/* Copyright (c) 2013-2016 Jeffrey Pfau * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include #include #include #include #include #include #include #ifdef _3DS #define blip_add_delta blip_add_delta_fast #endif #define FRAME_CYCLES (DMG_LR35902_FREQUENCY >> 9) const uint32_t DMG_LR35902_FREQUENCY = 0x400000; static const int CLOCKS_PER_BLIP_FRAME = 0x1000; static const unsigned BLIP_BUFFER_SIZE = 0x4000; const int GB_AUDIO_VOLUME_MAX = 0x100; static bool _writeSweep(struct GBAudioSweep* sweep, uint8_t value); static void _writeDuty(struct GBAudioEnvelope* envelope, uint8_t value); static bool _writeEnvelope(struct GBAudioEnvelope* envelope, uint8_t value); static void _resetSweep(struct GBAudioSweep* sweep); static bool _resetEnvelope(struct GBAudioEnvelope* sweep); static void _updateEnvelope(struct GBAudioEnvelope* envelope); static void _updateEnvelopeDead(struct GBAudioEnvelope* envelope); static bool _updateSweep(struct GBAudioSquareChannel* sweep, bool initial); static void _updateSquareSample(struct GBAudioSquareChannel* ch); static int32_t _updateSquareChannel(struct GBAudioSquareChannel* ch); static void _updateFrame(struct mTiming* timing, void* user, uint32_t cyclesLate); static void _updateChannel1(struct mTiming* timing, void* user, uint32_t cyclesLate); static void _updateChannel2(struct mTiming* timing, void* user, uint32_t cyclesLate); static void _updateChannel3(struct mTiming* timing, void* user, uint32_t cyclesLate); static void _fadeChannel3(struct mTiming* timing, void* user, uint32_t cyclesLate); static void _updateChannel4(struct mTiming* timing, void* user, uint32_t cyclesLate); static void _sample(struct mTiming* timing, void* user, uint32_t cyclesLate); void GBAudioInit(struct GBAudio* audio, size_t samples, uint8_t* nr52, enum GBAudioStyle style) { audio->samples = samples; audio->left = blip_new(BLIP_BUFFER_SIZE); audio->right = blip_new(BLIP_BUFFER_SIZE); audio->clockRate = DMG_LR35902_FREQUENCY; // Guess too large; we hang producing extra samples if we guess too low blip_set_rates(audio->left, DMG_LR35902_FREQUENCY, 96000); blip_set_rates(audio->right, DMG_LR35902_FREQUENCY, 96000); audio->forceDisableCh[0] = false; audio->forceDisableCh[1] = false; audio->forceDisableCh[2] = false; audio->forceDisableCh[3] = false; audio->masterVolume = GB_AUDIO_VOLUME_MAX; audio->nr52 = nr52; audio->style = style; if (style == GB_AUDIO_GBA) { audio->timingFactor = 4; } else { audio->timingFactor = 1; } audio->frameEvent.context = audio; audio->frameEvent.name = "GB Audio Frame Sequencer"; audio->frameEvent.callback = _updateFrame; audio->frameEvent.priority = 0x10; audio->ch1Event.context = audio; audio->ch1Event.name = "GB Audio Channel 1"; audio->ch1Event.callback = _updateChannel1; audio->ch1Event.priority = 0x11; audio->ch2Event.context = audio; audio->ch2Event.name = "GB Audio Channel 2"; audio->ch2Event.callback = _updateChannel2; audio->ch2Event.priority = 0x12; audio->ch3Event.context = audio; audio->ch3Event.name = "GB Audio Channel 3"; audio->ch3Event.callback = _updateChannel3; audio->ch3Event.priority = 0x13; audio->ch3Fade.context = audio; audio->ch3Fade.name = "GB Audio Channel 3 Memory"; audio->ch3Fade.callback = _fadeChannel3; audio->ch3Fade.priority = 0x14; audio->ch4Event.context = audio; audio->ch4Event.name = "GB Audio Channel 4"; audio->ch4Event.callback = _updateChannel4; audio->ch4Event.priority = 0x15; audio->sampleEvent.context = audio; audio->sampleEvent.name = "GB Audio Sample"; audio->sampleEvent.callback = _sample; audio->ch1Event.priority = 0x18; } void GBAudioDeinit(struct GBAudio* audio) { blip_delete(audio->left); blip_delete(audio->right); } void GBAudioReset(struct GBAudio* audio) { mTimingDeschedule(audio->timing, &audio->frameEvent); mTimingDeschedule(audio->timing, &audio->ch1Event); mTimingDeschedule(audio->timing, &audio->ch2Event); mTimingDeschedule(audio->timing, &audio->ch3Event); mTimingDeschedule(audio->timing, &audio->ch3Fade); mTimingDeschedule(audio->timing, &audio->ch4Event); mTimingDeschedule(audio->timing, &audio->sampleEvent); mTimingSchedule(audio->timing, &audio->frameEvent, 