src/third-party/lzma/LzmaDec.c (view raw)
1/* LzmaDec.c -- LZMA Decoder
22015-01-01 : Igor Pavlov : Public domain */
3
4#include "Precomp.h"
5
6#include "LzmaDec.h"
7
8#include <string.h>
9
10#define kNumTopBits 24
11#define kTopValue ((UInt32)1 << kNumTopBits)
12
13#define kNumBitModelTotalBits 11
14#define kBitModelTotal (1 << kNumBitModelTotalBits)
15#define kNumMoveBits 5
16
17#define RC_INIT_SIZE 5
18
19#define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); }
20
21#define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
22#define UPDATE_0(p) range = bound; *(p) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
23#define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits));
24#define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \
25 { UPDATE_0(p); i = (i + i); A0; } else \
26 { UPDATE_1(p); i = (i + i) + 1; A1; }
27#define GET_BIT(p, i) GET_BIT2(p, i, ; , ;)
28
29#define TREE_GET_BIT(probs, i) { GET_BIT((probs + i), i); }
30#define TREE_DECODE(probs, limit, i) \
31 { i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; }
32
33/* #define _LZMA_SIZE_OPT */
34
35#ifdef _LZMA_SIZE_OPT
36#define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i)
37#else
38#define TREE_6_DECODE(probs, i) \
39 { i = 1; \
40 TREE_GET_BIT(probs, i); \
41 TREE_GET_BIT(probs, i); \
42 TREE_GET_BIT(probs, i); \
43 TREE_GET_BIT(probs, i); \
44 TREE_GET_BIT(probs, i); \
45 TREE_GET_BIT(probs, i); \
46 i -= 0x40; }
47#endif
48
49#define NORMAL_LITER_DEC GET_BIT(prob + symbol, symbol)
50#define MATCHED_LITER_DEC \
51 matchByte <<= 1; \
52 bit = (matchByte & offs); \
53 probLit = prob + offs + bit + symbol; \
54 GET_BIT2(probLit, symbol, offs &= ~bit, offs &= bit)
55
56#define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_ERROR; range <<= 8; code = (code << 8) | (*buf++); }
57
58#define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
59#define UPDATE_0_CHECK range = bound;
60#define UPDATE_1_CHECK range -= bound; code -= bound;
61#define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \
62 { UPDATE_0_CHECK; i = (i + i); A0; } else \
63 { UPDATE_1_CHECK; i = (i + i) + 1; A1; }
64#define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;)
65#define TREE_DECODE_CHECK(probs, limit, i) \
66 { i = 1; do { GET_BIT_CHECK(probs + i, i) } while (i < limit); i -= limit; }
67
68
69#define kNumPosBitsMax 4
70#define kNumPosStatesMax (1 << kNumPosBitsMax)
71
72#define kLenNumLowBits 3
73#define kLenNumLowSymbols (1 << kLenNumLowBits)
74#define kLenNumMidBits 3
75#define kLenNumMidSymbols (1 << kLenNumMidBits)
76#define kLenNumHighBits 8
77#define kLenNumHighSymbols (1 << kLenNumHighBits)
78
79#define LenChoice 0
80#define LenChoice2 (LenChoice + 1)
81#define LenLow (LenChoice2 + 1)
82#define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
83#define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
84#define kNumLenProbs (LenHigh + kLenNumHighSymbols)
85
86
87#define kNumStates 12
88#define kNumLitStates 7
89
90#define kStartPosModelIndex 4
91#define kEndPosModelIndex 14
92#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
93
94#define kNumPosSlotBits 6
95#define kNumLenToPosStates 4
96
97#define kNumAlignBits 4
98#define kAlignTableSize (1 << kNumAlignBits)
99
100#define kMatchMinLen 2
101#define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
102
103#define IsMatch 0
104#define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
105#define IsRepG0 (IsRep + kNumStates)
106#define IsRepG1 (IsRepG0 + kNumStates)
107#define IsRepG2 (IsRepG1 + kNumStates)
108#define IsRep0Long (IsRepG2 + kNumStates)
109#define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
110#define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
111#define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
112#define LenCoder (Align + kAlignTableSize)
113#define RepLenCoder (LenCoder + kNumLenProbs)
114#define Literal (RepLenCoder + kNumLenProbs)
115
116#define LZMA_BASE_SIZE 1846
117#define LZMA_LIT_SIZE 768
118
119#define LzmaProps_GetNumProbs(p) ((UInt32)LZMA_BASE_SIZE + (LZMA_LIT_SIZE << ((p)->lc + (p)->lp)))
120
121#if Literal != LZMA_BASE_SIZE
122StopCompilingDueBUG
123#endif
124
125#define LZMA_DIC_MIN (1 << 12)
126
127/* First LZMA-symbol is always decoded.
