audio->ch4.envelope.currentVolume; } } } if (audio->ch4.length && audio->ch4.stop && !(frame & 1)) { --audio->ch4.length; if (audio->ch4.length == 0) { audio->playingCh4 = 0; } } } *audio->nr52 &= ~0x000F; *audio->nr52 |= audio->playingCh1; *audio->nr52 |= audio->playingCh2 << 1; *audio->nr52 |= audio->playingCh3 << 2; *audio->nr52 |= audio->playingCh4 << 3; if (audio->p) { audio->nextSample -= audio->eventDiff; if (audio->nextSample <= 0) { _sample(audio, audio->sampleInterval); audio->nextSample += audio->sampleInterval; } if (audio->nextSample < audio->nextEvent) { audio->nextEvent = audio->nextSample; } } audio->eventDiff = 0; } return audio->nextEvent; } void GBAudioSamplePSG(struct GBAudio* audio, int16_t* left, int16_t* right) { int sampleLeft = 0; int sampleRight = 0; if (audio->ch4.envelope.dead != 2) { while (audio->nextCh4 <= 0) { audio->nextCh4 += _updateChannel4(&audio->ch4); } if (audio->nextCh4 < audio->nextEvent) { audio->nextEvent = audio->nextCh4; } } if (audio->playingCh1 && !audio->forceDisableCh[0]) { if (audio->ch1Left) { sampleLeft += audio->ch1.sample; } if (audio->ch1Right) { sampleRight += audio->ch1.sample; } } if (audio->playingCh2 && !audio->forceDisableCh[1]) { if (audio->ch2Left) { sampleLeft += audio->ch2.sample; } if (audio->ch2Right) { sampleRight += audio->ch2.sample; } } if (audio->playingCh3 && !audio->forceDisableCh[2]) { if (audio->ch3Left) { sampleLeft += audio->ch3.sample; } if (audio->ch3Right) { sampleRight += audio->ch3.sample; } } if (audio->playingCh4 && !audio->forceDisableCh[3]) { if (audio->ch4Left) { sampleLeft += audio->ch4.sample; } if (audio->ch4Right) { sampleRight += audio->ch4.sample; } } *left = sampleLeft * (1 + audio->volumeLeft); *right = sampleRight * (1 + audio->volumeRight); } void _sample(struct GBAudio* audio, int32_t cycles) { int16_t sampleLeft = 0; int16_t sampleRight = 0; GBAudioSamplePSG(audio, &sampleLeft, &sampleRight); sampleLeft = (sampleLeft * audio->masterVolume) >> 6; sampleRight = (sampleRight * audio->masterVolume) >> 6; mCoreSyncLockAudio(audio->p->sync); unsigned produced; if ((size_t) blip_samples_avail(audio->left) < audio->samples) { blip_add_delta(audio->left, audio->clock, sampleLeft - audio->lastLeft); blip_add_delta(audio->right, audio->clock, sampleRight - audio->lastRight); audio->lastLeft = sampleLeft; audio->lastRight = sampleRight; audio->clock += cycles; if (audio->clock >= CLOCKS_PER_BLIP_FRAME) { blip_end_frame(audio->left, audio->clock); blip_end_frame(audio->right, audio->clock); audio->clock -= CLOCKS_PER_BLIP_FRAME; } } produced = blip_samples_avail(audio->left); if (audio->p->stream && audio->p->stream->postAudioFrame) { audio->p->stream->postAudioFrame(audio->p->stream, sampleLeft, sampleRight); } bool wait = produced >= audio->samples; mCoreSyncProduceAudio(audio->p->sync, wait); if (wait && audio->p->stream && audio->p->stream->postAudioBuffer) { audio->p->stream->postAudioBuffer(audio->p->stream, audio->left, audio->right); } } void _writeDuty(struct GBAudioEnvelope* envelope, uint8_t value) { envelope->length = GBAudioRegisterDutyGetLength(value); envelope->duty = GBAudioRegisterDutyGetDuty(value); } bool _writeSweep(struct GBAudioEnvelope* envelope, uint8_t value) { envelope->stepTime = GBAudioRegisterSweepGetStepTime(value); envelope->direction = GBAudioRegisterSweepGetDirection(value); envelope->initialVolume = GBAudioRegisterSweepGetInitialVolume(value); if (envelope->stepTime == 0) { envelope->dead = envelope->currentVolume ? 