0); if (audio->style != GB_AUDIO_GBA) { mTimingSchedule(audio->timing, &audio->sampleEvent, 0); } audio->ch1 = (struct GBAudioSquareChannel) { .envelope = { .dead = 2 } }; audio->ch2 = (struct GBAudioSquareChannel) { .envelope = { .dead = 2 } }; audio->ch3 = (struct GBAudioWaveChannel) { .bank = 0 }; // TODO: DMG randomness audio->ch3.wavedata8[0] = 0x00; audio->ch3.wavedata8[1] = 0xFF; audio->ch3.wavedata8[2] = 0x00; audio->ch3.wavedata8[3] = 0xFF; audio->ch3.wavedata8[4] = 0x00; audio->ch3.wavedata8[5] = 0xFF; audio->ch3.wavedata8[6] = 0x00; audio->ch3.wavedata8[7] = 0xFF; audio->ch3.wavedata8[8] = 0x00; audio->ch3.wavedata8[9] = 0xFF; audio->ch3.wavedata8[10] = 0x00; audio->ch3.wavedata8[11] = 0xFF; audio->ch3.wavedata8[12] = 0x00; audio->ch3.wavedata8[13] = 0xFF; audio->ch3.wavedata8[14] = 0x00; audio->ch3.wavedata8[15] = 0xFF; audio->ch4 = (struct GBAudioNoiseChannel) { .envelope = { .dead = 2 } }; audio->frame = 0; audio->sampleInterval = 128; audio->lastLeft = 0; audio->lastRight = 0; audio->clock = 0; audio->volumeRight = 0; audio->volumeLeft = 0; audio->ch1Right = false; audio->ch2Right = false; audio->ch3Right = false; audio->ch4Right = false; audio->ch1Left = false; audio->ch2Left = false; audio->ch3Left = false; audio->ch4Left = false; audio->playingCh1 = false; audio->playingCh2 = false; audio->playingCh3 = false; audio->playingCh4 = false; } void GBAudioResizeBuffer(struct GBAudio* audio, size_t samples) { mCoreSyncLockAudio(audio->p->sync); audio->samples = samples; blip_clear(audio->left); blip_clear(audio->right); audio->clock = 0; mCoreSyncConsumeAudio(audio->p->sync); } void GBAudioWriteNR10(struct GBAudio* audio, uint8_t value) { if (!_writeSweep(&audio->ch1.sweep, value)) { mTimingDeschedule(audio->timing, &audio->ch1Event); audio->playingCh1 = false; *audio->nr52 &= ~0x0001; } } void GBAudioWriteNR11(struct GBAudio* audio, uint8_t value) { _writeDuty(&audio->ch1.envelope, value); audio->ch1.control.length = 64 - audio->ch1.envelope.length; } void GBAudioWriteNR12(struct GBAudio* audio, uint8_t value) { if (!_writeEnvelope(&audio->ch1.envelope, value)) { mTimingDeschedule(audio->timing, &audio->ch1Event); audio->playingCh1 = false; *audio->nr52 &= ~0x0001; } } void GBAudioWriteNR13(struct GBAudio* audio, uint8_t value) { audio->ch1.control.frequency &= 0x700; audio->ch1.control.frequency |= GBAudioRegisterControlGetFrequency(value); } void GBAudioWriteNR14(struct GBAudio* audio, uint8_t value) { audio->ch1.control.frequency &= 0xFF; audio->ch1.control.frequency |= GBAudioRegisterControlGetFrequency(value << 8); bool wasStop = audio->ch1.control.stop; audio->ch1.control.stop = GBAudioRegisterControlGetStop(value << 8); if (!wasStop && audio->ch1.control.stop && audio->ch1.control.length && !(audio->frame & 1)) { --audio->ch1.control.length; if (audio->ch1.control.length == 0) { mTimingDeschedule(audio->timing, &audio->ch1Event); audio->playingCh1 = false; } } if (GBAudioRegisterControlIsRestart(value << 8)) { audio->playingCh1 = _resetEnvelope(&audio->ch1.envelope); if (audio->playingCh1) { audio->ch1.control.hi = 0; _updateSquareSample(&audio->ch1); } audio->ch1.sweep.realFrequency = audio->ch1.control.frequency; _resetSweep(&audio->ch1.sweep); if (audio->playingCh1 && audio->ch1.sweep.shift) { audio->playingCh1 = _updateSweep(&audio->ch1, true); } if (!audio->ch1.control.length) { audio->ch1.control.length = 64; if (audio->ch1.control.stop && !(audio->frame & 1)) { --audio->ch1.control.length; } } mTimingDeschedule(audio->timing, &audio->ch1Event); if (audio->playingCh1 && audio->ch1.envelope.dead != 2) { mTimingSchedule(audio->timing, &audio->ch1Event, 0); } } *audio->nr52 &= ~0x0001; *audio->nr52 |= audio->playingCh1; } void GBAudioWriteNR21(struct GBAudio* audio, uint8_t value) { _writeDuty(&audio->ch2.envelope, value); audio->ch2.control.length = 64 - audio->ch2.envelope.length; } void GBAudioWriteNR22(struct GBAudio* audio, uint8_t value) { if (!