128And it decodes new LZMA-symbols while (buf < bufLimit), but "buf" is without last normalization
129Out:
130 Result:
131 SZ_OK - OK
132 SZ_ERROR_DATA - Error
133 p->remainLen:
134 < kMatchSpecLenStart : normal remain
135 = kMatchSpecLenStart : finished
136 = kMatchSpecLenStart + 1 : Flush marker
137 = kMatchSpecLenStart + 2 : State Init Marker
138*/
139
140static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
141{
142 CLzmaProb *probs = p->probs;
143
144 unsigned state = p->state;
145 UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3];
146 unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1;
147 unsigned lpMask = ((unsigned)1 << (p->prop.lp)) - 1;
148 unsigned lc = p->prop.lc;
149
150 Byte *dic = p->dic;
151 SizeT dicBufSize = p->dicBufSize;
152 SizeT dicPos = p->dicPos;
153
154 UInt32 processedPos = p->processedPos;
155 UInt32 checkDicSize = p->checkDicSize;
156 unsigned len = 0;
157
158 const Byte *buf = p->buf;
159 UInt32 range = p->range;
160 UInt32 code = p->code;
161
162 do
163 {
164 CLzmaProb *prob;
165 UInt32 bound;
166 unsigned ttt;
167 unsigned posState = processedPos & pbMask;
168
169 prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
170 IF_BIT_0(prob)
171 {
172 unsigned symbol;
173 UPDATE_0(prob);
174 prob = probs + Literal;
175 if (checkDicSize != 0 || processedPos != 0)
176 prob += (LZMA_LIT_SIZE * (((processedPos & lpMask) << lc) +
177 (dic[(dicPos == 0 ? dicBufSize : dicPos) - 1] >> (8 - lc))));
178
179 if (state < kNumLitStates)
180 {
181 state -= (state < 4) ? state : 3;
182 symbol = 1;
183 #ifdef _LZMA_SIZE_OPT
184 do { NORMAL_LITER_DEC } while (symbol < 0x100);
185 #else
186 NORMAL_LITER_DEC
187 NORMAL_LITER_DEC
188 NORMAL_LITER_DEC
189 NORMAL_LITER_DEC
190 NORMAL_LITER_DEC
191 NORMAL_LITER_DEC
192 NORMAL_LITER_DEC
193 NORMAL_LITER_DEC
194 #endif
195 }
196 else
197 {
198 unsigned matchByte = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
199 unsigned offs = 0x100;
200 state -= (state < 10) ? 3 : 6;
201 symbol = 1;
202 #ifdef _LZMA_SIZE_OPT
203 do
204 {
205 unsigned bit;
206 CLzmaProb *probLit;
207 MATCHED_LITER_DEC
208 }
209 while (symbol < 0x100);
210 #else
211 {
212 unsigned bit;
213 CLzmaProb *probLit;
214 MATCHED_LITER_DEC
215 MATCHED_LITER_DEC
216 MATCHED_LITER_DEC
217 MATCHED_LITER_DEC
218 MATCHED_LITER_DEC
219 MATCHED_LITER_DEC
220 MATCHED_LITER_DEC
221 MATCHED_LITER_DEC
222 }
223 #endif
224 }
225 dic[dicPos++] = (Byte)symbol;
226 processedPos++;
227 continue;
228 }
229 else
230 {
231 UPDATE_1(prob);
232 prob = probs + IsRep + state;
233 IF_BIT_0(prob)
234 {
235 UPDATE_0(prob);
236 state += kNumStates;
237 prob = probs + LenCoder;
238 }
239 else
240 {
241 UPDATE_1(prob);
242 if (checkDicSize == 0 && processedPos == 0)
243 return SZ_ERROR_DATA;
244 prob = probs + IsRepG0 + state;
245 IF_BIT_0(prob)
246 {
247 UPDATE_0(prob);
248 prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
249 IF_BIT_0(prob)
250 {
251 UPDATE_0(prob);
252 dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
