all repos — codes @ 87534269a39585778039c757f92f73006bd3863b

almost done
Marco Andronaco andronacomarco@gmail.com
Thu, 23 Feb 2023 19:41:25 +0100
commit

87534269a39585778039c757f92f73006bd3863b

parent

13febb9534b0f2cbc7a96369a634339a937d88cb

1 files changed, 34 insertions(+), 8 deletions(-)

jump to
M src/index.texsrc/index.tex

@@ -240,8 +240,8 @@

\subsection*{$d\geq 3$} The previous values of $d$ didn't allow for space to correct any errors. -%todo: show that you need 2r+1 distance to correct r errors. -Unfortunately, for $d >= 3$, things start to get complicated. +%TODO: show that you need 2r+1 distance to correct r errors. +Unfortunately, for $d \geq 3$, things start to get complicated. \subsection{The sphere-packing bound}

@@ -316,9 +316,6 @@ \end{array}

\end{equation} \end{theorem} -\begin{example} - % TODO: insert examples -\end{example} \subsection{Making sense of these constraints} For each code $\mathcal{C} \subseteq \{0,1\}^n$ we associate $\mathbf{\tilde{x}}=(\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_n)$ such that each $\tilde{x}_i$ is a nonnegative real number and $\tilde{x}_1+\tilde{x}_2+\ldots+\tilde{x}_n=|\mathcal{C}|$. We need to prove that, if $\mathcal{C}$ has distance $d$, then $\mathbf{\tilde{x}}$ is a feasible solution for Delsarte's linear program.

@@ -407,6 +404,7 @@ \end{equation*}

\end{proof} \end{lemma} \begin{lemma} + \label{sum-greater-zero-lemma} For every $\mathcal{C} \subseteq \{0,1\}^n$ and every $\mathbf{v}\in\{0,1\}^n$ we have \begin{equation} \label{sum-almost-here}

@@ -431,13 +429,41 @@ \begin{example}

Suppose $\mathbf{w}=(10010)$ and $\mathbf{w}'=(00111)$ with $\mathbf{v}=(10011)$. Then, $I = \{1,4,5\}$. Let's show that $(\textbf{w} \oplus \textbf{w}')^T\mathbf{v} = d_H^I(\mathbf{w}, \mathbf{w}') = 2$: \begin{equation*} - [(10010) \oplus (00111)]^T \cdot (10011) = (10101)^T \cdot (10011) = 1+0+0+0+1 = 2. + \begin{array}{ll} + (\textbf{w} \oplus \textbf{w}')^T\mathbf{v} & = [(10010) \oplus (00111)]^T \cdot (10011) \\ + & = (10101)^T \cdot (10011) \\ + & = 1+0+0+0+1 \\ + & = 2 = d_H^I(\mathbf{w}, \mathbf{w}'). + \end{array} \end{equation*} \end{example} - + There is also another alternative proof for Lemma \ref{sum-greater-zero-lemma}: \begin{proof}[Proof (algebraic)] - %TODO: fill this + First of all, the results of $(\mathbf{w}\oplus\mathbf{w}')^T\mathbf{v}$ and $(\mathbf{w}+\mathbf{w}')^T\mathbf{v}$ have the same parity (the ``modulo 2" operation does not affect parity). + + Since we're only interested in its parity, we can elevate $-1$ to any of these two and it would give the same result. + \begin{equation*} + \sum\limits_{(\mathbf{w},\mathbf{w}')\in\mathcal{C}^2}(-1)^{(\mathbf{w}\oplus\mathbf{w}')^T\mathbf{v}} = \sum\limits_{(\mathbf{w},\mathbf{w}')\in\mathcal{C}^2}(-1)^{(\mathbf{w}+\mathbf{w}')^T\mathbf{v}}. + \end{equation*} + + At this point, we can use the distributive property over addiction of the scalar product to write: + \begin{equation*} + \sum\limits_{(\mathbf{w},\mathbf{w}')\in\mathcal{C}^2}(-1)^{(\mathbf{w}+\mathbf{w}')^T\mathbf{v}} = + \sum\limits_{(\mathbf{w},\mathbf{w}')\in\mathcal{C}^2}(-1)^{\mathbf{w}^T\mathbf{v}+\mathbf{w}'^T\mathbf{v}}. + \end{equation*} + + Now, we can split the exponential: + \begin{equation*} + \sum\limits_{(\mathbf{w},\mathbf{w}')\in\mathcal{C}^2}(-1)^{\mathbf{w}^T\mathbf{v}+\mathbf{w}'^T\mathbf{v}} = + \sum\limits_{(\mathbf{w},\mathbf{w}')\in\mathcal{C}^2}(-1)^{\mathbf{w}^T\mathbf{v}}\cdot (-1)^{\mathbf{w}'^T\mathbf{v}}. + \end{equation*} + + We just obtained the definition of the square of a generic polynomial: + \begin{equation*} + \sum\limits_{(\mathbf{w},\mathbf{w}')\in\mathcal{C}^2}(-1)^{\mathbf{w}^T\mathbf{v}}\cdot (-1)^{\mathbf{w}'^T\mathbf{v}} = \left(\sum\limits_{\mathbf{w}\in\mathcal{C}}(-1)^{\mathbf{w}^T\mathbf{v}}\right)^2 \geq 0, + \end{equation*} + which is always greater or equal to zero by definition. \end{proof} \end{lemma}