_writeEnvelope(&audio->ch2.envelope, value)) { mTimingDeschedule(audio->timing, &audio->ch2Event); audio->playingCh2 = false; *audio->nr52 &= ~0x0002; } } void GBAudioWriteNR23(struct GBAudio* audio, uint8_t value) { audio->ch2.control.frequency &= 0x700; audio->ch2.control.frequency |= GBAudioRegisterControlGetFrequency(value); } void GBAudioWriteNR24(struct GBAudio* audio, uint8_t value) { audio->ch2.control.frequency &= 0xFF; audio->ch2.control.frequency |= GBAudioRegisterControlGetFrequency(value << 8); bool wasStop = audio->ch2.control.stop; audio->ch2.control.stop = GBAudioRegisterControlGetStop(value << 8); if (!wasStop && audio->ch2.control.stop && audio->ch2.control.length && !(audio->frame & 1)) { --audio->ch2.control.length; if (audio->ch2.control.length == 0) { mTimingDeschedule(audio->timing, &audio->ch2Event); audio->playingCh2 = false; } } if (GBAudioRegisterControlIsRestart(value << 8)) { audio->playingCh2 = _resetEnvelope(&audio->ch2.envelope); if (audio->playingCh2) { audio->ch2.control.hi = 0; _updateSquareSample(&audio->ch2); } if (!audio->ch2.control.length) { audio->ch2.control.length = 64; if (audio->ch2.control.stop && !(audio->frame & 1)) { --audio->ch2.control.length; } } mTimingDeschedule(audio->timing, &audio->ch2Event); if (audio->playingCh2 && audio->ch2.envelope.dead != 2) { mTimingSchedule(audio->timing, &audio->ch2Event, 0); } } *audio->nr52 &= ~0x0002; *audio->nr52 |= audio->playingCh2 << 1; } void GBAudioWriteNR30(struct GBAudio* audio, uint8_t value) { audio->ch3.enable = GBAudioRegisterBankGetEnable(value); if (!audio->ch3.enable) { audio->playingCh3 = false; *audio->nr52 &= ~0x0004; } } void GBAudioWriteNR31(struct GBAudio* audio, uint8_t value) { audio->ch3.length = 256 - value; } void GBAudioWriteNR32(struct GBAudio* audio, uint8_t value) { audio->ch3.volume = GBAudioRegisterBankVolumeGetVolumeGB(value); } void GBAudioWriteNR33(struct GBAudio* audio, uint8_t value) { audio->ch3.rate &= 0x700; audio->ch3.rate |= GBAudioRegisterControlGetRate(value); } void GBAudioWriteNR34(struct GBAudio* audio, uint8_t value) { audio->ch3.rate &= 0xFF; audio->ch3.rate |= GBAudioRegisterControlGetRate(value << 8); bool wasStop = audio->ch3.stop; audio->ch3.stop = GBAudioRegisterControlGetStop(value << 8); if (!wasStop && audio->ch3.stop && audio->ch3.length && !(audio->frame & 1)) { --audio->ch3.length; if (audio->ch3.length == 0) { audio->playingCh3 = false; } } bool wasEnable = audio->playingCh3; if (GBAudioRegisterControlIsRestart(value << 8)) { audio->playingCh3 = audio->ch3.enable; if (!audio->ch3.length) { audio->ch3.length = 256; if (audio->ch3.stop && !(audio->frame & 1)) { --audio->ch3.length; } } if (audio->style == GB_AUDIO_DMG && wasEnable && audio->playingCh3 && audio->ch3.readable) { if (audio->ch3.window < 8) { audio->ch3.wavedata8[0] = audio->ch3.wavedata8[audio->ch3.window >> 1]; } else { audio->ch3.wavedata8[0] = audio->ch3.wavedata8[((audio->ch3.window >> 1) & ~3)]; audio->ch3.wavedata8[1] = audio->ch3.wavedata8[((audio->ch3.window >> 1) & ~3) + 1]; audio->ch3.wavedata8[2] = audio->ch3.wavedata8[((audio->ch3.window >> 1) & ~3) + 2]; audio->ch3.wavedata8[3] = audio->ch3.wavedata8[((audio->ch3.window >> 1) & ~3) + 3]; } } audio->ch3.window = 0; } mTimingDeschedule(audio->timing, &audio->ch3Fade); mTimingDeschedule(audio->timing, &audio->ch3Event); if (audio->playingCh3) { audio->ch3.readable = audio->style != GB_AUDIO_DMG; // TODO: Where does this cycle delay come from? mTimingSchedule(audio->timing, &audio->ch3Event, audio->timingFactor * 4 + 2 * (2048 - audio->ch3.rate)); } *audio->nr52 &= ~0x0004; *audio->nr52 |= audio->playingCh3 << 2; } void GBAudioWriteNR41(struct GBAudio* audio, uint8_t value) { _writeDuty(&audio->ch4.envelope, value); audio->ch4.length = 64 - audio->ch4.envelope.length; } void GBAudioWriteNR42(struct GBAudio* audio, uint8_t value) { if (!_writeEnvelope(&audio->ch4.envelope, value)) { mTimingDeschedule(audio->timing, &audio->ch4Event); audio->playingCh4 = false; *audio->nr52 &= ~0x0008; } } void GBAudioWriteNR43(struct GBAudio* audio, uint8_t value) { audio->ch4.ratio = GBAudioRegisterNoiseFeedbackGetRatio(value); audio->ch4.frequency = GBAudioRegisterNoiseFeedbackGetFrequency(value); audio->ch4.power = GBAudioRegisterNoiseFeedbackGetPower(value); } void GBAudioWriteNR44(struct GBAudio* audio, uint8_t value) { bool wasStop = audio->ch4.stop; audio->ch4.stop = GBAudioRegisterNoiseControlGetStop(value); if (!wasStop && audio->ch4.stop && audio->ch4.length && !