all repos — mgba @ f4fcdf35d4d88616a3bda9bce7384df0e83a6964

mGBA Game Boy Advance Emulator

src/gba/gba-gpio.c (view raw)

  1/* Copyright (c) 2013-2014 Jeffrey Pfau
  2 *
  3 * This Source Code Form is subject to the terms of the Mozilla Public
  4 * License, v. 2.0. If a copy of the MPL was not distributed with this
  5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  6#include "gba.h"
  7
  8#include "gba-gpio.h"
  9#include "gba-sensors.h"
 10#include "gba-serialize.h"
 11
 12#include <time.h>
 13
 14static void _readPins(struct GBACartridgeGPIO* gpio);
 15static void _outputPins(struct GBACartridgeGPIO* gpio, unsigned pins);
 16
 17static void _rtcReadPins(struct GBACartridgeGPIO* gpio);
 18static unsigned _rtcOutput(struct GBACartridgeGPIO* gpio);
 19static void _rtcProcessByte(struct GBACartridgeGPIO* gpio);
 20static void _rtcUpdateClock(struct GBACartridgeGPIO* gpio);
 21static unsigned _rtcBCD(unsigned value);
 22
 23static void _gyroReadPins(struct GBACartridgeGPIO* gpio);
 24
 25static void _rumbleReadPins(struct GBACartridgeGPIO* gpio);
 26
 27static void _lightReadPins(struct GBACartridgeGPIO* gpio);
 28
 29static const int RTC_BYTES[8] = {
 30	0, // Force reset
 31	0, // Empty
 32	7, // Date/Time
 33	0, // Force IRQ
 34	1, // Control register
 35	0, // Empty
 36	3, // Time
 37	0 // Empty
 38};
 39
 40void GBAGPIOInit(struct GBACartridgeGPIO* gpio, uint16_t* base) {
 41	gpio->gpioDevices = GPIO_NONE;
 42	gpio->direction = GPIO_WRITE_ONLY;
 43	gpio->gpioBase = base;
 44	gpio->pinState = 0;
 45	gpio->direction = 0;
 46}
 47
 48void GBAGPIOWrite(struct GBACartridgeGPIO* gpio, uint32_t address, uint16_t value) {
 49	switch (address) {
 50	case GPIO_REG_DATA:
 51		gpio->pinState &= ~gpio->direction;
 52		gpio->pinState |= value;
 53		_readPins(gpio);
 54		break;
 55	case GPIO_REG_DIRECTION:
 56		gpio->direction = value;
 57		break;
 58	case GPIO_REG_CONTROL:
 59		gpio->readWrite = value;
 60		break;
 61	default:
 62		GBALog(gpio->p, GBA_LOG_WARN, "Invalid GPIO address");
 63	}
 64	if (gpio->readWrite) {
 65		uint16_t old = gpio->gpioBase[0];
 66		old &= ~gpio->direction;
 67		gpio->gpioBase[0] = old | gpio->pinState;
 68	} else {
 69		gpio->gpioBase[0] = 0;
 70	}
 71}
 72
 73void GBAGPIOInitRTC(struct GBACartridgeGPIO* gpio) {
 74	gpio->gpioDevices |= GPIO_RTC;
 75	gpio->rtc.bytesRemaining = 0;
 76
 77	gpio->rtc.transferStep = 0;
 78
 79	gpio->rtc.bitsRead = 0;
 80	gpio->rtc.bits = 0;
 81	gpio->rtc.commandActive = 0;
 82	gpio->rtc.command.packed = 0;
 83	gpio->rtc.control.packed = 0x40;
 84	memset(gpio->rtc.time, 0, sizeof(gpio->rtc.time));
 85}
 86
 87void _readPins(struct GBACartridgeGPIO* gpio) {
 88	if (gpio->gpioDevices & GPIO_RTC) {
 89		_rtcReadPins(gpio);
 90	}
 91
 92	if (gpio->gpioDevices & GPIO_GYRO) {
 93		_gyroReadPins(gpio);
 94	}
 95
 96	if (gpio->gpioDevices & GPIO_RUMBLE) {
 97		_rumbleReadPins(gpio);
 98	}
 99
100	if (gpio->gpioDevices & GPIO_LIGHT_SENSOR) {
101		_lightReadPins(gpio);
102	}
103}
104
105void _outputPins(struct GBACartridgeGPIO* gpio, unsigned pins) {
106	if (gpio->readWrite) {
107		uint16_t old = gpio->gpioBase[0];
108		old &= gpio->direction;
109		gpio->pinState = old | (pins & ~gpio->direction & 0xF);
110		gpio->gpioBase[0] = gpio->pinState;
111	}
112}
113
114// == RTC
115