253 dicPos++;
254 processedPos++;
255 state = state < kNumLitStates ? 9 : 11;
256 continue;
257 }
258 UPDATE_1(prob);
259 }
260 else
261 {
262 UInt32 distance;
263 UPDATE_1(prob);
264 prob = probs + IsRepG1 + state;
265 IF_BIT_0(prob)
266 {
267 UPDATE_0(prob);
268 distance = rep1;
269 }
270 else
271 {
272 UPDATE_1(prob);
273 prob = probs + IsRepG2 + state;
274 IF_BIT_0(prob)
275 {
276 UPDATE_0(prob);
277 distance = rep2;
278 }
279 else
280 {
281 UPDATE_1(prob);
282 distance = rep3;
283 rep3 = rep2;
284 }
285 rep2 = rep1;
286 }
287 rep1 = rep0;
288 rep0 = distance;
289 }
290 state = state < kNumLitStates ? 8 : 11;
291 prob = probs + RepLenCoder;
292 }
293 {
294 unsigned limit, offset;
295 CLzmaProb *probLen = prob + LenChoice;
296 IF_BIT_0(probLen)
297 {
298 UPDATE_0(probLen);
299 probLen = prob + LenLow + (posState << kLenNumLowBits);
300 offset = 0;
301 limit = (1 << kLenNumLowBits);
302 }
303 else
304 {
305 UPDATE_1(probLen);
306 probLen = prob + LenChoice2;
307 IF_BIT_0(probLen)
308 {
309 UPDATE_0(probLen);
310 probLen = prob + LenMid + (posState << kLenNumMidBits);
311 offset = kLenNumLowSymbols;
312 limit = (1 << kLenNumMidBits);
313 }
314 else
315 {
316 UPDATE_1(probLen);
317 probLen = prob + LenHigh;
318 offset = kLenNumLowSymbols + kLenNumMidSymbols;
319 limit = (1 << kLenNumHighBits);
320 }
321 }
322 TREE_DECODE(probLen, limit, len);
323 len += offset;
324 }
325
326 if (state >= kNumStates)
327 {
328 UInt32 distance;
329 prob = probs + PosSlot +
330 ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits);
331 TREE_6_DECODE(prob, distance);
332 if (distance >= kStartPosModelIndex)
333 {
334 unsigned posSlot = (unsigned)distance;
335 int numDirectBits = (int)(((distance >> 1) - 1));
336 distance = (2 | (distance & 1));
337 if (posSlot < kEndPosModelIndex)
338 {
339 distance <<= numDirectBits;
340 prob = probs + SpecPos + distance - posSlot - 1;
341 {
342 UInt32 mask = 1;
343 unsigned i = 1;
344 do
345 {
346 GET_BIT2(prob + i, i, ; , distance |= mask);
347 mask <<= 1;
348 }
349 while (--numDirectBits != 0);
350 }
351 }
352 else
353 {
354 numDirectBits -= kNumAlignBits;
355 do
356 {
357 NORMALIZE
358 range >>= 1;
359
360 {
361 UInt32 t;
362 code -= range;
363 t = (0 - ((UInt32)code >> 31)); /* (UInt32)((Int32)code >> 31) */
364 distance = (distance << 1) + (t + 1);
365 code += range & t;
366 }
367 /*
368 distance <<= 1;
369 if (code >= range)
370 {
371 code -= range;
372 distance |= 1;
373 }
374 */
375 }
376 while (--numDirectBits != 0);
377 prob = probs + Align;
378 distance <<= kNumAlignBits;
379 {
380 unsigned i = 1;
381 GET_BIT2(prob + i, i, ; , distance |= 1);
382 GET_BIT2(prob + i, i, ; , distance |= 2);
383 GET_BIT2(prob + i, i, ; , distance |= 4);
384 GET_BIT2(prob + i, i, ; , distance |= 8);
385 }
386 if (distance == (UInt32)0xFFFFFFFF)
387 {
388 len += kMatchSpecLenStart;
389 state -= kNumStates;
390 break;
391 }
392 }
393 }
394 rep3 = rep2;
395 rep2 = rep1;
396 rep1 = rep0;
397 rep0 = distance + 1;
398 if (checkDicSize == 0)