(audio->frame & 1)) { --audio->ch4.length; if (audio->ch4.length == 0) { mTimingDeschedule(audio->timing, &audio->ch4Event); audio->playingCh4 = false; } } if (GBAudioRegisterNoiseControlIsRestart(value)) { audio->playingCh4 = _resetEnvelope(&audio->ch4.envelope); if (audio->ch4.power) { audio->ch4.lfsr = 0x40; } else { audio->ch4.lfsr = 0x4000; } if (!audio->ch4.length) { audio->ch4.length = 64; if (audio->ch4.stop && !(audio->frame & 1)) { --audio->ch4.length; } } mTimingDeschedule(audio->timing, &audio->ch4Event); if (audio->playingCh4 && audio->ch4.envelope.dead != 2) { mTimingSchedule(audio->timing, &audio->ch4Event, 0); } } *audio->nr52 &= ~0x0008; *audio->nr52 |= audio->playingCh4 << 3; } void GBAudioWriteNR50(struct GBAudio* audio, uint8_t value) { audio->volumeRight = GBRegisterNR50GetVolumeRight(value); audio->volumeLeft = GBRegisterNR50GetVolumeLeft(value); } void GBAudioWriteNR51(struct GBAudio* audio, uint8_t value) { audio->ch1Right = GBRegisterNR51GetCh1Right(value); audio->ch2Right = GBRegisterNR51GetCh2Right(value); audio->ch3Right = GBRegisterNR51GetCh3Right(value); audio->ch4Right = GBRegisterNR51GetCh4Right(value); audio->ch1Left = GBRegisterNR51GetCh1Left(value); audio->ch2Left = GBRegisterNR51GetCh2Left(value); audio->ch3Left = GBRegisterNR51GetCh3Left(value); audio->ch4Left = GBRegisterNR51GetCh4Left(value); } void GBAudioWriteNR52(struct GBAudio* audio, uint8_t value) { bool wasEnable = audio->enable; audio->enable = GBAudioEnableGetEnable(value); if (!audio->enable) { audio->playingCh1 = 0; audio->playingCh2 = 0; audio->playingCh3 = 0; audio->playingCh4 = 0; GBAudioWriteNR10(audio, 0); GBAudioWriteNR12(audio, 0); GBAudioWriteNR13(audio, 0); GBAudioWriteNR14(audio, 0); GBAudioWriteNR22(audio, 0); GBAudioWriteNR23(audio, 0); GBAudioWriteNR24(audio, 0); GBAudioWriteNR30(audio, 0); GBAudioWriteNR32(audio, 0); GBAudioWriteNR33(audio, 0); GBAudioWriteNR34(audio, 0); GBAudioWriteNR42(audio, 0); GBAudioWriteNR43(audio, 0); GBAudioWriteNR44(audio, 0); GBAudioWriteNR50(audio, 0); GBAudioWriteNR51(audio, 0); if (audio->style != GB_AUDIO_DMG) { GBAudioWriteNR11(audio, 0); GBAudioWriteNR21(audio, 0); GBAudioWriteNR31(audio, 0); GBAudioWriteNR41(audio, 0); } if (audio->p) { audio->p->memory.io[REG_NR10] = 0; audio->p->memory.io[REG_NR11] = 0; audio->p->memory.io[REG_NR12] = 0; audio->p->memory.io[REG_NR13] = 0; audio->p->memory.io[REG_NR14] = 0; audio->p->memory.io[REG_NR21] = 0; audio->p->memory.io[REG_NR22] = 0; audio->p->memory.io[REG_NR23] = 0; audio->p->memory.io[REG_NR24] = 0; audio->p->memory.io[REG_NR30] = 0; audio->p->memory.io[REG_NR31] = 0; audio->p->memory.io[REG_NR32] = 0; audio->p->memory.io[REG_NR33] = 0; audio->p->memory.io[REG_NR34] = 0; audio->p->memory.io[REG_NR42] = 0; audio->p->memory.io[REG_NR43] = 0; audio->p->memory.io[REG_NR44] = 0; audio->p->memory.io[REG_NR50] = 0; audio->p->memory.io[REG_NR51] = 0; if (audio->style != GB_AUDIO_DMG) { audio->p->memory.io[REG_NR11] = 0; audio->p->memory.io[REG_NR21] = 0; audio->p->memory.io[REG_NR31] = 0; audio->p->memory.io[REG_NR41] = 0; } } *audio->nr52 &= ~0x000F; } else if (!wasEnable) { audio->frame = 7; } } void _updateFrame(struct mTiming* timing, void* user, uint32_t cyclesLate) { struct GBAudio* audio = user; int frame = (audio->frame + 1) & 7; audio->frame = frame; switch (frame) { case 2: case 6: if (audio->ch1.sweep.enable) { --audio->ch1.sweep.step; if (audio->ch1.sweep.step == 0) { audio->playingCh1 = _updateSweep(&audio->ch1, false); *audio->nr52 &= ~0x0001; *audio->nr52 |= audio->playingCh1; } } // Fall through case 0: case 4: if (audio->ch1.control.length && audio->ch1.control.stop) { --audio->ch1.control.length; if (audio->ch1.control.length == 0) { mTimingDeschedule(timing, &audio->ch1Event); audio->playingCh1 = 0; *audio->nr52 &= ~0x0001; } } if (audio->ch2.control.length && audio->ch2.control.stop) { --audio->ch2.control.length; if (audio->ch2.control.length == 0) { mTimingDeschedule(timing, &audio->ch2Event); audio->playingCh2 = 0; *audio->nr52 &= ~0x0002; } } if (audio->ch3.length && audio->ch3.stop) { --audio->ch3.length; if (audio->ch3.length == 0) { mTimingDeschedule(timing, &audio->ch3Event); audio->playingCh3 = 0; *audio->nr52 &= ~0x0004; } } if (audio->ch4.length && audio->ch4.stop) { --audio->ch4.length; if (audio->ch4.length == 0) { mTimingDeschedule(timing, &audio->ch4Event); audio->playingCh4 = 0; *audio->nr52 &= ~0x0008; } } break; case 7: if (audio->playingCh1 && !audio->ch1.envelope.dead) { --audio->ch1.envelope.nextStep; if (audio->ch1.envelope.nextStep == 0) { _updateEnvelope(&audio->ch1.envelope); if (audio->ch1.envelope.dead == 2) { mTimingDeschedule(timing, &audio->ch1Event); } _updateSquareSample(&audio->ch1); } } if (audio->playingCh2 && !audio->ch2.envelope.dead) { --audio->ch2.envelope.nextStep; if (audio->ch2.envelope.nextStep == 0) { _updateEnvelope(&audio->ch2.envelope); if (audio->ch2.envelope.dead == 2) { mTimingDeschedule(timing, &audio->ch2Event); } _updateSquareSample(&audio->ch2); } } if (audio->playingCh4 && !audio->ch4.envelope.dead) { --audio->ch4.envelope.nextStep; if (audio->ch4.envelope.nextStep == 0) { int8_t sample = (audio->ch4.sample >> 7) * 0x8; _updateEnvelope(&audio->ch4.envelope); if (audio->ch4.envelope.dead == 2) { mTimingDeschedule(timing, &audio->ch4Event); } audio->ch4.sample = sample * audio->ch4.envelope.currentVolume; } } break; } mTimingSchedule(timing, &audio->frameEvent, audio->timingFactor * FRAME_CYCLES - cyclesLate); } void GBAudioSamplePSG(struct GBAudio* audio, int16_t* left, int16_t* right) { int sampleLeft = 0; int sampleRight = 0; if (audio->playingCh1 && !audio->forceDisableCh[0]) { if (audio->ch1Left) { sampleLeft += audio->ch1.sample; } if (audio->ch1Right) { sampleRight += audio->ch1.sample; } } if (audio->playingCh2 && !audio->forceDisableCh[1]) { if (audio->ch2Left) { sampleLeft += audio->ch2.sample; } if (audio->ch2Right) { sampleRight += audio->ch2.sample; } } if (audio->playingCh3 && !audio->forceDisableCh[2]) { if (audio->ch3Left) { sampleLeft += audio->ch3.sample; } if (audio->ch3Right) { sampleRight += audio->ch3.sample; } } if (audio->playingCh4 && !audio->forceDisableCh[3]) { if (audio->ch4Left) { sampleLeft += audio->ch4.sample; } if (audio->ch4Right) { sampleRight += audio->ch4.sample; } } *left = sampleLeft * (1 + audio->volumeLeft); *right = sampleRight * (1 + audio->volumeRight); } static void _sample(struct mTiming* timing, void* user, uint32_t cyclesLate) { struct GBAudio* audio = user; int16_t sampleLeft = 0; int16_t sampleRight = 0; GBAudioSamplePSG(audio, &sampleLeft, &sampleRight); sampleLeft = (sampleLeft * audio->masterVolume) >> 6; sampleRight = (sampleRight * audio->masterVolume) >> 6; mCoreSyncLockAudio(audio->p->sync); unsigned produced; if ((size_t) blip_samples_avail(audio->left) < audio->samples) { blip_add_delta(audio->left, audio->clock, sampleLeft - audio->lastLeft); blip_add_delta(audio->right, audio->clock, sampleRight - audio->lastRight); audio->lastLeft = sampleLeft; audio->lastRight = sampleRight; audio->clock += audio->sampleInterval; if (audio->clock >= CLOCKS_PER_BLIP_FRAME) { blip_end_frame(audio->left, CLOCKS_PER_BLIP_FRAME); blip_end_frame(audio->right, CLOCKS_PER_BLIP_FRAME); audio->clock -= CLOCKS_PER_BLIP_FRAME; } } produced = blip_samples_avail(audio->left); if (audio->p->stream && audio->p->stream->postAudioFrame) { audio->p->stream->postAudioFrame(audio->p->stream, sampleLeft, sampleRight); } bool wait = produced >= audio->samples; mCoreSyncProduceAudio(audio->p->sync, wait); if (wait && audio->p->stream && audio->p->stream->postAudioBuffer) { audio->p->stream->postAudioBuffer(audio->p->stream, audio->left, audio->right); } mTimingSchedule(timing, &audio->sampleEvent, audio->sampleInterval * audio->timingFactor - cyclesLate); } bool _resetEnvelope(struct GBAudioEnvelope* envelope) { envelope->currentVolume = envelope->initialVolume; _updateEnvelopeDead(envelope); if (!envelope->dead) { envelope->nextStep = envelope->stepTime; } return envelope->initialVolume || envelope->direction; } void _resetSweep(struct GBAudioSweep* sweep) { sweep->step = sweep->time; sweep->enable = (sweep->step != 8) || sweep->shift; sweep->occurred = false; } bool _writeSweep(struct GBAudioSweep* sweep, uint8_t value) { sweep->shift = GBAudioRegisterSquareSweepGetShift(value); bool oldDirection = sweep->direction; sweep->direction = GBAudioRegisterSquareSweepGetDirection(value); bool on = true; if (sweep->occurred && oldDirection && !sweep->direction) { on = false; } sweep->occurred = false; sweep->time = GBAudioRegisterSquareSweepGetTime(value); if (!sweep->time) { sweep->time = 8; } return on; } void _writeDuty(struct GBAudioEnvelope* envelope, uint8_t value) { envelope->length = GBAudioRegisterDutyGetLength(value); envelope->duty = GBAudioRegisterDutyGetDuty(value); } bool _writeEnvelope(struct GBAudioEnvelope* envelope, uint8_t value) { envelope->stepTime = GBAudioRegisterSweepGetStepTime(value); envelope->direction = GBAudioRegisterSweepGetDirection(value); envelope->initialVolume = GBAudioRegisterSweepGetInitialVolume(value); if (!envelope->stepTime) { // TODO: Improve "zombie" mode ++envelope->currentVolume; } _updateEnvelopeDead(envelope); envelope->nextStep = envelope->stepTime; return (envelope->initialVolume || envelope->direction) && envelope->dead != 2; } static void _updateSquareSample(struct GBAudioSquareChannel* ch) { ch->sample = (ch->control.hi * 2 - 1) * ch->envelope.currentVolume * 0x8; } static int32_t _updateSquareChannel(struct GBAudioSquareChannel* ch) { ch->control.hi = !ch->control.hi; _updateSquareSample(ch); int period = 4 * (2048 - ch->control.frequency); switch (ch->envelope.duty) { case 0: return ch->control.hi ? period : period * 7; case 1: return ch->control.hi ? period * 2 : period * 6; case 2: return period * 4; case 3: return ch->control.hi ? period * 6 : period * 2; default: // This should never be hit return period * 4; } } static void _updateEnvelope(struct GBAudioEnvelope* envelope) { if (envelope->direction) { ++envelope->currentVolume; } else { --envelope->currentVolume; } if (envelope->currentVolume >= 15) { envelope->currentVolume = 15; envelope->dead = 1; } else if (envelope->currentVolume <= 0) { envelope->currentVolume = 0; envelope->dead = 2; } else { envelope->nextStep = envelope->stepTime; } } static void _updateEnvelopeDead(struct GBAudioEnvelope* envelope) { if (!envelope->stepTime) { envelope->dead = envelope->currentVolume ? 1 : 2; } else if (!envelope->direction && !envelope->currentVolume) { envelope->dead = 2; } else if (envelope->direction && envelope->currentVolume == 0xF) { envelope->dead = 1; } else { envelope->dead = 0; } } static bool _updateSweep(struct GBAudioSquareChannel* ch, bool initial) { if (initial || ch->sweep.time != 8) { int frequency = ch->sweep.realFrequency; if (ch->sweep.direction) { frequency -= frequency >> ch->sweep.shift; if (!initial && frequency >= 0) { ch->control.frequency = frequency; ch->sweep.realFrequency = frequency; } } else { frequency += frequency >> ch->sweep.shift; if (frequency < 2048) { if (!initial && ch->sweep.shift) { ch->control.frequency = frequency; ch->sweep.realFrequency = frequency; if (!_updateSweep(ch, true)) { return false; } } } else { return false; } } ch->sweep.occurred = true; } ch->sweep.step = ch->sweep.time; return true; } static void _updateChannel1(struct mTiming* timing, void* user, uint32_t cyclesLate) { struct GBAudio* audio = user; struct GBAudioSquareChannel* ch = &audio->ch1; int cycles = _updateSquareChannel(ch); mTimingSchedule(timing, &audio->ch1Event, audio->timingFactor * cycles - cyclesLate); } static void _updateChannel2(struct mTiming* timing, void* user, uint32_t cyclesLate) { struct GBAudio* audio = user; struct GBAudioSquareChannel* ch = &audio->ch2; int cycles = _updateSquareChannel(ch); mTimingSchedule(timing, &audio->ch2Event, audio->timingFactor * cycles - cyclesLate); } static void _updateChannel3(struct mTiming* timing, void* user, uint32_t cyclesLate) { struct GBAudio* audio = user; struct GBAudioWaveChannel* ch = &audio->ch3; int i; int volume; switch (ch->volume) { case 0: volume = 0; break; case 1: volume = 4; break; case 2: volume = 2; break; case 3: volume = 1; break; default: volume = 3; break; } int start; int end; switch (audio->style) { case GB_AUDIO_DMG: default: ++ch->window; ch->window &= 0x1F; ch->sample = ch->wavedata8[ch->window >> 1]; if (!