1 : 2; } else if (!envelope->direction && !envelope->currentVolume) { envelope->dead = 2; } else if (envelope->direction && envelope->currentVolume == 0xF) { envelope->dead = 1; } else { envelope->dead = 0; } envelope->nextStep = envelope->stepTime; return envelope->initialVolume || envelope->direction; } static int32_t _updateSquareChannel(struct GBAudioSquareControl* control, int duty) { control->hi = !control->hi; int period = 4 * (2048 - control->frequency); switch (duty) { case 0: return control->hi ? period : period * 7; case 1: return control->hi ? period * 2 : period * 6; case 2: return period * 4; case 3: return control->hi ? period * 6 : period * 2; default: // This should never be hit return period * 4; } } static void _updateEnvelope(struct GBAudioEnvelope* envelope) { if (envelope->direction) { ++envelope->currentVolume; } else { --envelope->currentVolume; } if (envelope->currentVolume >= 15) { envelope->currentVolume = 15; envelope->dead = 1; } else if (envelope->currentVolume <= 0) { envelope->currentVolume = 0; envelope->dead = 2; } else { envelope->nextStep = envelope->stepTime; } } static bool _updateSweep(struct GBAudioChannel1* ch, bool initial) { if (initial || ch->time != 8) { int frequency = ch->realFrequency; if (ch->direction) { frequency -= frequency >> ch->shift; if (!initial && frequency >= 0) { ch->control.frequency = frequency; ch->realFrequency = frequency; } } else { frequency += frequency >> ch->shift; if (frequency < 2048) { if (!initial && ch->shift) { ch->control.frequency = frequency; ch->realFrequency = frequency; if (!_updateSweep(ch, true)) { return false; } } } else { return false; } } ch->sweepOccurred = true; } ch->sweepStep = ch->time; return true; } static int32_t _updateChannel1(struct GBAudioChannel1* ch) { int timing = _updateSquareChannel(&ch->control, ch->envelope.duty); ch->sample = ch->control.hi * 0x10 - 0x8; ch->sample *= ch->envelope.currentVolume; return timing; } static int32_t _updateChannel2(struct GBAudioChannel2* ch) { int timing = _updateSquareChannel(&ch->control, ch->envelope.duty); ch->sample = ch->control.hi * 0x10 - 0x8; ch->sample *= ch->envelope.currentVolume; return timing; } static int32_t _updateChannel3(struct GBAudioChannel3* ch, enum GBAudioStyle style) { int i; int volume; switch (ch->volume) { case 0: volume = 0; break; case 1: volume = 4; break; case 2: volume = 2; break; case 3: volume = 1; break; default: volume = 3; break; } switch (style) { int start; int end; case GB_AUDIO_DMG: default: ++ch->window; ch->window &= 0x1F; ch->sample = ch->wavedata8[ch->window >> 1]; if (!