399 {
400 if (distance >= processedPos)
401 return SZ_ERROR_DATA;
402 }
403 else if (distance >= checkDicSize)
404 return SZ_ERROR_DATA;
405 state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3;
406 }
407
408 len += kMatchMinLen;
409
410 if (limit == dicPos)
411 return SZ_ERROR_DATA;
412 {
413 SizeT rem = limit - dicPos;
414 unsigned curLen = ((rem < len) ? (unsigned)rem : len);
415 SizeT pos = (dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0);
416
417 processedPos += curLen;
418
419 len -= curLen;
420 if (pos + curLen <= dicBufSize)
421 {
422 Byte *dest = dic + dicPos;
423 ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos;
424 const Byte *lim = dest + curLen;
425 dicPos += curLen;
426 do
427 *(dest) = (Byte)*(dest + src);
428 while (++dest != lim);
429 }
430 else
431 {
432 do
433 {
434 dic[dicPos++] = dic[pos];
435 if (++pos == dicBufSize)
436 pos = 0;
437 }
438 while (--curLen != 0);
439 }
440 }
441 }
442 }
443 while (dicPos < limit && buf < bufLimit);
444 NORMALIZE;
445 p->buf = buf;
446 p->range = range;
447 p->code = code;
448 p->remainLen = len;
449 p->dicPos = dicPos;
450 p->processedPos = processedPos;
451 p->reps[0] = rep0;
452 p->reps[1] = rep1;
453 p->reps[2] = rep2;
454 p->reps[3] = rep3;
455 p->state = state;
456
457 return SZ_OK;
458}
459
460static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit)
461{
462 if (p->remainLen != 0 && p->remainLen < kMatchSpecLenStart)
463 {
464 Byte *dic = p->dic;
465 SizeT dicPos = p->dicPos;
466 SizeT dicBufSize = p->dicBufSize;
467 unsigned len = p->remainLen;
468 UInt32 rep0 = p->reps[0];
469 if (limit - dicPos < len)
470 len = (unsigned)(limit - dicPos);
471
472 if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= len)
473 p->checkDicSize = p->prop.dicSize;
474
475 p->processedPos += len;
476 p->remainLen -= len;
477 while (len != 0)
478 {
479 len--;
480 dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
481 dicPos++;
482 }
483 p->dicPos = dicPos;
484 }
485}
486
487static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
488{
489 do
490 {
491 SizeT limit2 = limit;
492 if (p->checkDicSize == 0)
493 {
494 UInt32 rem = p->prop.dicSize - p->processedPos;
495 if (limit - p->dicPos > rem)
496 limit2 = p->dicPos + rem;
497 }
498 RINOK(LzmaDec_DecodeReal(p, limit2, bufLimit));
499 if (p->processedPos >= p->prop.dicSize)
500 p->checkDicSize = p->prop.dicSize;
501 LzmaDec_WriteRem(p, limit);
502 }
503 while (p->dicPos < limit && p->buf < bufLimit && p->remainLen < kMatchSpecLenStart);
504
505 if (p->remainLen > kMatchSpecLenStart)
506 {
507 p->remainLen = kMatchSpecLenStart;
508 }
509 return 0;
510}
511
512typedef enum
513{
514 DUMMY_ERROR, /* unexpected end of input stream */
515 DUMMY_LIT,
516 DUMMY_MATCH,
517 DUMMY_REP
518} ELzmaDummy;
519
520static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inSize)
521{
522 UInt32 range = p->range;
523 UInt32 code = p->code;
524 const Byte *bufLimit = buf + inSize;
525 CLzmaProb *probs = p->probs;