(ch->window & 1)) { ch->sample >>= 4; } ch->sample &= 0xF; break; case GB_AUDIO_GBA: if (ch->size) { start = 7; end = 0; } else if (ch->bank) { start = 7; end = 4; } else { start = 3; end = 0; } uint32_t bitsCarry = ch->wavedata32[end] & 0x000000F0; uint32_t bits; for (i = start; i >= end; --i) { bits = ch->wavedata32[i] & 0x000000F0; ch->wavedata32[i] = ((ch->wavedata32[i] & 0x0F0F0F0F) << 4) | ((ch->wavedata32[i] & 0xF0F0F000) >> 12); ch->wavedata32[i] |= bitsCarry << 20; bitsCarry = bits; } ch->sample = bitsCarry >> 4; break; } ch->sample -= 8; ch->sample *= volume * 4; audio->ch3.readable = true; if (audio->style == GB_AUDIO_DMG) { mTimingDeschedule(audio->timing, &audio->ch3Fade); mTimingSchedule(timing, &audio->ch3Fade, 2 - cyclesLate); } int cycles = 2 * (2048 - ch->rate); mTimingSchedule(timing, &audio->ch3Event, audio->timingFactor * cycles - cyclesLate); } static void _fadeChannel3(struct mTiming* timing, void* user, uint32_t cyclesLate) { UNUSED(timing); UNUSED(cyclesLate); struct GBAudio* audio = user; audio->ch3.readable = false; } static void _updateChannel4(struct mTiming* timing, void* user, uint32_t cyclesLate) { struct GBAudio* audio = user; struct GBAudioNoiseChannel* ch = &audio->ch4; int32_t baseCycles = ch->ratio ? 2 * ch->ratio : 1; baseCycles <<= ch->frequency; baseCycles *= 8 * audio->timingFactor; int32_t cycles = 0; do { int lsb = ch->lfsr & 1; ch->sample = lsb * 0x10 - 0x8; ch->sample *= ch->envelope.currentVolume; ch->lfsr >>= 1; ch->lfsr ^= (lsb * 0x60) << (ch->power ? 0 : 8); cycles += baseCycles; } while (cycles < audio->sampleInterval); mTimingSchedule(timing, &audio->ch4Event, cycles - cyclesLate); } void GBAudioPSGSerialize(const struct GBAudio* audio, struct GBSerializedPSGState* state, uint32_t* flagsOut) { uint32_t flags = 0; uint32_t ch1Flags = 0; uint32_t ch2Flags = 0; uint32_t ch4Flags = 0; flags = GBSerializedAudioFlagsSetFrame(flags, audio->frame); STORE_32LE(audio->frameEvent.when - mTimingCurrentTime(audio->timing), 0, &state->ch1.nextFrame); flags = GBSerializedAudioFlagsSetCh1Volume(flags, audio->ch1.envelope.currentVolume); flags = GBSerializedAudioFlagsSetCh1Dead(flags, audio->ch1.envelope.dead); flags = GBSerializedAudioFlagsSetCh1Hi(flags, audio->ch1.control.hi); flags = GBSerializedAudioFlagsSetCh1SweepEnabled(flags, audio->ch1.sweep.enable); flags = GBSerializedAudioFlagsSetCh1SweepOccurred(flags, audio->ch1.sweep.occurred); ch1Flags = GBSerializedAudioEnvelopeSetLength(ch1Flags, audio->ch1.control.length); ch1Flags = GBSerializedAudioEnvelopeSetNextStep(ch1Flags, audio->ch1.envelope.nextStep); ch1Flags = GBSerializedAudioEnvelopeSetFrequency(ch1Flags, audio->ch1.sweep.realFrequency); STORE_32LE(ch1Flags, 0, &state->ch1.envelope); STORE_32LE(audio->ch1Event.when - mTimingCurrentTime(audio->timing), 0, &state->ch1.nextEvent); flags = GBSerializedAudioFlagsSetCh2Volume(flags, audio->ch2.envelope.currentVolume); flags = GBSerializedAudioFlagsSetCh2Dead(flags, audio->ch2.envelope.dead); flags = GBSerializedAudioFlagsSetCh2Hi(flags, audio->ch2.control.hi); ch2Flags = GBSerializedAudioEnvelopeSetLength(ch2Flags, audio->ch2.control.length); ch2Flags = GBSerializedAudioEnvelopeSetNextStep(ch2Flags, audio->ch2.envelope.nextStep); STORE_32LE(ch2Flags, 0, &state->ch2.envelope); STORE_32LE(audio->ch2Event.when - mTimingCurrentTime(audio->timing), 0, &state->ch2.nextEvent); flags = GBSerializedAudioFlagsSetCh3Readable(flags, audio->ch3.readable); memcpy(state->ch3.wavebanks, audio->ch3.wavedata32, sizeof(state->ch3.wavebanks)); STORE_16LE(audio->ch3.length, 0, &state->ch3.length); STORE_32LE(audio->ch3Event.when - mTimingCurrentTime(audio->timing), 0, &state->ch3.nextEvent); STORE_32LE(audio->ch3Fade.when - mTimingCurrentTime(audio->timing), 0, &state->ch1.nextCh3Fade); flags = GBSerializedAudioFlagsSetCh4Volume(flags, audio->ch4.envelope.currentVolume); flags = GBSerializedAudioFlagsSetCh4Dead(flags, audio->ch4.envelope.dead); STORE_32LE(audio->ch4.lfsr, 0, &state->ch4.lfsr); ch4Flags = GBSerializedAudioEnvelopeSetLength(ch4Flags, audio->ch4.length); ch4Flags = GBSerializedAudioEnvelopeSetNextStep(ch4Flags, audio->ch4.envelope.nextStep); STORE_32LE(ch4Flags, 0, &state->ch4.envelope); STORE_32LE(audio->ch4Event.when - mTimingCurrentTime(audio->timing), 0, &state->ch4.nextEvent); STORE_32LE(flags, 0, flagsOut); } void GBAudioPSGDeserialize(struct GBAudio* audio, const struct GBSerializedPSGState* state, const uint32_t* flagsIn) { uint32_t flags; uint32_t ch1Flags = 0; uint32_t ch2Flags = 0; uint32_t ch4Flags = 0; uint32_t when; audio->playingCh1 = !!(*audio->nr52 & 0x0001); audio->playingCh2 = !!(*audio->nr52 & 0x0002); audio->playingCh3 = !!(*audio->nr52 & 0x0004); audio->playingCh4 = !!(*audio->nr52 & 0x0008); audio->enable = GBAudioEnableGetEnable(*audio->nr52); LOAD_32LE(when, 0, &state->ch1.nextFrame); mTimingSchedule(audio->timing, &audio->frameEvent, when); LOAD_32LE(flags, 0, flagsIn); LOAD_32LE(ch1Flags, 0, &state->ch1.envelope); audio->ch1.envelope.currentVolume = GBSerializedAudioFlagsGetCh1Volume(flags); audio->ch1.envelope.dead = GBSerializedAudioFlagsGetCh1Dead(flags); audio->ch1.control.hi = GBSerializedAudioFlagsGetCh1Hi(flags); audio->ch1.sweep.enable = GBSerializedAudioFlagsGetCh1SweepEnabled(flags); audio->ch1.sweep.occurred = GBSerializedAudioFlagsGetCh1SweepOccurred(flags); audio->ch1.control.length = GBSerializedAudioEnvelopeGetLength(ch1Flags); audio->ch1.envelope.nextStep = GBSerializedAudioEnvelopeGetNextStep(ch1Flags); audio->ch1.sweep.realFrequency = GBSerializedAudioEnvelopeGetFrequency(ch1Flags); LOAD_32LE(when, 0, &state->ch1.nextEvent); if (audio->ch1.envelope.dead < 2 && audio->playingCh1) { mTimingSchedule(audio->timing, &audio->ch1Event, when); } LOAD_32LE(ch2Flags, 0, &state->ch2.envelope); audio->ch2.envelope.currentVolume = GBSerializedAudioFlagsGetCh2Volume(flags); audio->ch2.envelope.dead = GBSerializedAudioFlagsGetCh2Dead(flags); audio->ch2.control.hi = GBSerializedAudioFlagsGetCh2Hi(flags); audio->ch2.control.length = GBSerializedAudioEnvelopeGetLength(ch2Flags); audio->ch2.envelope.nextStep = GBSerializedAudioEnvelopeGetNextStep(ch2Flags); LOAD_32LE(when, 0, &state->ch2.nextEvent); if (audio->ch2.envelope.dead < 2 && audio->playingCh2) { mTimingSchedule(audio->timing, &audio->ch2Event, when); } audio->ch3.readable = GBSerializedAudioFlagsGetCh3Readable(flags); // TODO: Big endian? memcpy(audio->ch3.wavedata32, state->ch3.wavebanks, sizeof(audio->ch3.wavedata32)); LOAD_16LE(audio->ch3.length, 0, &state->ch3.length); LOAD_32LE(when, 0, &state->ch3.nextEvent); if (audio->playingCh3) { mTimingSchedule(audio->timing, &audio->ch3Event, when); } LOAD_32LE(when, 0, &state->ch1.nextCh3Fade); if (audio->ch3.readable && audio->style == GB_AUDIO_DMG) { mTimingSchedule(audio->timing, &audio->ch3Fade, when); } LOAD_32LE(ch4Flags, 0, &state->ch4.envelope); audio->ch4.envelope.currentVolume = GBSerializedAudioFlagsGetCh4Volume(flags); audio->ch4.envelope.dead = GBSerializedAudioFlagsGetCh4Dead(flags); audio->ch4.length = GBSerializedAudioEnvelopeGetLength(ch4Flags); audio->ch4.envelope.nextStep = GBSerializedAudioEnvelopeGetNextStep(ch4Flags); LOAD_32LE(audio->ch4.lfsr, 0, &state->ch4.lfsr); LOAD_32LE(when, 0, &state->ch4.nextEvent); if (audio->ch4.envelope.dead < 2 && audio->playingCh4) { mTimingSchedule(audio->timing, &audio->ch4Event, when); } } void GBAudioSerialize(const struct GBAudio* audio, struct GBSerializedState* state) { GBAudioPSGSerialize(audio, &state->audio.psg, &state->audio.flags); STORE_32LE(audio->sampleEvent.when - mTimingCurrentTime(audio->timing), 0, &state->audio.nextSample); } void GBAudioDeserialize(struct GBAudio* audio, const struct GBSerializedState* state) { GBAudioPSGDeserialize(audio, &state->audio.psg, &state->audio.flags); uint32_t when; LOAD_32LE(when, 0, &state->audio.nextSample); mTimingSchedule(audio->timing, &audio->sampleEvent, when); }