116void _rtcReadPins(struct GBACartridgeGPIO* gpio) {
117	// Transfer sequence:
118	// P: 0 | 1 |  2 | 3
119	// == Initiate
120	// > HI | - | LO | -
121	// > HI | - | HI | -
122	// == Transfer bit (x8)
123	// > LO | x | HI | -
124	// > HI | - | HI | -
125	// < ?? | x | ?? | -
126	// == Terminate
127	// >  - | - | LO | -
128	switch (gpio->rtc.transferStep) {
129	case 0:
130		if ((gpio->pinState & 5) == 1) {
131			gpio->rtc.transferStep = 1;
132		}
133		break;
134	case 1:
135		if ((gpio->pinState & 5) == 5) {
136			gpio->rtc.transferStep = 2;
137		}
138		break;
139	case 2:
140		if (!gpio->p0) {
141			gpio->rtc.bits &= ~(1 << gpio->rtc.bitsRead);
142			gpio->rtc.bits |= gpio->p1 << gpio->rtc.bitsRead;
143		} else {
144			if (gpio->p2) {
145				// GPIO direction should always != reading
146				if (gpio->dir1) {
147					if (gpio->rtc.command.reading) {
148						GBALog(gpio->p, GBA_LOG_GAME_ERROR, "Attempting to write to RTC while in read mode");
149					}
150					++gpio->rtc.bitsRead;
151					if (gpio->rtc.bitsRead == 8) {
152						_rtcProcessByte(gpio);
153					}
154				} else {
155					_outputPins(gpio, 5 | (_rtcOutput(gpio) << 1));
156					++gpio->rtc.bitsRead;
157					if (gpio->rtc.bitsRead == 8) {
158						--gpio->rtc.bytesRemaining;
159						if (gpio->rtc.bytesRemaining <= 0) {
160							gpio->rtc.commandActive = 0;
161							gpio->rtc.command.reading = 0;
162						}
163						gpio->rtc.bitsRead = 0;
164					}
165				}
166			} else {
167				gpio->rtc.bitsRead = 0;
168				gpio->rtc.bytesRemaining = 0;
169				gpio->rtc.commandActive = 0;
170				gpio->rtc.command.reading = 0;
171				gpio->rtc.transferStep = 0;
172			}
173		}
174		break;
175	}
176}
177
178void _rtcProcessByte(struct GBACartridgeGPIO* gpio) {
179	--gpio->rtc.bytesRemaining;
180	if (!gpio->rtc.commandActive) {
181		union RTCCommandData command;
182		command.packed = gpio->rtc.bits;
183		if (command.magic == 0x06) {
184			gpio->rtc.command = command;
185
186			gpio->rtc.bytesRemaining = RTC_BYTES[gpio->rtc.command.command];
187			gpio->rtc.commandActive = gpio->rtc.bytesRemaining > 0;
188			switch (command.command) {
189			case RTC_RESET:
190				gpio->rtc.control.packed = 0;
191				break;
192			case RTC_DATETIME:
193			case RTC_TIME:
194				_rtcUpdateClock(gpio);
195				break;
196			case RTC_FORCE_IRQ:
197			case RTC_CONTROL:
198				break;
199			}
200		} else {
201			GBALog(gpio->p, GBA_LOG_WARN, "Invalid RTC command byte: %02X", gpio->rtc.bits);
202		}
203	} else {
204		switch (gpio->rtc.command.command) {
205		case RTC_CONTROL:
206			gpio->rtc.control.packed = gpio->rtc.bits;
207			break;
208		case RTC_FORCE_IRQ:
209			GBALog(gpio->p, GBA_LOG_STUB, "Unimplemented RTC command %u", gpio->rtc.command.command);
210			break;
211		case RTC_RESET:
212		case RTC_DATETIME:
213		case RTC_TIME:
214			break;
215		}
216	}
217
218	gpio->rtc.bits = 0;
219	gpio->rtc.bitsRead = 0;
220	if (!gpio->rtc.bytesRemaining) {
221		gpio->rtc.commandActive = 0;
222		gpio->rtc.command.reading = 0;
223	}
224}
225
226unsigned _rtcOutput(struct GBACartridgeGPIO* gpio) {
227	uint8_t outputByte = 0;
228	switch (gpio->rtc.command.command) {
229	case RTC_CONTROL:
230		outputByte = gpio->rtc.control.packed;
231		break;
232	case RTC_DATETIME:
233	case RTC_TIME:
234		outputByte = gpio->rtc.time[7 - gpio->rtc.bytesRemaining];