526 unsigned state = p->state;
527 ELzmaDummy res;
528
529 {
530 CLzmaProb *prob;
531 UInt32 bound;
532 unsigned ttt;
533 unsigned posState = (p->processedPos) & ((1 << p->prop.pb) - 1);
534
535 prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
536 IF_BIT_0_CHECK(prob)
537 {
538 UPDATE_0_CHECK
539
540 /* if (bufLimit - buf >= 7) return DUMMY_LIT; */
541
542 prob = probs + Literal;
543 if (p->checkDicSize != 0 || p->processedPos != 0)
544 prob += (LZMA_LIT_SIZE *
545 ((((p->processedPos) & ((1 << (p->prop.lp)) - 1)) << p->prop.lc) +
546 (p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->prop.lc))));
547
548 if (state < kNumLitStates)
549 {
550 unsigned symbol = 1;
551 do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100);
552 }
553 else
554 {
555 unsigned matchByte = p->dic[p->dicPos - p->reps[0] +
556 ((p->dicPos < p->reps[0]) ? p->dicBufSize : 0)];
557 unsigned offs = 0x100;
558 unsigned symbol = 1;
559 do
560 {
561 unsigned bit;
562 CLzmaProb *probLit;
563 matchByte <<= 1;
564 bit = (matchByte & offs);
565 probLit = prob + offs + bit + symbol;
566 GET_BIT2_CHECK(probLit, symbol, offs &= ~bit, offs &= bit)
567 }
568 while (symbol < 0x100);
569 }
570 res = DUMMY_LIT;
571 }
572 else
573 {
574 unsigned len;
575 UPDATE_1_CHECK;
576
577 prob = probs + IsRep + state;
578 IF_BIT_0_CHECK(prob)
579 {
580 UPDATE_0_CHECK;
581 state = 0;
582 prob = probs + LenCoder;
583 res = DUMMY_MATCH;
584 }
585 else
586 {
587 UPDATE_1_CHECK;
588 res = DUMMY_REP;
589 prob = probs + IsRepG0 + state;
590 IF_BIT_0_CHECK(prob)
591 {
592 UPDATE_0_CHECK;
593 prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
594 IF_BIT_0_CHECK(prob)
595 {
596 UPDATE_0_CHECK;
597 NORMALIZE_CHECK;
598 return DUMMY_REP;
599 }
600 else
601 {
602 UPDATE_1_CHECK;
603 }
604 }
605 else
606 {
607 UPDATE_1_CHECK;
608 prob = probs + IsRepG1 + state;
609 IF_BIT_0_CHECK(prob)
610 {
611 UPDATE_0_CHECK;
612 }
613 else
614 {
615 UPDATE_1_CHECK;
616 prob = probs + IsRepG2 + state;
617 IF_BIT_0_CHECK(prob)
618 {
619 UPDATE_0_CHECK;
620 }
621 else
622 {
623 UPDATE_1_CHECK;
624 }
625 }
626 }
627 state = kNumStates;
628 prob = probs + RepLenCoder;
629 }
630 {
631 unsigned limit, offset;
632 CLzmaProb *probLen = prob + LenChoice;
633 IF_BIT_0_CHECK(probLen)
634 {
635 UPDATE_0_CHECK;
636 probLen = prob + LenLow + (posState << kLenNumLowBits);
637 offset = 0;
638 limit = 1 << kLenNumLowBits;
639 }
640 else
641 {
642 UPDATE_1_CHECK;
643 probLen = prob + LenChoice2;
644 IF_BIT_0_CHECK(probLen)
645 {
646 UPDATE_0_CHECK;
647 probLen = prob + LenMid + (posState << kLenNumMidBits);
648 offset = kLenNumLowSymbols;
649 limit = 1 << kLenNumMidBits;
650 }
651 else
652 {
653 UPDATE_1_CHECK;
654 probLen = prob + LenHigh;
655 offset = kLenNumLowSymbols + kLenNumMidSymbols;
656 limit = 1 << kLenNumHighBits;
657 }
658 }
659 TREE_DECODE_CHECK(probLen, limit, len);
660 len += offset;
661 }
662
663 if (state < 4)
664 {
665 unsigned posSlot;
666 prob = probs + PosSlot +
667 ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) <<