(ch->window & 1)) { ch->sample >>= 4; } ch->sample &= 0xF; break; case GB_AUDIO_GBA: if (ch->size) { start = 7; end = 0; } else if (ch->bank) { start = 7; end = 4; } else { start = 3; end = 0; } uint32_t bitsCarry = ch->wavedata32[end] & 0x000000F0; uint32_t bits; for (i = start; i >= end; --i) { bits = ch->wavedata32[i] & 0x000000F0; ch->wavedata32[i] = ((ch->wavedata32[i] & 0x0F0F0F0F) << 4) | ((ch->wavedata32[i] & 0xF0F0F000) >> 12); ch->wavedata32[i] |= bitsCarry << 20; bitsCarry = bits; } ch->sample = bitsCarry >> 4; break; } ch->sample -= 8; ch->sample *= volume * 4; return 2 * (2048 - ch->rate); } static int32_t _updateChannel4(struct GBAudioChannel4* ch) { int lsb = ch->lfsr & 1; ch->sample = lsb * 0x10 - 0x8; ch->sample *= ch->envelope.currentVolume; ch->lfsr >>= 1; ch->lfsr ^= (lsb * 0x60) << (ch->power ? 0 : 8); int timing = ch->ratio ? 2 * ch->ratio : 1; timing <<= ch->frequency; timing *= 8; return timing; } void _scheduleEvent(struct GBAudio* audio) { // TODO: Don't need p if (audio->p) { audio->nextEvent = audio->p->cpu->cycles >> audio->p->doubleSpeed; audio->p->cpu->nextEvent = audio->p->cpu->cycles; } else { audio->nextEvent = 0; } } void GBAudioPSGSerialize(const struct GBAudio* audio, struct GBSerializedPSGState* state, uint32_t* flagsOut) { uint32_t flags = 0; uint32_t ch1Flags = 0; uint32_t ch2Flags = 0; uint32_t ch4Flags = 0; flags = GBSerializedAudioFlagsSetFrame(flags, audio->frame); flags = GBSerializedAudioFlagsSetCh1Volume(flags, audio->ch1.envelope.currentVolume); flags = GBSerializedAudioFlagsSetCh1Dead(flags, audio->ch1.envelope.dead); flags = GBSerializedAudioFlagsSetCh1Hi(flags, audio->ch1.control.hi); flags = GBSerializedAudioFlagsSetCh1SweepEnabled(flags, audio->ch1.sweepEnable); flags = GBSerializedAudioFlagsSetCh1SweepOccurred(flags, audio->ch1.sweepOccurred); ch1Flags = GBSerializedAudioEnvelopeSetLength(ch1Flags, audio->ch1.control.length); ch1Flags = GBSerializedAudioEnvelopeSetNextStep(ch1Flags, audio->ch1.envelope.nextStep); ch1Flags = GBSerializedAudioEnvelopeSetFrequency(ch1Flags, audio->ch1.realFrequency); STORE_32LE(ch1Flags, 0, &state->ch1.envelope); STORE_32LE(audio->nextFrame, 0, &state->ch1.nextFrame); STORE_32LE(audio->nextCh1, 0, &state->ch1.nextEvent); flags = GBSerializedAudioFlagsSetCh2Volume(flags, audio->ch2.envelope.currentVolume); flags = GBSerializedAudioFlagsSetCh2Dead(flags, audio->ch2.envelope.dead); flags = GBSerializedAudioFlagsSetCh2Hi(flags, audio->ch2.control.hi); ch2Flags = GBSerializedAudioEnvelopeSetLength(ch2Flags, audio->ch2.control.length); ch2Flags = GBSerializedAudioEnvelopeSetNextStep(ch2Flags, audio->ch2.envelope.nextStep); STORE_32LE(ch2Flags, 0, &state->ch2.envelope); STORE_32LE(audio->nextCh2, 0, &state->ch2.nextEvent); memcpy(state->ch3.wavebanks, audio->ch3.wavedata32, sizeof(state->ch3.wavebanks)); STORE_16LE(audio->ch3.length, 0, &state->ch3.length); STORE_32LE(audio->nextCh3, 0, &state->ch3.nextEvent); flags = GBSerializedAudioFlagsSetCh4Volume(flags, audio->ch4.envelope.currentVolume); flags = GBSerializedAudioFlagsSetCh4Dead(flags, audio->ch4.envelope.dead); STORE_32LE(audio->ch4.lfsr, 