235		break;
236	case RTC_FORCE_IRQ:
237	case RTC_RESET:
238		break;
239	}
240	unsigned output = (outputByte >> gpio->rtc.bitsRead) & 1;
241	return output;
242}
243
244void _rtcUpdateClock(struct GBACartridgeGPIO* gpio) {
245	time_t t;
246	struct GBARTCSource* rtc = gpio->p->rtcSource;
247	if (rtc) {
248		rtc->sample(rtc);
249		t = rtc->unixTime(rtc);
250	} else {
251		t = time(0);
252	}
253	struct tm date;
254#ifdef _WIN32
255	date = *localtime(&t);
256#else
257	localtime_r(&t, &date);
258#endif
259	gpio->rtc.time[0] = _rtcBCD(date.tm_year - 100);
260	gpio->rtc.time[1] = _rtcBCD(date.tm_mon + 1);
261	gpio->rtc.time[2] = _rtcBCD(date.tm_mday);
262	gpio->rtc.time[3] = _rtcBCD(date.tm_wday);
263	if (gpio->rtc.control.hour24) {
264		gpio->rtc.time[4] = _rtcBCD(date.tm_hour);
265	} else {
266		gpio->rtc.time[4] = _rtcBCD(date.tm_hour % 12);
267	}
268	gpio->rtc.time[5] = _rtcBCD(date.tm_min);
269	gpio->rtc.time[6] = _rtcBCD(date.tm_sec);
270}
271
272unsigned _rtcBCD(unsigned value) {
273	int counter = value % 10;
274	value /= 10;
275	counter += (value % 10) << 4;
276	return counter;
277}
278
279// == Gyro
280
281void GBAGPIOInitGyro(struct GBACartridgeGPIO* gpio) {
282	gpio->gpioDevices |= GPIO_GYRO;
283	gpio->gyroSample = 0;
284	gpio->gyroEdge = 0;
285}
286
287void _gyroReadPins(struct GBACartridgeGPIO* gpio) {
288	struct GBARotationSource* gyro = gpio->p->rotationSource;
289	if (!gyro) {
290		return;
291	}
292
293	if (gpio->p0) {
294		if (gyro->sample) {
295			gyro->sample(gyro);
296		}
297		int32_t sample = gyro->readGyroZ(gyro);
298
299		// Normalize to ~12 bits, focused on 0x6C0
300		gpio->gyroSample = (sample >> 21) + 0x6C0; // Crop off an extra bit so that we can't go negative
301	}
302
303	if (gpio->gyroEdge && !gpio->p1) {
304		// Write bit on falling edge
305		unsigned bit = gpio->gyroSample >> 15;
306		gpio->gyroSample <<= 1;
307		_outputPins(gpio, bit << 2);
308	}
309
310	gpio->gyroEdge = gpio->p1;
311}
312
313// == Rumble
314
315void GBAGPIOInitRumble(struct GBACartridgeGPIO* gpio) {
316	gpio->gpioDevices |= GPIO_RUMBLE;
317}
318
319void _rumbleReadPins(struct GBACartridgeGPIO* gpio) {
320	struct GBARumble* rumble = gpio->p->rumble;
321	if (!rumble) {
322		return;
323	}
324
325	rumble->setRumble(rumble, gpio->p3);
326}
327
328// == Light sensor
329
330void GBAGPIOInitLightSensor(struct GBACartridgeGPIO* gpio) {
331	gpio->gpioDevices |= GPIO_LIGHT_SENSOR;
332	gpio->lightCounter = 0;
333	gpio->lightEdge = false;
334	gpio->lightSample = 0xFF;
335}
336
337void _lightReadPins(struct GBACartridgeGPIO* gpio) {
338	if (gpio->p2) {
339		// Boktai chip select
340		return;
341	}
342	if (gpio->p1) {
343		struct GBALuminanceSource* lux = gpio->p->luminanceSource;
344		GBALog(gpio->p, GBA_LOG_DEBUG, "[SOLAR] Got reset");
345		gpio->lightCounter = 0;
346		if (lux) {
347			lux->sample(lux);
348			gpio->lightSample = lux->readLuminance(lux);
349		} else {
350			gpio->lightSample = 0xFF;
351		}
352	}
353	if (gpio->p0 && gpio->lightEdge) {
354		++gpio->lightCounter;
355	}
356	gpio->lightEdge = !gpio->p0;
357
358	bool sendBit = gpio->lightCounter >= gpio->lightSample;
359	_outputPins(gpio, sendBit << 3);
360	GBALog(gpio->p, GBA_LOG_DEBUG, "[SOLAR] Output %u with pins %u", gpio->lightCounter, gpio->pinState);
361}
362
363// == Tilt (not technically GPIO)