668 kNumPosSlotBits);
669 TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot);
670 if (posSlot >= kStartPosModelIndex)
671 {
672 int numDirectBits = ((posSlot >> 1) - 1);
673
674 /* if (bufLimit - buf >= 8) return DUMMY_MATCH; */
675
676 if (posSlot < kEndPosModelIndex)
677 {
678 prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits) - posSlot - 1;
679 }
680 else
681 {
682 numDirectBits -= kNumAlignBits;
683 do
684 {
685 NORMALIZE_CHECK
686 range >>= 1;
687 code -= range & (((code - range) >> 31) - 1);
688 /* if (code >= range) code -= range; */
689 }
690 while (--numDirectBits != 0);
691 prob = probs + Align;
692 numDirectBits = kNumAlignBits;
693 }
694 {
695 unsigned i = 1;
696 do
697 {
698 GET_BIT_CHECK(prob + i, i);
699 }
700 while (--numDirectBits != 0);
701 }
702 }
703 }
704 }
705 }
706 NORMALIZE_CHECK;
707 return res;
708}
709
710
711static void LzmaDec_InitRc(CLzmaDec *p, const Byte *data)
712{
713 p->code = ((UInt32)data[1] << 24) | ((UInt32)data[2] << 16) | ((UInt32)data[3] << 8) | ((UInt32)data[4]);
714 p->range = 0xFFFFFFFF;
715 p->needFlush = 0;
716}
717
718void LzmaDec_InitDicAndState(CLzmaDec *p, Bool initDic, Bool initState)
719{
720 p->needFlush = 1;
721 p->remainLen = 0;
722 p->tempBufSize = 0;
723
724 if (initDic)
725 {
726 p->processedPos = 0;
727 p->checkDicSize = 0;
728 p->needInitState = 1;
729 }
730 if (initState)
731 p->needInitState = 1;
732}
733
734void LzmaDec_Init(CLzmaDec *p)
735{
736 p->dicPos = 0;
737 LzmaDec_InitDicAndState(p, True, True);
738}
739
740static void LzmaDec_InitStateReal(CLzmaDec *p)
741{
742 UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (p->prop.lc + p->prop.lp));
743 UInt32 i;
744 CLzmaProb *probs = p->probs;
745 for (i = 0; i < numProbs; i++)
746 probs[i] = kBitModelTotal >> 1;
747 p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1;
748 p->state = 0;
749 p->needInitState = 0;
750}
751
752SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
753 ELzmaFinishMode finishMode, ELzmaStatus *status)
754{
755 SizeT inSize = *srcLen;
756 (*srcLen) = 0;
757 LzmaDec_WriteRem(p, dicLimit);
758
759 *status = LZMA_STATUS_NOT_SPECIFIED;
760
761 while (p->remainLen != kMatchSpecLenStart)
762 {
763 int checkEndMarkNow;
764
765 if (p->needFlush != 0)
766 {
767 for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--)
768 p->tempBuf[p->tempBufSize++] = *src++;
769 if (p->tempBufSize < RC_INIT_SIZE)
770 {
771 *status = LZMA_STATUS_NEEDS_MORE_INPUT;
772 return SZ_OK;
773 }
774 if (p->tempBuf[0] != 0)
775 return SZ_ERROR_DATA;
776
777 LzmaDec_InitRc(p, p->tempBuf);
778 p->tempBufSize = 0;
779 }
780
781 checkEndMarkNow = 0;
782 if (p->dicPos >= dicLimit)
783 {
784 if (p->remainLen == 0 && p->code == 0)
785 {
786 *status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK;
787 return SZ_OK;
788 }
789 if (finishMode == LZMA_FINISH_ANY)
790 {
791 *status = LZMA_STATUS_NOT_FINISHED;
792 return SZ_OK;
793 }
794 if (p->remainLen != 0)
795 {
796 *status = LZMA_STATUS_NOT_FINISHED;