0, &state->ch4.lfsr); ch4Flags = GBSerializedAudioEnvelopeSetLength(ch4Flags, audio->ch4.length); ch4Flags = GBSerializedAudioEnvelopeSetNextStep(ch4Flags, audio->ch4.envelope.nextStep); STORE_32LE(ch4Flags, 0, &state->ch4.envelope); STORE_32LE(audio->nextCh4, 0, &state->ch4.nextEvent); STORE_32LE(flags, 0, flagsOut); } void GBAudioPSGDeserialize(struct GBAudio* audio, const struct GBSerializedPSGState* state, const uint32_t* flagsIn) { uint32_t flags; uint32_t ch1Flags = 0; uint32_t ch2Flags = 0; uint32_t ch4Flags = 0; LOAD_32LE(flags, 0, flagsIn); LOAD_32LE(ch1Flags, 0, &state->ch1.envelope); audio->ch1.envelope.currentVolume = GBSerializedAudioFlagsGetCh1Volume(flags); audio->ch1.envelope.dead = GBSerializedAudioFlagsGetCh1Dead(flags); audio->ch1.control.hi = GBSerializedAudioFlagsGetCh1Hi(flags); audio->ch1.sweepEnable = GBSerializedAudioFlagsGetCh1SweepEnabled(flags); audio->ch1.sweepOccurred = GBSerializedAudioFlagsGetCh1SweepOccurred(flags); audio->ch1.control.length = GBSerializedAudioEnvelopeGetLength(ch1Flags); audio->ch1.envelope.nextStep = GBSerializedAudioEnvelopeGetNextStep(ch1Flags); audio->ch1.realFrequency = GBSerializedAudioEnvelopeGetFrequency(ch1Flags); LOAD_32LE(audio->nextFrame, 0, &state->ch1.nextFrame); LOAD_32LE(audio->nextCh1, 0, &state->ch1.nextEvent); LOAD_32LE(ch2Flags, 0, &state->ch2.envelope); audio->ch2.envelope.currentVolume = GBSerializedAudioFlagsGetCh2Volume(flags); audio->ch2.envelope.dead = GBSerializedAudioFlagsGetCh2Dead(flags); audio->ch2.control.hi = GBSerializedAudioFlagsGetCh2Hi(flags); audio->ch2.control.length = GBSerializedAudioEnvelopeGetLength(ch2Flags); audio->ch2.envelope.nextStep = GBSerializedAudioEnvelopeGetNextStep(ch2Flags); LOAD_32LE(audio->nextCh2, 0, &state->ch2.nextEvent); // TODO: Big endian? memcpy(audio->ch3.wavedata32, state->ch3.wavebanks, sizeof(audio->ch3.wavedata32)); LOAD_16LE(audio->ch3.length, 0, &state->ch3.length); LOAD_32LE(audio->nextCh3, 0, &state->ch3.nextEvent); LOAD_32LE(ch4Flags, 0, &state->ch4.envelope); audio->ch4.envelope.currentVolume = GBSerializedAudioFlagsGetCh4Volume(flags); audio->ch4.envelope.dead = GBSerializedAudioFlagsGetCh4Dead(flags); audio->ch4.length = GBSerializedAudioEnvelopeGetLength(ch4Flags); audio->ch4.envelope.nextStep = GBSerializedAudioEnvelopeGetNextStep(ch4Flags); LOAD_32LE(audio->ch4.lfsr, 0, &state->ch4.lfsr); LOAD_32LE(audio->nextCh4, 0, &state->ch4.nextEvent); } void GBAudioSerialize(const struct GBAudio* audio, struct GBSerializedState* state) { GBAudioPSGSerialize(audio, &state->audio.psg, &state->audio.flags); STORE_32LE(audio->nextEvent, 0, &state->audio.nextEvent); STORE_32LE(audio->eventDiff, 0, &state->audio.eventDiff); STORE_32LE(audio->nextSample, 0, &state->audio.nextSample); } void GBAudioDeserialize(struct GBAudio* audio, const struct GBSerializedState* state) { GBAudioPSGDeserialize(audio, &state->audio.psg, &state->audio.flags); LOAD_32LE(audio->nextEvent, 0, &state->audio.nextEvent); LOAD_32LE(audio->eventDiff, 0, &state->audio.eventDiff); LOAD_32LE(audio->nextSample, 0, &state->audio.nextSample); }