364
365void GBAGPIOInitTilt(struct GBACartridgeGPIO* gpio) {
366	gpio->gpioDevices |= GPIO_TILT;
367	gpio->tiltX = 0xFFF;
368	gpio->tiltY = 0xFFF;
369	gpio->tiltState = 0;
370}
371
372void GBAGPIOTiltWrite(struct GBACartridgeGPIO* gpio, uint32_t address, uint8_t value) {
373	switch (address) {
374	case 0x8000:
375		if (value == 0x55) {
376			gpio->tiltState = 1;
377		} else {
378			GBALog(gpio->p, GBA_LOG_GAME_ERROR, "Tilt sensor wrote wrong byte to %04x: %02x", address, value);
379		}
380		break;
381	case 0x8100:
382		if (value == 0xAA && gpio->tiltState == 1) {
383			gpio->tiltState = 0;
384			struct GBARotationSource* rotationSource = gpio->p->rotationSource;
385			if (!rotationSource || !rotationSource->readTiltX || !rotationSource->readTiltY) {
386				return;
387			}
388			if (rotationSource->sample) {
389				rotationSource->sample(rotationSource);
390			}
391			int32_t x = rotationSource->readTiltX(rotationSource);
392			int32_t y = rotationSource->readTiltY(rotationSource);
393			// Normalize to ~12 bits, focused on 0x3A0
394			gpio->tiltX = (x >> 21) + 0x3A0; // Crop off an extra bit so that we can't go negative
395			gpio->tiltY = (y >> 21) + 0x3A0;
396		} else {
397			GBALog(gpio->p, GBA_LOG_GAME_ERROR, "Tilt sensor wrote wrong byte to %04x: %02x", address, value);
398		}
399		break;
400	default:
401		GBALog(gpio->p, GBA_LOG_GAME_ERROR, "Invalid tilt sensor write to %04x: %02x", address, value);
402		break;
403	}
404}
405
406uint8_t GBAGPIOTiltRead(struct GBACartridgeGPIO* gpio, uint32_t address) {
407	switch (address) {
408	case 0x8200:
409		return gpio->tiltX & 0xFF;
410	case 0x8300:
411		return ((gpio->tiltX >> 8) & 0xF) | 0x80;
412	case 0x8400:
413		return gpio->tiltY & 0xFF;
414	case 0x8500:
415		return (gpio->tiltY >> 8) & 0xF;
416	default:
417		GBALog(gpio->p, GBA_LOG_GAME_ERROR, "Invalid tilt sensor read from %04x", address);
418		break;
419	}
420	return 0xFF;
421}
422
423// == Serialization
424
425void GBAGPIOSerialize(struct GBACartridgeGPIO* gpio, struct GBASerializedState* state) {
426	state->gpio.readWrite = gpio->readWrite;
427	state->gpio.pinState = gpio->pinState;
428	state->gpio.pinDirection = gpio->direction;
429	state->gpio.devices = gpio->gpioDevices;
430	state->gpio.rtc = gpio->rtc;
431	state->gpio.gyroSample = gpio->gyroSample;
432	state->gpio.gyroEdge = gpio->gyroEdge;
433	state->gpio.tiltSampleX = gpio->tiltX;
434	state->gpio.tiltSampleY = gpio->tiltY;
435	state->gpio.tiltState = gpio->tiltState;
436	state->gpio.lightCounter = gpio->lightCounter;
437	state->gpio.lightSample = gpio->lightSample;
438	state->gpio.lightEdge = gpio->lightEdge;
439}
440
441void GBAGPIODeserialize(struct GBACartridgeGPIO* gpio, struct GBASerializedState* state) {
442	gpio->readWrite = state->gpio.readWrite;
443	gpio->pinState = state->gpio.pinState;
444	gpio->direction = state->gpio.pinDirection;
445	// TODO: Deterministic RTC
446	gpio->rtc = state->gpio.rtc;
447	gpio->gyroSample = state->gpio.gyroSample;
448	gpio->gyroEdge = state->gpio.gyroEdge;
449	gpio->tiltX = state->gpio.tiltSampleX;
450	gpio->tiltY = state->gpio.tiltSampleY;
451	gpio->tiltState = state->gpio.tiltState;
452	gpio->lightCounter = state->gpio.lightCounter;
453	gpio->lightSample = state->gpio.lightSample;
454	gpio->lightEdge = state->gpio.lightEdge;
455}