797 return SZ_ERROR_DATA;
798 }
799 checkEndMarkNow = 1;
800 }
801
802 if (p->needInitState)
803 LzmaDec_InitStateReal(p);
804
805 if (p->tempBufSize == 0)
806 {
807 SizeT processed;
808 const Byte *bufLimit;
809 if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
810 {
811 int dummyRes = LzmaDec_TryDummy(p, src, inSize);
812 if (dummyRes == DUMMY_ERROR)
813 {
814 memcpy(p->tempBuf, src, inSize);
815 p->tempBufSize = (unsigned)inSize;
816 (*srcLen) += inSize;
817 *status = LZMA_STATUS_NEEDS_MORE_INPUT;
818 return SZ_OK;
819 }
820 if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
821 {
822 *status = LZMA_STATUS_NOT_FINISHED;
823 return SZ_ERROR_DATA;
824 }
825 bufLimit = src;
826 }
827 else
828 bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX;
829 p->buf = src;
830 if (LzmaDec_DecodeReal2(p, dicLimit, bufLimit) != 0)
831 return SZ_ERROR_DATA;
832 processed = (SizeT)(p->buf - src);
833 (*srcLen) += processed;
834 src += processed;
835 inSize -= processed;
836 }
837 else
838 {
839 unsigned rem = p->tempBufSize, lookAhead = 0;
840 while (rem < LZMA_REQUIRED_INPUT_MAX && lookAhead < inSize)
841 p->tempBuf[rem++] = src[lookAhead++];
842 p->tempBufSize = rem;
843 if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
844 {
845 int dummyRes = LzmaDec_TryDummy(p, p->tempBuf, rem);
846 if (dummyRes == DUMMY_ERROR)
847 {
848 (*srcLen) += lookAhead;
849 *status = LZMA_STATUS_NEEDS_MORE_INPUT;
850 return SZ_OK;
851 }
852 if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
853 {
854 *status = LZMA_STATUS_NOT_FINISHED;
855 return SZ_ERROR_DATA;
856 }
857 }
858 p->buf = p->tempBuf;
859 if (LzmaDec_DecodeReal2(p, dicLimit, p->buf) != 0)
860 return SZ_ERROR_DATA;
861 lookAhead -= (rem - (unsigned)(p->buf - p->tempBuf));
862 (*srcLen) += lookAhead;
863 src += lookAhead;
864 inSize -= lookAhead;
865 p->tempBufSize = 0;
866 }
867 }
868 if (p->code == 0)
869 *status = LZMA_STATUS_FINISHED_WITH_MARK;
870 return (p->code == 0) ? SZ_OK : SZ_ERROR_DATA;
871}
872
873SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
874{
875 SizeT outSize = *destLen;
876 SizeT inSize = *srcLen;
877 *srcLen = *destLen = 0;
878 for (;;)
879 {
880 SizeT inSizeCur = inSize, outSizeCur, dicPos;
881 ELzmaFinishMode curFinishMode;
882 SRes res;
883 if (p->dicPos == p->dicBufSize)
884 p->dicPos = 0;
885 dicPos = p->dicPos;
886 if (outSize > p->dicBufSize - dicPos)
887 {
888 outSizeCur = p->dicBufSize;
889 curFinishMode = LZMA_FINISH_ANY;
890 }
891 else
892 {
893 outSizeCur = dicPos + outSize;
894 curFinishMode = finishMode;
895 }
896
897 res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status);
898 src += inSizeCur;
899 inSize -= inSizeCur;
900 *srcLen += inSizeCur;
901 outSizeCur = p->dicPos - dicPos;
902 memcpy(dest, p->dic + dicPos, outSizeCur);
903 dest += outSizeCur;
904 outSize -= outSizeCur;
905 *destLen += outSizeCur;
906 if (res != 0)
907 return res;
908 if (outSizeCur == 0 || outSize == 0)
909 return SZ_OK;
910 }
911}
912
913void LzmaDec_FreeProbs(CLzmaDec *p, ISzAlloc *alloc)
914{
915 alloc->Free(alloc, p->probs);
916 p->probs = 0;
917}
918
919static void LzmaDec_FreeDict(CLzmaDec *p, ISzAlloc *alloc)
920{
921 alloc->Free(alloc, p->dic);
922 p->dic = 0;
923}
924
925void LzmaDec_Free(CLzmaDec *p, ISzAlloc *alloc)
926{
927 LzmaDec_FreeProbs(p, alloc);
928 LzmaDec_FreeDict(p, alloc);
929}
930
931SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size)
932{
933 UInt32 dicSize;
934 Byte d;
935
936 if (size < LZMA_PROPS_SIZE)
937 return SZ_ERROR_UNSUPPORTED;
938 else
939 dicSize = data[1] | ((UInt32)data[2] << 8) | ((UInt32)data[3] << 16) | ((UInt32)data[4] << 24);
940
941 if (dicSize < LZMA_DIC_MIN)
942 dicSize = LZMA_DIC_MIN;
943 p->dicSize = dicSize;
944
945 d = data[0];
946 if (d >= (9 * 5 * 5))
947 return SZ_ERROR_UNSUPPORTED;
948
949 p->lc = d % 9;
950 d /= 9;
951 p->pb = d / 5;
952 p->lp = d % 5;
953
954 return SZ_OK;
955}
956
957static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAlloc *alloc)
958{
959 UInt32 numProbs = LzmaProps_GetNumProbs(propNew);
960 if (p->probs == 0 || numProbs != p->numProbs)
961 {
962 LzmaDec_FreeProbs(p, alloc);
963 p->probs = (CLzmaProb *)alloc->Alloc(alloc, numProbs * sizeof(CLzmaProb));
964 p->numProbs = numProbs;
965 if (p->probs == 0)
966 return SZ_ERROR_MEM;
967 }
968 return SZ_OK;
969}
970
971SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
972{
973 CLzmaProps propNew;
974 RINOK(LzmaProps_Decode(&propNew, props, propsSize));
975 RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
976 p->prop = propNew;
977 return SZ_OK;
978}
979
980SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
981{
982 CLzmaProps propNew;
983 SizeT dicBufSize;
984 RINOK(LzmaProps_Decode(&propNew, props, propsSize));
985 RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
986 dicBufSize = propNew.dicSize;
987 if (p->dic == 0 || dicBufSize != p->dicBufSize)
988 {
989 LzmaDec_FreeDict(p, alloc);
990 p->dic = (Byte *)alloc->Alloc(alloc, dicBufSize);
991 if (p->dic == 0)
992 {
993 LzmaDec_FreeProbs(p, alloc);
994 return SZ_ERROR_MEM;
995 }
996 }
997 p->dicBufSize = dicBufSize;
998 p->prop = propNew;
999 return SZ_OK;
1000}
1001
1002SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
1003 const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
1004 ELzmaStatus *status, ISzAlloc *alloc)
1005{
1006 CLzmaDec p;
1007 SRes res;
1008 SizeT outSize = *destLen, inSize = *srcLen;
1009 *destLen = *srcLen = 0;
1010 *status = LZMA_STATUS_NOT_SPECIFIED;
1011 if (inSize < RC_INIT_SIZE)
1012 return SZ_ERROR_INPUT_EOF;
1013 LzmaDec_Construct(&p);
1014 RINOK(LzmaDec_AllocateProbs(&p, propData, propSize, alloc));
1015 p.dic = dest;
1016 p.dicBufSize = outSize;
1017 LzmaDec_Init(&p);
1018 *srcLen = inSize;
1019 res = LzmaDec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
1020 *destLen = p.dicPos;
1021 if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
1022 res = SZ_ERROR_INPUT_EOF;
1023 LzmaDec_FreeProbs(&p, alloc);
1024 return res;
1025}